-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
285 lines (209 loc) · 8.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# import the usual resources
import matplotlib.pyplot as plt
import numpy as np
# import utilities to keep workspaces alive during model training
#from workspace_utils import active_session
# watch for any changes in model.py, if it changes, re-load it automatically
#%load_ext autoreload
#%autoreload 2
## TODO: Define the Net in models.py
import torch
import torch.nn as nn
import torch.nn.functional as F
import datetime
## TODO: Once you've define the network, you can instantiate it
# one example conv layer has been provided for you
from torch.utils.data import Dataset, DataLoader
import torch
from torchvision import transforms, utils
from models import Net
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
print(torch.version)
net = Net().to(device)
print(net)
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
# the dataset we created in Notebook 1 is copied in the helper file `data_load.py`
from data_load import FacialKeypointsDataset
# the transforms we defined in Notebook 1 are in the helper file `data_load.py`
from data_load import Rescale, RandomCrop, Normalize, ToTensor
## TODO: define the data_transform using transforms.Compose([all tx's, . , .])
# order matters! i.e. rescaling should come before a smaller crop
# testing that you've defined a transform
data_transform = transforms.Compose(
[Rescale(250), RandomCrop(224),
Normalize(), ToTensor()])
assert (data_transform is not None), 'Define a data_transform'
# create the transformed dataset
transformed_dataset = FacialKeypointsDataset(
csv_file=
"D:\\Users\\Tsvetan\\FootDataset\\person_keypoints_train2017_foot_v1\\NEWOUT.csv",
root_dir=
"D:\\Users\\Tsvetan\\FootDataset\\person_keypoints_train2017_foot_v1\\out\\",
transform=data_transform)
print('Number of images: ', len(transformed_dataset))
# iterate through the transformed dataset and print some stats about the first few samples
for i in range(4):
sample = transformed_dataset[i]
print(i, sample['image'].size(), sample['keypoints'].size())
# load training data in batches
batch_size = 32
train_loader = DataLoader(
transformed_dataset, batch_size=batch_size, shuffle=True, num_workers=0)
# load in the test data, using the dataset class
# AND apply the data_transform you defined above
# create the test dataset
test_dataset = FacialKeypointsDataset(
csv_file=
"D:\\Users\\Tsvetan\\FootDataset\\person_keypoints_val2017_foot_v1\\NEWOUT.csv",
root_dir=
"D:\\Users\\Tsvetan\\FootDataset\\person_keypoints_val2017_foot_v1\\ready_val_out\\",
transform=data_transform)
test_loader = DataLoader(
test_dataset, batch_size=batch_size, shuffle=True, num_workers=0)
# test the model on a batch of test images
def net_sample_output():
# iterate through the test dataset
for i, sample in enumerate(test_loader):
# get sample data: images and ground truth keypoints
images = sample['image']
key_pts = sample['keypoints']
# convert images to FloatTensors
images = images.type(torch.cuda.FloatTensor)
# forward pass to get net output
output_pts = net(images)
# reshape to batch_size x 68 x 2 pts ##CHANGED
output_pts = output_pts.view(output_pts.size()[0], 6, -1)
# break after first image is tested
if i == 0:
return images, output_pts, key_pts
test_images, test_outputs, gt_pts = net_sample_output()
# print out the dimensions of the data to see if they make sense
print(test_images.data.size())
print(test_outputs.data.size())
print(gt_pts.size())
def show_all_keypoints(image, predicted_key_pts, gt_pts=None):
"""Show image with predicted keypoints"""
# image is grayscale
plt.imshow(image, cmap='gray')
plt.scatter(
predicted_key_pts[:, 0],
predicted_key_pts[:, 1],
s=20,
marker='.',
c='m')
# plot ground truth points as green pts
if gt_pts is not None:
plt.scatter(gt_pts[:, 0], gt_pts[:, 1], s=20, marker='.', c='g')
# visualize the output
# by default this shows a batch of 10 images
def visualize_output(test_images, test_outputs, gt_pts=None, batch_size=4):
fig = plt.figure()
iimg = 1
sp = 1
for i in range(batch_size):
iimg += 1
if i % 2 == 0:
sp += 1
iimg = 1
fig.add_subplot(sp, batch_size, iimg)
# un-transform the image data
image = test_images.cpu(
)[i].data # get the image from it's Variable wrapper
image = image.numpy() # convert to numpy array from a Tensor
image = np.transpose(
image, (1, 2, 0)) # transpose to go from torch to numpy image
# un-transform the predicted key_pts data
predicted_key_pts = test_outputs.cpu()[i].data
predicted_key_pts = predicted_key_pts.numpy()
# undo normalization of keypoints
predicted_key_pts = predicted_key_pts * 50.0 + 100
# plot ground truth points for comparison, if they exist
ground_truth_pts = None
if gt_pts is not None:
ground_truth_pts = gt_pts[i]
ground_truth_pts = ground_truth_pts * 50.0 + 100
# call show_all_keypoints
show_all_keypoints(
np.squeeze(image), predicted_key_pts, ground_truth_pts)
plt.axis('off')
plt.show()
# call it
#visualize_output(test_images, test_outputs, gt_pts)
## TODO: Define the loss and optimization
import torch.optim as optim
#criterion = nn.CrossEntropyLoss()
criterion = nn.MSELoss()
#optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
optimizer = optim.Adam(params=net.parameters(), lr=0.001)
def train_net(n_epochs):
print("Training...")
# prepare the net for training
net.train()
for epoch in range(n_epochs): # loop over the dataset multiple times
running_loss = 0.0
# train on batches of data, assumes you already have train_loader
for batch_i, data in enumerate(train_loader):
# get the input images and their corresponding labels
images = data['image']
key_pts = data['keypoints']
# flatten pts
key_pts = key_pts.view(key_pts.size(0), -1)
# convert variables to floats for regression loss
key_pts = key_pts.type(torch.cuda.FloatTensor)
images = images.type(torch.cuda.FloatTensor)
# forward pass to get outputs
output_pts = net(images)
#output_pts = output_pts.type(torch.cuda.FloatTensor)
#print(output_pts.type)
#print(key_pts.type)
# calculate the loss between predicted and target keypoints
loss = criterion(output_pts, key_pts)
# zero the parameter (weight) gradients
optimizer.zero_grad()
# backward pass to calculate the weight gradients
loss.backward()
# update the weights
optimizer.step()
# print loss statistics
running_loss += loss.item()
if batch_i % 32 == 31: # print every 10 batches
print(datetime.datetime.now())
print('Epoch: {}, Batch: {}, Avg. Loss: {}'.format(
epoch + 1, batch_i + 1, running_loss / 1000))
running_loss = 0.0
print('Finished Training')
# train your network
n_epochs = 500 # start small, and increase when you've decided on your model structure and hyperparams
# this is a Workspaces-specific context manager to keep the connection
# alive while training your model, not part of pytorch
#with active_session():
#train_net(n_epochs)
## TODO: change the name to something uniqe for each new model
model_dir = 'D:\\Users\\Tsvetan\\FootDataset\\'
model_name = 'keypoints_model_garima.pt'
cpnt = torch.load(model_dir + "500" + model_name)
print()
print()
for key in cpnt.keys():
print(key + " {}".format(cpnt[key]))
print()
print()
net.load_state_dict(torch.load(model_dir + "500" + model_name))
train_net(10)
net.eval()
# after training, save your model parameters in the dir 'saved_models'
#torch.save(net.state_dict(), model_dir + model_name)
# Get the weights in the first conv layer, "conv1"
# if necessary, change this to reflect the name of your first conv layer
weights1 = net.conv1.weight.data.cpu()
w = weights1.numpy()
filter_index = 0
print(w[filter_index][0])
print(w[filter_index][0].shape)
# display the filter weights
#plt.imshow(w[filter_index][0], cmap='gray')
####
test_images, test_outputs, gt_pts = net_sample_output()
visualize_output(test_images, test_outputs, gt_pts)