-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_baseline.py
567 lines (452 loc) · 24.8 KB
/
run_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
import argparse
import os, sys
import time, copy
import tabulate
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
import wandb
import utils.utils as utils
from utils.swag import swag, swag_utils
from utils.vi import vi_utils
from utils.la import la_utils
from utils import temperature_scaling as ts
import utils.data.data as data
import warnings
warnings.filterwarnings('ignore')
parser = argparse.ArgumentParser(description="training baselines")
parser.add_argument("--seed", type=int, default=0, help="random seed (default: 0)")
parser.add_argument("--method", type=str, default="dnn",
choices=["dnn", "swag", "ll_swag", "vi", "ll_vi", "la", "ll_la"],
help="Learning Method")
parser.add_argument("--no_amp", action="store_true", default=False, help="Deactivate AMP")
parser.add_argument("--print_epoch", type=int, default=10, help="Printing epoch")
parser.add_argument("--ignore_wandb", action="store_true", default=False, help="Deactivate wandb")
parser.add_argument("--wd_project", default=None, type=str, help="name of wandb project")
parser.add_argument("--wd_entity", default=None, type=str, help="entity of wandb")
parser.add_argument("--resume", type=str, default=None,
help="path to load saved model to resume training (default: None)",)
parser.add_argument("--linear_probe", action="store_true", default=False,
help = "When we do Linear Probing (Default : False)")
parser.add_argument("--tol", type=int, default=30,
help="tolerance for early stopping (Default : 30)")
## Data ---------------------------------------------------------
parser.add_argument(
"--dataset", type=str, default="cifar10", choices=["cifar10", "cifar100",
"eurosat", "dtd", "oxford_flowers",
"oxford_pets", "food101", "ucf101", 'fgvc_aircraft',
'mnist'],
help="dataset name")
parser.add_argument(
"--data_path",
type=str,
default=None,
help="path to datasets location",)
parser.add_argument("--batch_size", type=int, default=256,
help="batch size")
parser.add_argument("--num_workers", type=int, default=4,
help="number of workers")
parser.add_argument("--use_validation", action='store_true', default=True,
help ="Use validation for hyperparameter search (Default : False)")
parser.add_argument("--dat_per_cls", type=int, default=-1,
help="Number of data points per class in few-shot setting. -1 denotes deactivate few-shot setting (Default : -1)")
parser.add_argument("--no_aug", action="store_true", default=False,
help="Deactivate augmentation")
#----------------------------------------------------------------
## Model ---------------------------------------------------------
parser.add_argument(
"--model",
type=str, default='resnet18', required=True,
choices=['mlp', 'resnet18', 'resnet50', 'resnet101',
'resnet18-noBN',
'vitb16-i1k', "vitb16-i21k"],
help="model name (default : resnet18)")
parser.add_argument(
"--pre_trained", action='store_true', default=False,
help="Using pre-trained model from zoo"
)
parser.add_argument("--save_path",
type=str, default=None,
help="Path to save best model dict")
#----------------------------------------------------------------
## Optimizer Hyperparameter --------------------------------------
parser.add_argument("--optim", type=str, default="sgd",
choices=["sgd", "sam", "fsam", "adam", "bsam"],
help="Optimization options")
parser.add_argument("--lr_init", type=float, default=0.01,
help="learning rate (Default : 0.01)")
parser.add_argument("--momentum", type=float, default=0.9,
help="momentum (Default : 0.9)")
parser.add_argument("--epochs", type=int, default=100, metavar="N",
help="number epochs to train (default : 100)")
parser.add_argument("--wd", type=float, default=5e-4, help="weight decay (default: 5e-4)")
parser.add_argument("--rho", type=float, default=0.05, help="size of pertubation ball for SAM / FSAM")
parser.add_argument("--eta", type=float, default=1.0, help="diagonal fisher inverse weighting term in FSAM")
parser.add_argument('--beta2', dest='beta2', type=float, default=0.999, help='momentum for variance for bSAM')
parser.add_argument('--damping', dest='damping', type=float, default=0.1, help='damping to stabilize the method for bSAM')
parser.add_argument("--noise_scale", type=float, default=1e-4, help="noise scale (default: 1e-4) for bSAM")
parser.add_argument("--s_init", type=float, default=1.0, help="initialize variance vector (default: 1) for bSAM")
# Scheduler
parser.add_argument("--scheduler", type=str, default='cos_decay', choices=['constant', "step_lr", "cos_anneal", "swag_lr", "cos_decay"])
parser.add_argument("--lr_min", type=float, default=1e-8,
help="Min learning rate. (Cosine Annealing Warmup Restarts)")
parser.add_argument("--warmup_t", type=int, default=10,
help="Linear warmup step size. (Cosine Annealing Warmup Restarts)")
parser.add_argument("--warmup_lr_init", type=float, default=1e-7,
help="Linear warmup initial learning rate. (Cosine Annealing Warmup Restarts)")
#----------------------------------------------------------------
## SWAG ---------------------------------------------------------
parser.add_argument("--swa_start", type=int, default=161, help="Start epoch of SWAG")
parser.add_argument("--swa_lr", type=float, default=0.05, help="Learning rate for SWAG")
parser.add_argument("--diag_only", action="store_true", default=False, help="Calculate only diagonal covariance")
parser.add_argument("--swa_c_epochs", type=int, default=1, help="Cycle to calculate SWAG statistics")
parser.add_argument("--max_num_models", type=int, default=5, help="Number of models to get SWAG statistics")
parser.add_argument("--swag_resume", type=str, default=None,
help="path to load saved swag model to resume training (default: None)",)
#----------------------------------------------------------------
## VI ---------------------------------------------------------
parser.add_argument("--vi_prior_mu", type=float, default=0.0,
help="Set prior mean for variational ineference (Default: 0.0)")
parser.add_argument("--vi_prior_sigma", type=float, default=1.0,
help="Set prior variance for variational inference (Default: 1.0)")
parser.add_argument("--vi_posterior_mu_init", type=float, default=0.0,
help="Set posterior mean initialization for variatoinal inference (Default: 0.0)")
parser.add_argument("--vi_posterior_rho_init", type=float, default=-3.0,
help="Set perturbation on posterior mean for variational inference (Default: -3.0)")
parser.add_argument("--vi_type", type=str, default="Reparameterization", choices=["Reparameterization", "Flipout"],
help="Set type of variational inference (Default: Reparameterization)")
parser.add_argument("--vi_moped_delta", type=float, default=0.2,
help="Set initial perturbation factor for weight in MOPED framework (Default: 0.2)")
parser.add_argument("--kl_beta", type=float, default=1.0,
help="Hyperparameter to adjust kld term on vi loss function (Default: 1.0)")
#----------------------------------------------------------------
## LA -----------------------------------------------------------
parser.add_argument("--la_pt_model", type=str, default=None,
help="path to load pre-trained DNN model on downstream task (Default: None)",)
#----------------------------------------------------------------
## bma or metrics -----------------------------------------------
parser.add_argument("--val_mc_num", type=int, default=1, help="number of MC sample in validation phase")
parser.add_argument("--eps", type=float, default=1e-8, help="small float to calculate nll")
parser.add_argument("--bma_num_models", type=int, default=30, help="Number of models for bma")
parser.add_argument("--num_bins", type=int, default=15, help="bin number for ece")
parser.add_argument("--no_save_bma", action='store_true', default=False,
help="Deactivate saving model samples in BMA")
#----------------------------------------------------------------
args = parser.parse_args()
#----------------------------------------------------------------
if not args.ignore_wandb:
wandb.init(project=args.wd_preoject, entity=args.wd_entity)
# Set Device and Seed--------------------------------------------
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if args.model.split("-")[-1] == "noBN":
args.batch_norm = False
args.aug = False
else:
args.batch_norm = True
args.aug = True
if args.no_aug:
args.aug = False
utils.set_seed(args.seed)
print(f"Device : {args.device} / Seed : {args.seed} / Augmentation : {args.aug}")
print("-"*30)
#------------------------------------------------------------------
# Set BMA and Save Setting-----------------------------------------
if args.method == 'dnn':
args.bma_num_models = 1
args.save_path = utils.set_save_path(args)
print(f"Save Results on {args.save_path}")
print("-"*30)
#------------------------------------------------------------------
# wandb config-----------------------------------------------------
if not args.ignore_wandb:
wandb.config.update(args)
wandb.run.name = utils.set_wandb_runname(args)
#------------------------------------------------------------------
# Load Data --------------------------------------------------------
args.data_path = os.path.join(args.data_path, args.dataset)
if args.dataset in ['mnist', 'cifar10', 'cifar100']:
tr_loader, val_loader, te_loader, num_classes = utils.get_dataset(dataset=args.dataset,
data_path=args.data_path,
dat_per_cls=args.dat_per_cls,
use_validation=args.use_validation,
batch_size=args.batch_size,
num_workers=args.num_workers,
seed=args.seed,
aug=args.aug,
)
elif args.dataset in ["eurosat", "dtd", "oxford_flowers", "oxford_pets", "food101", "ucf101", 'fgvc_aircraft']:
tr_loader, val_loader, te_loader, num_classes = utils.get_dataset_dassl(args)
if args.dat_per_cls >= 0:
print(f"Load Data : {args.dataset}-{args.dat_per_cls}shot")
else:
print(f"Load Data : {args.dataset}")
print("-"*30)
#------------------------------------------------------------------
# Define Model-----------------------------------------------------
model = utils.get_backbone(args.model, num_classes, args.device, args.pre_trained)
if args.linear_probe or args.method in ["last_swag", "last_vi"]:
utils.freeze_fe(model)
swag_model=None
if args.method == "swag":
swag_model = swag.SWAG(copy.deepcopy(model),
no_cov_mat=args.diag_only,
max_num_models=args.max_num_models,
last_layer=False).to(args.device)
print("Preparing SWAG model")
elif args.method == "ll_swag":
swag_model = swag.SWAG(copy.deepcopy(model),
no_cov_mat=args.diag_only,
max_num_models=args.max_num_models,
last_layer=True).to(args.device)
print("Preparing Last-SWAG model")
elif args.method == "vi":
from bayesian_torch.models.dnn_to_bnn import dnn_to_bnn
const_bnn_prior_parameters = {
"prior_mu": args.vi_prior_mu,
"prior_sigma": args.vi_prior_sigma,
"posterior_mu_init": args.vi_posterior_mu_init,
"posterior_rho_init": args.vi_posterior_rho_init,
"type": args.vi_type,
"moped_enable": True,
"moped_delta": args.vi_moped_delta,
}
dnn_to_bnn(model, const_bnn_prior_parameters)
model.to(args.device)
print(f"Preparing Model for {args.vi_type} VI with MOPED ")
elif args.method == "ll_vi":
vi_utils.make_last_vi(args, model)
print(f"Preparing Model for last-layer {args.vi_type} VI with MOPED ")
elif args.method == "la":
model.load_state_dict(args.la_pt_model)
from laplace import Laplace
from laplace.curvature import AsdlGGN
la = Laplace(model, 'classification',
subset_of_weights='all',
hessian_structure='diag',
backend=AsdlGGN)
la.fit(tr_loader)
elif args.method == "ll_la":
model.load_state_dict(args.la_pt_model)
from laplace import Laplace
la = Laplace(model, 'classification',
subset_of_weights='last_layer',
hessian_structure='diag')
la.fit(tr_loader)
print("-"*30)
#-------------------------------------------------------------------
# Set Criterion-----------------------------------------------------
criterion = torch.nn.CrossEntropyLoss()
print("Set Criterion as Cross Entropy")
print("-"*30)
#-------------------------------------------------------------------
# Set Optimizer--------------------------------------
optimizer = utils.get_optimizer(args, model)
print(f"Set {args.optim} optimizer with lr_init {args.lr_init} / wd {args.wd} / momentum {args.momentum}")
print("-"*30)
#----------------------------------------------------------------
## Set Scheduler----------------------------------------------------
if args.scheduler not in ["constant", "swag_lr"]:
scheduler = utils.get_scheduler(args, optimizer)
print(f"Set {args.scheduler} lr scheduler")
print("-"*30)
#-------------------------------------------------------------------
## Resume ---------------------------------------------------------------------------
start_epoch = 1
if not args.pre_trained and args.resume is not None:
print(f"Resume training from {args.resume}")
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint["state_dict"])
if args.method == 'll_swag':
swag_model.base.load_state_dict(checkpoint["state_dict"], strict=False)
utils.freeze_fe(model)
else:
if args.resume is not None:
print(f"Resume training from {args.resume}")
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint["state_dict"])
if args.method == "swag" and args.swag_resume is not None:
print(f"Resume swag training from {args.swag_resume}")
checkpoint = torch.load(args.swag_resume)
start_epoch = checkpoint["epoch"]
optimizer.load_state_dict(checkpoint["optimizer"])
# if args.scheduler != "swag_lr":
# scheduler = scheduler.state_dict()
swag_model = swag.SWAG(copy.deepcopy(model), no_cov_mat=args.diag_only, max_num_models=args.max_num_models).to(args.device)
swag_model.load_state_dict(checkpoint["state_dict"])
#------------------------------------------------------------------------------------
## Set AMP --------------------------------------------------------------------------
scaler, first_step_scaler, second_step_scaler = utils.get_scaler(args)
if args.resume:
raise ValueError("Add code to load scalar from resume")
print("-"*30)
#------------------------------------------------------------------------------------
## Training -------------------------------------------------------------------------
if args.method not in ["la", "ll_la"]:
print(f"Start training {args.method} with {args.optim} optimizer from {start_epoch} epoch!")
## print setting
columns = ["epoch", "method", "lr", "tr_loss", "tr_acc", "val_loss", "val_acc", "val_nll", "val_ece", "time"]
if args.method in ["swag", "ll_swag"]:
columns = columns[:-1] + ["swag_val_loss", "swag_val_acc", "swag_val_nll", "swag_val_ece"] + columns[-1:]
swag_res = {"loss": None, "accuracy": None, "nll" : None, "ece" : None}
assert args.swa_c_epochs is not None, "swa_c_epochs must not be none!"
assert args.swa_start < args.epochs, "swa_start must be smaller than epochs"
if args.swa_c_epochs is None:
raise RuntimeError("swa_c_epochs must not be None!")
print(f"Running SWAG...")
best_val_loss=9999 ; best_val_acc=0 ; best_epoch=0 ; cnt=0; swag_cnt = 0; best_swag_val_loss=9999
for epoch in range(start_epoch, int(args.epochs)+1):
time_ep = time.time()
## lr scheduling
if args.scheduler == "swag_lr":
if args.method in ["swag", "ll_swag"]:
lr = swag_utils.schedule(epoch, args.lr_init, args.epochs, True, args.swa_start, args.swa_lr)
else:
lr = swag_utils.schedule(epoch, args.lr_init, args.epochs, False, None, None)
swag_utils.adjust_learning_rate(optimizer, lr)
else:
lr = optimizer.param_groups[0]['lr']
## train
if args.method in ["vi", "ll_vi"]:
if args.optim in ["sgd", "adam"]:
tr_res = vi_utils.train_vi_sgd(tr_loader, model, criterion, optimizer, args.device, scaler, args.batch_size, args.kl_beta)
elif args.optim == "sam":
tr_res = vi_utils.train_vi_sam(tr_loader, model, criterion, optimizer, args.device, first_step_scaler, second_step_scaler, args.batch_size, args.kl_beta)
elif args.optim == "fsam":
raise NotImplementedError("No code for fsam with VI yet")
else:
if args.optim in ["sgd", "adam"]:
tr_res = utils.train_sgd(tr_loader, model, criterion, optimizer, args.device, scaler)
elif args.optim == "sam":
tr_res = utils.train_sam(tr_loader, model, criterion, optimizer, args.device, first_step_scaler, second_step_scaler)
elif args.optim == "fsam":
tr_res = utils.train_fsam(tr_loader, model, criterion, optimizer, args.device, first_step_scaler, second_step_scaler)
elif args.optim == 'bsam':
tr_res = utils.train_bsam(tr_loader, model, criterion, optimizer, args.device)
## valid
if args.method in ["vi", "ll_vi"]:
val_res = vi_utils.eval_vi(val_loader, model, num_classes, criterion, args.val_mc_num, args.num_bins, args.eps)
else:
val_res = utils.eval(val_loader, model, criterion, args.device, args.num_bins, args.eps)
## swag valid
if (args.method in ["swag", "ll_swag"]) and ((epoch + 1) > args.swa_start) and ((epoch + 1 - args.swa_start) % args.swa_c_epochs == 0):
swag_model.collect_model(model)
swag_model.sample(0.0)
if args.batch_norm == True:
swag_utils.bn_update(tr_loader, swag_model)
swag_res = utils.eval(val_loader, swag_model, criterion, args.device, args.num_bins, args.eps)
time_ep = time.time() - time_ep
## print result
if args.method in ["swag", "ll_swag"]:
values = [epoch, f"{args.method}-{args.optim}", lr, tr_res["loss"], tr_res["accuracy"],
val_res["loss"], val_res["accuracy"], val_res["nll"], val_res["ece"],
swag_res["loss"], swag_res["accuracy"], swag_res["nll"], swag_res["ece"],
time_ep]
else:
values = [epoch, f"{args.method}-{args.optim}", lr, tr_res["loss"], tr_res["accuracy"],
val_res["loss"], val_res["accuracy"], val_res["nll"], val_res["ece"],
time_ep]
table = tabulate.tabulate([values], columns, tablefmt="simple", floatfmt="8.4f")
if epoch % args.print_epoch == 1:
table = table.split("\n")
table = "\n".join([table[1]] + table)
else:
table = table.split("\n")[2]
print(table)
## wandb
if not args.ignore_wandb:
if args.method in ["swag", "ll_swag"]:
wandb.log({"Train Loss ": tr_res["loss"], "Train Accuracy" : tr_res["accuracy"],
"Validation loss" : val_res["loss"], "Validation Accuracy" : val_res["accuracy"],
"SWAG Validation loss" : swag_res["loss"], "SWAG Validation Accuracy" : swag_res["accuracy"],
"SWAG Validation nll" : swag_res["nll"], "SWAG Validation ece" : swag_res["ece"],
"lr" : lr,})
else:
wandb.log({"Train Loss ": tr_res["loss"], "Train Accuracy" : tr_res["accuracy"],
"Validation loss" : val_res["loss"], "Validation Accuracy" : val_res["accuracy"],
"Validation nll" : val_res["nll"], "Validation ece" : val_res["ece"],
"lr" : lr,})
## Save best model (Early Stopping)
if (args.method in ["swag", "ll_swag"]) and (swag_res['loss'] is not None):
if swag_res['loss'] < best_swag_val_loss:
swag_cnt = 0
best_val_loss = val_res["loss"]
best_val_acc = val_res['accuracy']
best_swag_val_loss = swag_res["loss"]
best_swag_val_acc = swag_res['accuracy']
best_epoch = epoch
# save state_dict
os.makedirs(args.save_path, exist_ok=True)
swag_utils.save_best_swag_model(args, best_epoch, model, swag_model, optimizer, scaler, first_step_scaler, second_step_scaler)
else:
swag_cnt += 1
else:
if val_res["loss"] < best_val_loss:
cnt = 0
best_val_loss = val_res["loss"]
best_val_acc = val_res["accuracy"]
best_epoch = epoch
# save state_dict
os.makedirs(args.save_path, exist_ok=True)
if args.method in ["vi", "ll_vi"] or args.optim=='bsam':
mean, variance = vi_utils.save_best_vi_model(args, best_epoch, model, optimizer, scaler, first_step_scaler, second_step_scaler)
elif args.method == "dnn":
utils.save_best_dnn_model(args, best_epoch, model, optimizer, scaler, first_step_scaler, second_step_scaler)
else:
cnt +=1
## Early Stopping
if cnt == args.tol and args.method in ['dnn', "vi", "ll_vi"]:
break
elif swag_cnt == args.tol and args.method in ['swag', 'll_swag']:
break
if args.scheduler in ["cos_decay", "step_lr"]:
scheduler.step(epoch)
else:
## Save Mean, Cov Values
la_utils.get_la_mean_vector(model)
la_utils.get_la_variance_vector(la)
#------------------------------------------------------------------------------------------------------------
## Test ------------------------------------------------------------------------------------------------------
##### Get test nll, Entropy, ece, Reliability Diagram on best model
## Load Distributional shifted data
### Load Best Model
if args.method not in ["la", "ll_la"]:
model, mean, variance, best_epoch = utils.load_best_model(args, model, swag_model, num_classes)
else:
model = la
mean = None
variance = None
best_epoch = 0
#### MAP
## Unscaled Results
res = utils.no_ts_map_estimation(args, te_loader, num_classes, model, mean, variance, criterion)
print(f"1) Unscaled Results:")
table = [["Best Epoch", "Test Accuracy", "Test NLL", "Test Ece"],
[best_epoch, format(res['accuracy'], '.2f'), format(res['nll'], '.4f'), format(res['ece'], '.4f')]]
print(tabulate.tabulate(table, tablefmt="simple", floatfmt="8.4f"))
## Temperature Scaled Results
if args.method not in ["la", "ll_la"]:
res_ts, temperature = utils.ts_map_estimation(args, val_loader, te_loader, num_classes, model, mean, variance, criterion)
print(f"2) Scaled Results:")
table = [["Best Epoch", "Test Accuracy", "Test NLL", "Test Ece", "Temperature"],
[best_epoch, format(res_ts['accuracy'], '.2f'), format(res_ts['nll'],'.4f'), format(res_ts['ece'], '.4f'), format(temperature.item(), '.4f')]]
print(tabulate.tabulate(table, tablefmt="simple", floatfmt="8.4f"))
else:
raise NotImplementedError()
res_ts ={"accuracy":-9999, "nll":-9999, "ece":-9999}
if not args.ignore_wandb:
wandb.run.summary['test accuracy'] = res['accuracy']
wandb.run.summary['test nll'] = res['nll']
wandb.run.summary["test ece"] = res['ece']
wandb.run.summary['test accuracy w/ ts'] = res_ts['accuracy']
wandb.run.summary['test nll w/ ts'] = res_ts['nll']
wandb.run.summary["test ece w/ ts"] = res_ts['ece']
#### Bayesian Model Averaging
if args.method in ["swag", "ll_swag", "vi", "ll_vi"]:
utils.set_seed(args.seed)
bma_save_path = f"{args.save_path}/bma_models"
os.makedirs(bma_save_path, exist_ok=True)
print(f"Start Bayesian Model Averaging with {args.bma_num_models} samples")
utils.bma(args, tr_loader, val_loader, te_loader, num_classes, model, mean, variance, criterion, bma_save_path, temperature)
else:
pass