-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
437 lines (350 loc) · 17.1 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import argparse
import os, sys
import time, copy
import tabulate
import torch
import torch.nn.functional as F
import utils.utils as utils
from utils.swag import swag, swag_utils
from utils.vi import vi_utils
from utils.la import la_utils
from utils.sabma import sabma_utils
from utils import temperature_scaling as ts
import utils.data.data as data
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
def save_to_csv_accumulated(df, filename):
if os.path.exists(filename):
existing_df = pd.read_csv(filename)
updated_df = pd.concat([existing_df, df], ignore_index=True)
updated_df.to_csv(filename, index=False)
else:
df.to_csv(filename, index=False)
parser = argparse.ArgumentParser(description="training baselines")
parser.add_argument("--seed", type=int, default=0, help="random seed (default: 0)")
parser.add_argument("--method", type=str, default="dnn",
choices=["dnn", "swag", "ll_swag", "vi", "ll_vi", "la", "ll_la", "sabma", "ptl"],
help="Learning Method")
parser.add_argument("--optim", type=str, default="sgd",
choices=["sgd", "sgld", "sam", "bsam", "sabma"],
help="Learning Method")
parser.add_argument("--load_path", type=str, default=None,
help="Path to test")
parser.add_argument("--save_path", type=str, default=None,
help="Path to save result")
## Data ---------------------------------------------------------
parser.add_argument(
"--dataset", type=str, default="cifar10", choices=["cifar10", "cifar100"],
help="dataset name")
parser.add_argument(
"--data_path",
type=str,
default=None,
help="path to datasets location",)
parser.add_argument("--batch_size", type=int, default=256,
help="batch size")
parser.add_argument("--num_workers", type=int, default=4,
help="number of workers")
parser.add_argument("--use_validation", action='store_true', default=True,
help ="Use validation for hyperparameter search (Default : False)")
parser.add_argument("--dat_per_cls", type=int, default=-1,
help="Number of data points per class in few-shot setting. -1 denotes deactivate few-shot setting (Default : -1)")
parser.add_argument("--no_aug", action="store_true", default=False,
help="Deactivate augmentation")
#----------------------------------------------------------------
## Model ---------------------------------------------------------
parser.add_argument(
"--model",
type=str, default='resnet18', required=True,
choices=['resnet18', 'resnet50', 'resnet101',
'resnet18-noBN', "vitb16-i21k"],
help="model name (default : resnet18)")
parser.add_argument(
"--pre_trained", action='store_true', default=True,
help="Using pre-trained model from zoo"
)
#----------------------------------------------------------------
## SABMA---------------------------------------------------------
parser.add_argument("--tr_layer", type=str, default="nl_ll",
help="Traning layer of SABMA")
#----------------------------------------------------------------
## bma or metrics -----------------------------------------------
parser.add_argument("--eps", type=float, default=1e-8, help="small float to calculate nll")
parser.add_argument("--bma_num_models", type=int, default=30, help="Number of models for bma")
parser.add_argument("--num_bins", type=int, default=15, help="bin number for ece")
parser.add_argument("--no_save_bma", action='store_true', default=False,
help="Deactivate saving model samples in BMA")
#----------------------------------------------------------------
## OOD test -----------------------------------------------------
parser.add_argument("--corrupt_option",
default=['brightness.npy','contrast.npy','defocus_blur.npy','elastic_transform.npy','fog.npy',
'frost.npy','gaussian_blur.npy','gaussian_noise.npy','glass_blur.npy','impulse_noise.npy','jpeg_compression.npy',
'motion_blur.npy','pixelate.npy','saturate.npy','shot_noise.npy','snow.npy','spatter.npy','speckle_noise.npy','zoom_blur.npy'],
help='corruption option of CIFAR10/100-C'
)
parser.add_argument("--severity",
default=1,
type=int,
help='Severity of corruptness in CIFAR10/100-C (1 to 5)')
#----------------------------------------------------------------
args = parser.parse_args()
#----------------------------------------------------------------
# Set Device and Seed--------------------------------------------
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if args.model.split("-")[-1] == "noBN":
args.batch_norm = False
args.aug = False
else:
args.batch_norm = True
args.aug = True
if args.no_aug:
args.aug = False
utils.set_seed(args.seed)
print(f"Device : {args.device} / Seed : {args.seed}")
print("-"*30)
#------------------------------------------------------------------
# Set BMA and Save Setting-----------------------------------------
if args.method == 'dnn':
args.bma_num_models = 1
args.ignore_wandb = True
#------------------------------------------------------------------
# Load Data --------------------------------------------------------
data_path_ood = args.data_path
args.data_path = os.path.join(args.data_path, args.dataset)
tr_loader, val_loader, te_loader, num_classes = utils.get_dataset(dataset=args.dataset,
data_path=args.data_path,
dat_per_cls=args.dat_per_cls,
use_validation=args.use_validation,
batch_size=args.batch_size,
num_workers=args.num_workers,
seed=args.seed,
aug=args.aug,
)
if args.dat_per_cls >= 0:
print(f"Load Data : {args.dataset}-{args.dat_per_cls}shot")
else:
print(f"Load Data : {args.dataset}")
print("-"*30)
#------------------------------------------------------------------
# Define Model-----------------------------------------------------
model = utils.get_backbone(args.model, num_classes, args.device, True)
swag_model=None
if args.method == "swag":
swag_model = swag.SWAG(copy.deepcopy(model),
no_cov_mat=False,
max_num_models=5,
last_layer=False).to(args.device)
print("Preparing SWAG model")
print("-"*30)
#-------------------------------------------------------------------
# Set Criterion-----------------------------------------------------
criterion = torch.nn.CrossEntropyLoss()
print("Set Criterion as Cross Entropy")
print("-"*30)
#-------------------------------------------------------------------
method = args.method
if args.method == 'ptl':
args.method = 'dnn'
## Test ------------------------------------------------------------------------------------------------------
##### Get test nll, Entropy, ece, Reliability Diagram on best model
## Load Distributional shifted data
if args.dataset == 'cifar10':
ood_loader = data.corrupted_cifar10(data_path=data_path_ood,
corrupt_option=args.corrupt_option,
severity=args.severity,
batch_size=args.batch_size,
num_workers=args.num_workers)
elif args.dataset == 'cifar100':
ood_loader = data.corrupted_cifar100(data_path=data_path_ood,
corrupt_option=args.corrupt_option,
severity=args.severity,
batch_size=args.batch_size,
num_workers=args.num_workers)
### Load Best Model
print("Load Best Validation Model (Lowest Loss)")
if args.method != 'sabma':
state_dict_path = f'{args.load_path}/{method}-{args.optim}_best_val.pt'
checkpoint = torch.load(state_dict_path)
else:
model = torch.load(f'{args.load_path}/{args.method}-{args.optim}_best_val_model.pt')
mean = None; variance = None
if args.method in ["swag", "ll_swag"]:
swag_model.load_state_dict(checkpoint["state_dict"])
model = swag_model
elif args.method in ["vi", "ll_vi"]:
model = utils.get_backbone(args.model, num_classes, args.device, True)
if args.method == "ll_vi":
vi_utils.make_ll_vi(args, model)
vi_utils.load_vi(model, checkpoint)
mean = torch.load(f'{args.load_path}/{args.method}-{args.optim}_best_val_mean.pt')
variance = torch.load(f'{args.load_path}/{args.method}-{args.optim}_best_val_variance.pt')
elif args.method == 'dnn':
if method == 'dnn':
model.load_state_dict(checkpoint["state_dict"])
elif method == 'ptl':
for key in list(checkpoint.keys()):
if 'backbone.' in key:
new_key = key.replace('backbone.', '')
checkpoint[new_key] = checkpoint.pop(key)
elif 'classifier.' in key:
new_key = key.replace('classifier', 'fc')
checkpoint[new_key] = checkpoint.pop(key)
model.load_state_dict(checkpoint)
else:
pass
model.to(args.device)
if args.method != 'sabma':
#### MAP
## Unscaled Results
res = utils.no_ts_map_estimation(args, te_loader, num_classes, model, mean, variance, criterion)
ood_res = utils.no_ts_map_estimation(args, ood_loader, num_classes, model, mean, variance, criterion)
print(f"1) Unscaled Results:")
table = [["Test Accuracy", "Test NLL", "Test Ece"],
[format(res['accuracy'], '.2f'), format(res['nll'], '.4f'), format(res['ece'], '.4f')]]
print(tabulate.tabulate(table, tablefmt="simple", floatfmt="8.4f"))
table = [["OOD Accuracy", "OOD NLL", "OOD ECE"],
[format(ood_res['accuracy'], '.2f'), format(ood_res['nll'], '.4f'), format(ood_res['ece'], '.4f')]]
print(tabulate.tabulate(table, tablefmt="simple", floatfmt="8.4f"))
## Temperature Scaled Results
res_ts, temperature = utils.ts_map_estimation(args, val_loader, te_loader, num_classes, model, mean, variance, criterion, save=False)
print(f"2) Scaled Results:")
table = [["Test Accuracy", "Test NLL", "Test Ece", "Temperature"],
[format(res_ts['accuracy'], '.2f'), format(res_ts['nll'],'.4f'), format(res_ts['ece'], '.4f'), format(temperature.item(), '.4f')]]
print(tabulate.tabulate(table, tablefmt="simple", floatfmt="8.4f"))
#### Bayesian Model Averaging
if args.no_save_bma:
bma_save_path = None
else:
bma_save_path = f"{args.save_path}/bma_models"
os.makedirs(bma_save_path, exist_ok=True)
if args.method in ["swag", "ll_swag", "vi", "ll_vi"]:
utils.set_seed(args.seed)
print(f"Start Bayesian Model Averaging with {args.bma_num_models} samples")
bma_res, bma_accuracy, bma_nll, bma_ece, bma_accuracy_ts, bma_nll_ts, bma_ece_ts, temperature, bma_ood_accuracy, bma_ood_nll, bma_ood_ece = utils.bma(args, tr_loader, val_loader, te_loader, ood_loader, num_classes, model, mean, variance, criterion, None, temperature)
else:
pass
else:
### Get temperature
val_res = sabma_utils.bma_sabma(val_loader, model, 1,
num_classes, criterion, args.device,
bma_save_path=None, eps=args.eps, num_bins=args.num_bins,
validation=True, tr_layer=args.tr_layer)
scaled_model = ts.ModelWithTemperature(model, ens=True)
scaled_model.set_temperature(val_loader, ens_logits=torch.tensor(val_res['logits']), ens_pred=torch.tensor(val_res['targets']))
temperature = scaled_model.temperature
### BMA prediction
if args.no_save_bma:
bma_save_path = None
else:
bma_save_path = f"{args.save_path}/bma_models"
os.makedirs(bma_save_path, exist_ok=True)
## BMA result w/o Ts
bma_res = sabma_utils.bma_sabma(te_loader, model, args.bma_num_models,
num_classes, criterion, args.device,
bma_save_path=bma_save_path, eps=args.eps, num_bins=args.num_bins,
validation=False, tr_layer=args.tr_layer, ood_loader=ood_loader)
bma_logits = bma_res["logits"]
bma_predictions = bma_res["predictions"]
bma_targets = bma_res["targets"]
bma_accuracy = bma_res["accuracy"]
bma_nll = bma_res["nll"]
unc = utils.calibration_curve(bma_predictions, bma_targets, args.num_bins)
bma_ece = bma_res['ece']
print("[BMA w/o TS Results]\n")
tab_name = ["# of Models", "BMA Accuracy", "BMA NLL", "BMA ECE"]
tab_contents = [args.bma_num_models, format(bma_accuracy, '.2f'), format(bma_nll, '.4f'), format(bma_ece, '.4f')]
table = [tab_name, tab_contents]
print(tabulate.tabulate(table, tablefmt="simple"))
print("-"*30)
## OOD result
bma_ood_accuracy = bma_res["ood_accuracy"]
bma_ood_nll = bma_res["ood_nll"]
bma_ood_ece = bma_res["ood_ece"]
tab_name = ["# of Models", "OOD BMA Accuracy", "OOD BMA NLL", "OOD BMA ECE"]
tab_contents = [args.bma_num_models, format(bma_ood_accuracy, '.2f'), format(bma_ood_nll, '.4f'), format(bma_ood_ece, '.4f')]
table = [tab_name, tab_contents]
print(tabulate.tabulate(table, tablefmt="simple"))
print("-"*30)
## BMA w/ TS
bma_logits = torch.tensor(bma_logits) / temperature.cpu()
bma_predictions_ts = F.softmax(bma_logits, dim=1).detach().numpy()
bma_accuracy_ts = np.mean(np.argmax(bma_predictions_ts, axis=1) == bma_targets) * 100
bma_nll_ts = -np.mean(np.log(bma_predictions_ts[np.arange(bma_predictions_ts.shape[0]), bma_targets] + args.eps))
bma_unc_ts = utils.calibration_curve(bma_predictions_ts, bma_targets, args.num_bins)
bma_ece_ts = bma_unc_ts['ece']
temperature = temperature.cpu().item()
print("[BMA w/ TS Results]\n")
tab_name = ["# of Models", "BMA Accuracy", "BMA NLL", "BMA ECE", "BMA Temperature"]
tab_contents = [args.bma_num_models, format(bma_accuracy_ts, '.2f'), format(bma_nll_ts, '.4f'), format(bma_ece_ts, '.4f'), format(temperature, '.4f')]
table = [tab_name, tab_contents]
print(tabulate.tabulate(table, tablefmt="simple"))
print("-"*30)
## MAP Prediction
tr_params, _, _ = model.sample(0, sample_param='tr')
frz_params, _, _ = model.sample(0, sample_param='frz')
params = sabma_utils.format_weights(tr_params, frz_params, model)
res = sabma_utils.eval_sabma(te_loader, model, params, criterion, args.device, args.num_bins, args.eps)
ood_res = sabma_utils.eval_sabma(ood_loader, model, params, criterion, args.device, args.num_bins, args.eps)
unc = utils.calibration_curve(res['predictions'], res['targets'], args.num_bins)
te_ece = unc["ece"]
print("[Best Test Results]\n")
tab_name = ["MAP Accuracy", "MAP NLL", "MAP ECE"]
tab_contents= [format(res['accuracy'], '.2f'), format(res['nll'], '.4f'), format(te_ece, '.4f')]
table = [tab_name, tab_contents]
print(tabulate.tabulate(table, tablefmt="simple"))
res_ts = dict()
res_ts['accuracy'] = None
res_ts['nll'] = None
res_ts['ece'] = None
if args.corrupt_option == ['brightness.npy','contrast.npy','defocus_blur.npy','elastic_transform.npy','fog.npy',
'frost.npy','gaussian_blur.npy','gaussian_noise.npy','glass_blur.npy','impulse_noise.npy','jpeg_compression.npy',
'motion_blur.npy','pixelate.npy','saturate.npy','shot_noise.npy','snow.npy','spatter.npy','speckle_noise.npy','zoom_blur.npy']:
corr = 'all'
else:
corr = args.corrupt_option
result_df = pd.DataFrame({"method" : [args.method],
"optim" : [args.optim],
"seed" : [args.seed],
"dataset" : [args.dataset],
"dat_per_cls" : [args.dat_per_cls],
"corrupt_option" : [corr],
"severity" : [args.severity],
"Test Accuracy" : [res['accuracy']],
"Test NLL" : [res['nll']],
"Test Ece" : [res['ece']],
"OOD Accuracy" : [ood_res['accuracy']],
"OOD NLL" : [ood_res['nll']],
"OOD ECE" : [ood_res['ece']],
"Test Accuracy ts" : [res_ts['accuracy']],
"Test NLL ts" : [res_ts['nll']],
"Test Ece ts" : [res_ts['ece']],
})
if method == 'ptl':
args.method = 'ptl'
if args.method in ["dnn", "ptl"]:
bma_accuracy = None
bma_nll = None
bma_ece = None
bma_accuracy_ts = None
bma_nll_ts = None
bma_ece_ts = None
bma_ood_accuracy = None
bma_ood_nll = None
bma_ood_ece = None
try:
temperature = temperature.cpu().detach().numpy()
except:
pass
result_df["BMA Accuracy"] = bma_accuracy
result_df["BMA NLL"] = bma_nll
result_df["BMA ECE"] = bma_ece
result_df["BMA Accuracy ts"] = bma_accuracy_ts
result_df["BMA NLL ts"] = bma_nll_ts
result_df["BMA ECE ts"] = bma_ece_ts
result_df["temperature"] = temperature
result_df["BMA OOD Accuracy"] = bma_ood_accuracy
result_df["BMA OOD NLL"] = bma_ood_nll
result_df["BMA OOD ECE"] = bma_ood_ece
save_to_csv_accumulated(result_df, args.save_path)