-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdata.py
537 lines (447 loc) · 21.9 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
import os
import re
import collections
import copy
import pickle
import numpy as np
import sklearn.datasets
from scipy.sparse import csr_matrix, vstack
AVAILABLE_DATASETS = ["20 Newsgroups", "RT Polarity", "RCV1", "RCV1-Vectors-Original", "RCV1-Vectors-Custom"]
DEFAULT_VOCAB_SIZES = [10000, 5000, 10000, None, None]
DEFAULT_SEQ_LENS = [1000, 56, 1000, None, None]
class TextDataset(object):
def clean_text(self):
"""
Tokenization & string cleaning.
"""
for i, string in enumerate(self.documents):
string = re.sub(r"[^A-Za-z0-9(),!?'$]", " ", string)
string = re.sub(r"(\d+)", " NUM ", string)
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r"\(", " ( ", string)
string = re.sub(r"\)", " ) ", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\?", " ? ", string)
string = re.sub(r"\$", " dollar ", string)
string = re.sub(r"\s{2,}", " ", string)
self.documents[i] = string.strip().lower()
def keep_documents(self, idx):
"""
Keep the documents given by the index, discard the others.
"""
self.documents = [self.documents[i] for i in idx]
self.labels = self.labels[idx]
try:
self.data_count = self.data_count[idx, :]
except AttributeError:
pass
def keep_words(self, idx):
"""
Keep the words given by the index, discard the others.
"""
self.vocab = [self.vocab[i] for i in idx]
self.data_count = self.data_count[:, idx]
def remove_short_documents(self, nwords, vocab="selected"):
"""
Remove documents that contain less than nwords.
"""
if vocab is "selected":
# Word count with selected vocabulary
wc = self.data_count.sum(axis=1)
wc = np.squeeze(np.asarray(wc))
elif vocab is "full":
# Word count with full vocabulary
wc = np.empty(len(self.documents), dtype=np.int)
for i, doc in enumerate(self.documents):
wc[i] = len(doc.split())
idx = np.argwhere(wc >= nwords).squeeze()
self.keep_documents(idx)
def keep_top_words(self, N):
"""
Keep only the N words that appear most often.
"""
freq = self.data_count.sum(axis=0)
freq = np.squeeze(np.asarray(freq))
idx = np.argsort(freq)[::-1]
idx = idx[:N]
self.keep_words(idx)
def count_vectorize(self, **params):
"""
Vectorize the documents in the dataset using CountVectorizer(**params).
"""
self.count_vectorizer = sklearn.feature_extraction.text.CountVectorizer(**params)
self.data_count = self.count_vectorizer.fit_transform(self.documents)
self.vocab = self.count_vectorizer.get_feature_names()
assert len(self.vocab) == self.data_count.shape[1]
def tfidf_normalize(self):
"""
Transform data_count to tf-idf and store in data_tfidf. Do this at the very end.
"""
transformer = sklearn.feature_extraction.text.TfidfTransformer(norm="l1")
self.data_tfidf = transformer.fit_transform(self.data_count)
def generate_word2ind(self, maxlen=None, padding="post", truncating="post"):
"""
Transforms documents to list of self.vocab indexes of the same length (i.e. maxlen). Do this at the
very end.
"""
# Add "<UNK>" to vocabulary (for padding) and create a reverse vocabulary lookup
if self.vocab[-1] != "<UNK>":
self.vocab = self.vocab + ["<UNK>"]
reverse_vocab = {w: i for i, w in enumerate(self.vocab)}
# Tokenize all the documents using the CountVectorizer's analyzer
analyzer = self.count_vectorizer.build_analyzer()
tokenized_docs = np.array([analyzer(doc) for doc in self.documents])
# Transform documents from words to indexes using vocabulary
sequences = np.array([[reverse_vocab[w] for w in tokens if w in reverse_vocab]
for tokens in tokenized_docs])
# Truncate or pad sequences to match maxlen (adapted from tflearn.data_utils.pad_sequences)
lengths = [len(s) for s in sequences]
num_samples = len(sequences)
if maxlen is None:
maxlen = np.max(lengths)
x = np.ones((num_samples, maxlen), np.int64) * (len(self.vocab) - 1)
for idx, s in enumerate(sequences):
if len(s) == 0:
continue # empty list was found
if truncating == "pre":
trunc = s[-maxlen:]
elif truncating == "post":
trunc = s[:maxlen]
if padding == "post":
x[idx, :len(trunc)] = trunc
elif padding == "pre":
x[idx, -len(trunc):] = trunc
self.data_word2ind = x
def generate_out(self, out, **params):
if out == "count":
self.data = self.data_count
elif out == "tfidf":
self.tfidf_normalize(**params) # transform count matrix into a tf-idf matrix
self.data = self.data_tfidf
elif out == "word2ind":
self.generate_word2ind(**params) # transform documents to sequences of vocab indexes
self.data = self.data_word2ind
class Text20News(TextDataset):
"""
20 Newsgroups dataset.
Dataset retrieved from scikit-learn (http://scikit-learn.org/stable/datasets/twenty_newsgroups.html)
"""
def __init__(self, subset, remove=("headers", "footers", "quotes"), categories=None,
shuffle=True, random_state=42):
dataset = sklearn.datasets.fetch_20newsgroups(subset=subset, categories=categories, shuffle=shuffle,
random_state=random_state, remove=remove)
self.documents = dataset.data
self.labels = dataset.target
self.class_names = dataset.target_names
assert max(self.labels) + 1 == len(self.class_names)
def preprocess_train(self, out, vocab_size=10000, **params):
self.remove_short_documents(nwords=20, vocab="full") # remove documents < 20 words in length
self.clean_text() # tokenize & clean text
self.count_vectorize(stop_words="english") # create term-document count matrix and vocabulary
self.orig_vocab_size = len(self.vocab)
self._remove_encoded_images() # remove encoded images
self.keep_top_words(vocab_size) # keep only the top vocab_size words
self.remove_short_documents(nwords=5, vocab="selected") # remove docs whose signal would be the zero vector
self.generate_out(out, **params) # generate final self.data
def preprocess_test(self, train_vocab, out, **params):
self.clean_text()
self.count_vectorize(vocabulary=train_vocab)
self.remove_short_documents(nwords=5, vocab="selected")
self.generate_out(out, **params)
def _remove_encoded_images(self, freq=1e3):
widx = self.vocab.index("ax")
wc = self.data_count[:, widx].toarray().squeeze()
idx = np.argwhere(wc < freq).squeeze()
self.keep_documents(idx)
class TextRTPolarity(TextDataset):
"""
Pang and Lee's movie review sentiment polarity dataset.
http://www.cs.cornell.edu/people/pabo/movie-review-data/
"""
def __init__(self, shuffle=True, random_state=10):
# Load data from files
positive_examples = list(open("data/RT Polarity/rt-polarity.pos", "r", encoding="utf-8").readlines())
positive_examples = [s.strip() for s in positive_examples]
negative_examples = list(open("data/RT Polarity/rt-polarity.neg", "r", encoding="utf-8").readlines())
negative_examples = [s.strip() for s in negative_examples]
# Save documents
self.documents = np.array(positive_examples + negative_examples)
# Save target labels
positive_labels = [0 for _ in positive_examples]
negative_labels = [1 for _ in negative_examples]
self.labels = np.array(positive_labels + negative_labels)
# Save class names
self.class_names = ["pos", "neg"]
# Shuffle data
if shuffle:
np.random.seed(random_state)
shuffle_indices = np.random.permutation(np.arange(len(self.labels)))
self.documents = self.documents[shuffle_indices]
self.labels = self.labels[shuffle_indices]
def preprocess(self, out, vocab_size=5000, **params):
self.clean_text() # tokenize & clean text
self.count_vectorize() # create term-document count matrix and vocabulary
self.orig_vocab_size = len(self.vocab)
self.keep_top_words(vocab_size) # keep only the top vocab_size words
self.generate_out(out, **params) # generate final self.data
class TextRCV1(TextDataset):
"""
Reuters RCV1 dataset.
Paper: http://www.jmlr.org/papers/volume5/lewis04a/lewis04a.pdf
"""
def __init__(self):
self.documents, self.labels, self.class_names = self._load()
assert len(self.class_names) == 103 # 103 categories according to LYRL2004
N, C = self.labels.shape
assert C == len(self.class_names)
def preprocess(self, out, vocab_size=2000, **params):
# Selection of classes
keep = ['C11', 'C12', 'C13', 'C14', 'C15', 'C16', 'C17', 'C18', 'C21', 'C22', 'C23', 'C24',
'C31', 'C32', 'C33', 'C34', 'C41', 'C42', 'E11', 'E12', 'E13', 'E14', 'E21', 'E31',
'E41', 'E51', 'E61', 'E71', 'G15', 'GCRIM', 'GDEF', 'GDIP', 'GDIS', 'GENT', 'GENV',
'GFAS', 'GHEA', 'GJOB', 'GMIL', 'GOBIT', 'GODD', 'GPOL', 'GPRO', 'GREL', 'GSCI',
'GSPO', 'GTOUR', 'GVIO', 'GVOTE', 'GWEA', 'GWELF', 'M11', 'M12', 'M13', 'M14']
assert len(keep) == 55 # 55 second-level categories according to LYRL2004
keep.remove('C15') # 130,426 documents after removing multiple class documents
keep.remove('GOBIT') # 5 documents after removing multiple class documents
keep.remove('GMIL') # 1 document after removing multiple class documents
self._keep_classes(keep)
# Remove documents with multiple classes
classes_per_doc = np.array(self.labels.sum(axis=1)).squeeze()
self.labels = self.labels[classes_per_doc == 1]
self.documents = [self.documents[i] for i in range(len(self.documents)) if classes_per_doc[i] == 1]
# Convert target from one-hot sparse matrix to labels
N, C = self.labels.shape
labels = self.labels.tocoo()
self.labels = labels.col
assert self.labels.min() == 0
assert self.labels.max() == C - 1
self.clean_text() # tokenize & clean text
self.count_vectorize(stop_words="english") # create term-document count matrix and vocabulary
self.orig_vocab_size = len(self.vocab)
self.keep_top_words(vocab_size) # keep only the top vocab_size words
self.remove_short_documents(nwords=5, vocab="selected") # remove docs whose signal would be the zero vector
self.generate_out(out, **params) # generate final self.data
def _load(self):
data_dir = os.path.abspath(os.path.join(os.path.curdir, "data", "RCV1", "pickles", "RCV1-v2_Sparse"))
class_names = pickle.load(open(data_dir + "/class_names.pkl", "rb"))
pkl_files = os.listdir(data_dir)
docs_pkls = list(filter(lambda x: x.startswith("documents"), pkl_files))
labels_pkls = list(filter(lambda x: x.startswith("labels"), pkl_files))
docs_pkls.sort()
labels_pkls.sort()
documents = []
for docs_pkl in docs_pkls:
documents += pickle.load(open(data_dir + "/" + docs_pkl, "rb"))
_labels = []
for labels_pkl in labels_pkls:
_labels += pickle.load(open(data_dir + "/" + labels_pkl, "rb"))
labels = vstack(_labels)
return documents, labels, class_names
def _keep_classes(self, keep):
# Construct a lookup table for labels to keep
class_lookup = {}
for i, name in enumerate(self.class_names):
class_lookup[name] = i
self.class_names = keep
# Get indices of classes to keep & delete everything else
idx_keep = np.empty(len(keep))
for i, cat in enumerate(keep):
idx_keep[i] = class_lookup[cat]
self.labels = self.labels[:, idx_keep]
assert self.labels.shape[1] == len(keep)
class TextRCV1_Vectors(TextDataset):
"""
Reuters RCV1 dataset vectors.
Paper: http://www.jmlr.org/papers/volume5/lewis04a/lewis04a.pdf
Dataset retrieved from scikit-learn (http://scikit-learn.org/stable/datasets/rcv1.html)
Note: Dataset contains only cosine-normalized, log tf-idf vectors (i.e. can only be used for baseline
models & MLP).
"""
def __init__(self, subset, shuffle=True, random_state=42):
if subset == "all":
shuffle = False # chronological split violated if shuffled
else:
shuffle = shuffle
dataset = sklearn.datasets.fetch_rcv1(subset=subset, shuffle=shuffle, random_state=random_state)
self.data = dataset.data
self.labels = dataset.target
self.class_names = dataset.target_names
assert len(self.class_names) == 103 # 103 categories according to LYRL2004
N, C = self.labels.shape
assert C == len(self.class_names)
N, V = self.data.shape
self.vocab = np.zeros(V) # hacky workaround to create placeholder value
self.orig_vocab_size = V
def preprocess(self, out, **params):
# Selection of classes
keep = ['C11', 'C12', 'C13', 'C14', 'C15', 'C16', 'C17', 'C18', 'C21', 'C22', 'C23', 'C24',
'C31', 'C32', 'C33', 'C34', 'C41', 'C42', 'E11', 'E12', 'E13', 'E14', 'E21', 'E31',
'E41', 'E51', 'E61', 'E71', 'G15', 'GCRIM', 'GDEF', 'GDIP', 'GDIS', 'GENT', 'GENV',
'GFAS', 'GHEA', 'GJOB', 'GMIL', 'GOBIT', 'GODD', 'GPOL', 'GPRO', 'GREL', 'GSCI',
'GSPO', 'GTOUR', 'GVIO', 'GVOTE', 'GWEA', 'GWELF', 'M11', 'M12', 'M13', 'M14']
assert len(keep) == 55 # 55 second-level categories according to LYRL2004
keep.remove('C15') # 130,426 documents after removing multiple class documents
keep.remove('GOBIT') # 5 documents after removing multiple class documents
keep.remove('GMIL') # 1 document after removing multiple class documents
self._keep_classes(keep)
# Remove documents with multiple classes
classes_per_doc = np.array(self.labels.sum(axis=1)).squeeze()
self.labels = self.labels[classes_per_doc == 1]
self.data = self.data[classes_per_doc == 1, :]
# Convert target from one-hot sparse matrix to labels
N, C = self.labels.shape
labels = self.labels.tocoo()
self.labels = labels.col
assert self.labels.min() == 0
assert self.labels.max() == C - 1
def _keep_classes(self, keep):
# Construct a lookup table for labels to keep
class_lookup = {}
for i, name in enumerate(self.class_names):
class_lookup[name] = i
self.class_names = keep
# Get indices of classes to keep & delete everything else
idx_keep = np.empty(len(keep))
for i, cat in enumerate(keep):
idx_keep[i] = class_lookup[cat]
self.labels = self.labels[:, idx_keep]
assert self.labels.shape[1] == len(keep)
def load_dataset(dataset, out, vocab_size=None, **params):
"""
Returns the train & test datasets for a chosen dataset. The datasets are directly loaded from stored
pickles (if available) or loaded from disk and preprocessed.
"""
loaded = False
if vocab_size is None:
vocab_size = DEFAULT_VOCAB_SIZES[AVAILABLE_DATASETS.index(dataset)]
if out == "word2ind" and params["maxlen"] is None:
params["maxlen"] = DEFAULT_SEQ_LENS[AVAILABLE_DATASETS.index(dataset)]
pickle_dir = os.path.abspath(os.path.join(os.path.curdir, "data", "pickled_datasets", dataset,
"{}".format(vocab_size), out))
if out == "word2ind":
pickle_dir = pickle_dir + "/{}".format(params["maxlen"])
train_file = pickle_dir + "/train.pkl"
test_file = pickle_dir + "/test.pkl"
if os.path.exists(train_file) and os.path.exists(test_file):
train = pickle.load(open(train_file, "rb"))
test = pickle.load(open(test_file, "rb"))
loaded = True
print("Loaded dataset from pickles.")
if not loaded:
train, test = prepare_dataset(dataset, out, vocab_size, **params)
print("Dataset prepared.")
if not os.path.exists(pickle_dir):
os.makedirs(pickle_dir)
pickle.dump(train, open(train_file, "wb"))
pickle.dump(test, open(test_file, "wb"))
print("Dataset pickled.")
return train, test
def prepare_dataset(dataset, out, vocab_size, **params):
"""
Prepares the chosen dataset by loading it from disk, applying all the necessary preprocessing and
splitting it into disjoint train/test datasets.
"""
if dataset == "20 Newsgroups":
print("Preparing training data...")
train = Text20News(subset="train")
train.preprocess_train(out=out, vocab_size=vocab_size, **params)
print("Preparing test data...")
test = Text20News(subset="test")
test.preprocess_test(train_vocab=train.vocab, out=out, **params)
elif dataset == "RT Polarity":
print("Preparing data...")
all_data = TextRTPolarity()
all_data.preprocess(out=out, vocab_size=vocab_size, **params)
# Split train/test set
train = copy.deepcopy(all_data)
test = copy.deepcopy(all_data)
split_index = -1 * int(0.1 * float(all_data.data.shape[0])) # 10% of dataset is test set
train.documents, test.documents = all_data.documents[:split_index], all_data.documents[split_index:]
train.data, test.data = all_data.data[:split_index], all_data.data[split_index:]
train.labels, test.labels = all_data.labels[:split_index], all_data.labels[split_index:]
elif dataset == "RCV1":
print("Preparing data...")
all_data = TextRCV1()
all_data.preprocess(out=out, vocab_size=vocab_size, **params)
# Split train/test set
train = copy.deepcopy(all_data)
test = copy.deepcopy(all_data)
split_index = all_data.data.shape[0] // 2 # according to Bruna's paper & Hinton's dropout paper
train.documents, test.documents = all_data.documents[:split_index], all_data.documents[split_index:]
train.data, test.data = all_data.data[:split_index], all_data.data[split_index:]
train.labels, test.labels = all_data.labels[:split_index], all_data.labels[split_index:]
elif dataset == "RCV1-Vectors-Original":
assert out == "tfidf"
assert vocab_size == None
print("Preparing training data...")
train = TextRCV1_Vectors(subset="train")
train.preprocess(out="tfidf", **params)
print("Preparing test data...")
test = TextRCV1_Vectors(subset="test")
test.preprocess(out="tfidf", **params)
elif dataset == "RCV1-Vectors-Custom":
assert out == "tfidf"
assert vocab_size == None
print("Preparing data...")
all_data = TextRCV1_Vectors(subset="all")
all_data.preprocess(out="tfidf", **params)
# Split train/test set
train = copy.deepcopy(all_data)
test = copy.deepcopy(all_data)
split_index = all_data.data.shape[0] // 2 # according to Bruna's paper & Hinton's dropout paper
train.data, test.data = all_data.data[:split_index], all_data.data[split_index:]
train.labels, test.labels = all_data.labels[:split_index], all_data.labels[split_index:]
return train, test
def load_word2vec(filepath, vocabulary, embedding_dim):
"""
Returns the embedding matrix for vocabulary from filepath.
"""
# Initialize embedding matrix from pre-trained word2vec embeddings. 0.25 is chosen so that unknown
# vectors have (approximately) the same variance as pre-trained ones.
embeddings = np.random.uniform(-0.25, 0.25, (len(vocabulary), embedding_dim))
words_found = 0
with open(filepath, "rb") as f:
header = f.readline()
word2vec_vocab_size, embedding_size = map(int, header.split())
binary_len = np.dtype("float32").itemsize * embedding_size
for line in range(word2vec_vocab_size):
word = []
while True:
ch = f.read(1).decode("latin-1")
if ch == " ":
word = "".join(word)
break
if ch != "\n":
word.append(ch)
idx = vocabulary.get(word, None)
if idx != None:
embeddings[idx] = np.fromstring(f.read(binary_len), dtype="float32")
words_found += 1
else:
f.read(binary_len)
print("Word Embeddings Extracted: {}".format(words_found))
print("Word Embeddings Randomly Initialized: {}".format(len(vocabulary) - words_found))
return embeddings
def batch_iter(data, batch_size, num_epochs, shuffle=True):
"""
Generates a batch iterator for a dataset.
"""
data = np.array(data)
data_size = len(data)
indices = collections.deque()
num_iterations = int(num_epochs * data_size / batch_size)
for step in range(1, num_iterations + 1):
if len(indices) < batch_size:
if shuffle:
indices.extend(np.random.permutation(data_size))
else:
indices.extend(np.arange(data_size))
idx = [indices.popleft() for i in range(batch_size)]
yield data[idx]