forked from iamaaditya/image-compression-cnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
106 lines (89 loc) · 4.25 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from __future__ import division
from __future__ import print_function
import math
import os
import tensorflow as tf
import numpy as np
import pandas as pd
from time import time
from model import CNN
from util import load_image, chunker
from params import TrainingParams, HyperParams, CNNParams
tparam = TrainingParams(verbose=True)
hyper = HyperParams(verbose=True)
cparam = CNNParams(verbose=True)
data_train = pd.read_pickle(tparam.data_train_path)
data_test = pd.read_pickle(tparam.data_test_path)
len_train = len(data_train)
len_test = len(data_train)
train_b_num = int(math.ceil(len_train/tparam.batch_size))
test_b_num = int(math.ceil(len_train/tparam.batch_size))
images_tf = tf.placeholder(tf.float32, [None, hyper.image_h, hyper.image_w, hyper.image_c], name = "images")
if hyper.sparse:
labels_tf = tf.placeholder(tf.int64, [None], name = 'labels')
else:
labels_tf = tf.placeholder(tf.int64, [None, hyper.n_labels], name = 'labels')
cnn = CNN()
if hyper.fine_tuning:
cnn.load_vgg_weights()
_,_,prob_tf = cnn.build(images_tf)
if hyper.sparse:
loss_tf = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(prob_tf, labels_tf))
else:
loss_tf = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(prob_tf, labels_tf))
train_loss = tf.scalar_summary("training loss", loss_tf)
test_loss = tf.scalar_summary("validation loss", loss_tf)
if tparam.optimizer == 'Adam' :
optimizer = tf.train.AdamOptimizer(tparam.learning_rate, epsilon=0.1)
elif tparam.optimizer == 'Ftlr' :
optimizer = tf.train.FtrlOptimizer(tparam.learning_rate)
elif tparam.optimizer == 'Rmsprop' :
optimizer = tf.train.RMSPropOptimizer(tparam.learning_rate)
else:
raise Exception("Unknown optimizer specified")
train_op = optimizer.minimize(loss_tf)
def sparse_labels_or_not(batch):
if hyper.sparse:
return batch['label'].values
else:
labels = np.zeros((len(batch), hyper.n_labels))
for i,j in enumerate(batch['label'].values):
labels[i,j] = 1
return labels
with tf.Session() as sess:
saver = tf.train.Saver()
sess.run(tf.initialize_all_variables())
if tparam.resume_training:
saver.restore(sess, tparam.model_path + 'model')
if tparam.on_resume_fix_lr:
optimizer = tf.train.FtrlOptimizer(tparam.learning_rate)
# optimizer.learning_rate = tparam.learning_rate
train_op = optimizer.minimize(loss_tf)
print("model restored...")
# for the pretty pretty tensorboard
summary_writer = tf.train.SummaryWriter('tensorboards', sess.graph)
for epoch in xrange(tparam.num_epochs):
start = time()
# Training
epoch_loss = 0
for b, train_batch in enumerate(chunker(data_train.sample(frac=1),tparam.batch_size)):
train_images = np.array(map(lambda i: load_image(i), train_batch['image_path'].values))
train_labels = sparse_labels_or_not(train_batch)
_, batch_loss, loss_sw = sess.run([train_op, loss_tf, train_loss], feed_dict={images_tf: train_images, labels_tf: train_labels})
average_batch_loss = np.average(batch_loss)
epoch_loss += average_batch_loss
summary_writer.add_summary(loss_sw, epoch*train_b_num+b)
print("Train: epoch:{}, batch:{}/{}, loss:{}".format(epoch, b, train_b_num, average_batch_loss))
print("Train: epoch:{}, total loss:{}".format(epoch, epoch_loss/train_b_num))
# Validation
validation_loss = 0
for b, test_batch in enumerate(chunker(data_test,tparam.batch_size)): # no need to randomize test batch
test_images = np.array(map(lambda i: load_image(i), test_batch['image_path'].values))
# don't run the train_op by mistake ! ;-)
test_labels = sparse_labels_or_not(test_batch)
batch_loss,loss_sw = sess.run([loss_tf, test_loss], feed_dict={images_tf: test_images, labels_tf: test_labels})
summary_writer.add_summary(loss_sw, epoch*test_b_num+b)
print("Test: epoch:{}, total loss:{}".format(epoch, validation_loss/b))
print("Time for one epoch:{}".format(time()-start))
# save the model
saver.save(sess, tparam.model_path + '/model')