-
Notifications
You must be signed in to change notification settings - Fork 422
/
Copy pathapi_hf.py
49 lines (40 loc) · 1.33 KB
/
api_hf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import os
import json
from transformers import AutoTokenizer, AutoModel
import uvicorn
from fastapi import FastAPI, Request
import datetime
from model import process_image
import torch
tokenizer = AutoTokenizer.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True).half().cuda()
app = FastAPI()
@app.post('/')
async def visual_glm(request: Request):
json_post_raw = await request.json()
print("Start to process request")
json_post = json.dumps(json_post_raw)
request_data = json.loads(json_post)
history = request_data.get("history")
image_encoded = request_data.get("image")
query = request_data.get("text")
image_path = process_image(image_encoded)
with torch.no_grad():
result = model.stream_chat(tokenizer, image_path, query, history=history)
last_result = None
for value in result:
last_result = value
answer = last_result[0]
if os.path.isfile(image_path):
os.remove(image_path)
now = datetime.datetime.now()
time = now.strftime("%Y-%m-%d %H:%M:%S")
response = {
"result": answer,
"history": history,
"status": 200,
"time": time
}
return response
if __name__ == "__main__":
uvicorn.run(app, host='0.0.0.0', port=8080, workers=1)