-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmisha.py
52 lines (43 loc) · 1.26 KB
/
misha.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import matplotlib.pyplot as plt
import numpy as np
lim = 10
res = [[i+1,0,0] for i in xrange(lim)]
res[0][1] = 1
res[0][2] = 2
def print_res():
for row in res:
print "{}\t{}\t{}".format(row[0], row[1], row[2])
def can_find(number, max_row):
for row in res:
if number == row[1] or number == row[2]:
return True
return False
def fill_res():
for row in res[1:]:
candidate = row[0]+1
while can_find(candidate, row[0]):
candidate += 1
row[1] = candidate
row[2] = row[0] + row[1]
def plot_res():
title = "{} rows".format(lim)
filename = "{}_rows".format(lim)
trans_res = map(list, zip(*res))
m2, c2 = np.polyfit(trans_res[0], trans_res[1],1)
m3, c3 = np.polyfit(trans_res[0], trans_res[2],1)
print "Second column: {0:8.7f}x + {1:8.7f}".format(m2,c2)
print "Third column: {0:8.7f}x + {1:8.7f}".format(m3,c3)
print "m2/m1 = {0:8.7f}".format(m3*1.0/m2)
xp = np.array(trans_res[0])
plt.title(title)
plt.plot(xp, trans_res[0], label='1 column')
plt.plot(xp, trans_res[1], label='2 column')
plt.plot(xp, trans_res[2], label='3 column')
plt.plot(xp, m2*xp+c2, 'c--', label='2 column linear fit')
plt.plot(xp, m3*xp+c3, 'm--', label='3 column linear fit')
plt.legend(loc='upper left')
plt.savefig(filename)
plt.show()
fill_res()
print_res()
plot_res()