-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmlp.py
55 lines (43 loc) · 2.45 KB
/
mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import tensorflow as tf
class MLP(object):
"""
A multi-layer perceptron made up of a number of fully-connected layers followed by a softmax layer.
"""
def __init__(self, vocab_size, num_classes, layers, l2_reg_lambda):
# Placeholders for input, output and dropout
self.input_x = tf.placeholder(tf.float32, [None, vocab_size], name="input_x")
self.input_y = tf.placeholder(tf.int32, [None], name="input_y")
self.train_flag = tf.placeholder(tf.bool, name="train_flag")
self.dropout_keep_prob = tf.placeholder_with_default(1.0, shape=[], name="dropout_keep_prob")
# Keeping track of L2 regularization loss
l2_loss = tf.constant(0.0)
# Create fully-connected layers
x = self.input_x
for i, num_units in enumerate(layers):
with tf.variable_scope("fc-{}-{}".format(i, num_units)):
W = tf.get_variable("W",
shape=[x.get_shape().as_list()[1], num_units],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.constant(0.1, shape=[num_units]), name="b")
l2_loss += tf.nn.l2_loss(W)
x = tf.nn.xw_plus_b(x, W, b)
x = tf.nn.relu(x)
x = tf.nn.dropout(x, self.dropout_keep_prob)
# Final (unnormalized) scores and predictions
with tf.variable_scope("output"):
W = tf.get_variable("W",
shape=[x.get_shape().as_list()[1], num_classes],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b")
l2_loss += tf.nn.l2_loss(W)
self.scores = tf.nn.xw_plus_b(x, W, b, name="scores")
self.predictions = tf.argmax(self.scores, 1, name="predictions")
self.predictions = tf.cast(self.predictions, tf.int32)
# Calculate mean cross-entropy loss
with tf.variable_scope("loss"):
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.scores, labels=self.input_y)
self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss
# Calculate accuracy
with tf.variable_scope("accuracy"):
correct_predictions = tf.equal(self.predictions, self.input_y)
self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")