forked from iamaaditya/image-compression-cnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathread_log.py
151 lines (116 loc) · 4.5 KB
/
read_log.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from collections import namedtuple
from pprint import pprint
# "jpeg_psnr,jpeg_ssim,our_ssim,our_q,jpeg_psnrhvs,png_size,model_number,our_size,filename,jpeg_vifp,jpeg_q,jpeg_msssim,our_psnrhvsm,jpeg_psnrhvsm,our_vifp,our_psnr,our_msssim,our_psnrhvs,jpeg_size"
def process_one(eg):
value_map = {}
eg_s = eg.split('|')
metrics = "PSNR SSIM MSSSIM VIFP PSNRHVS PSNRHVSM".lower().split(' ')
meta = "filename model_number png_size jpeg_size our_size jpeg_q our_q".split()
first_line = eg_s[0].strip().split()
for index, m in enumerate(meta):
value_map[m] = first_line[index]
for typ, v in zip(['jpeg', 'our'], [eg_s[1], eg_s[2]]):
for m, value in zip(metrics, v.strip().split()):
value_map[typ + '_' + m] = float(value)
return value_map
def process_log(filename):
f = open(filename).read().splitlines()
values = [process_one(l) for l in f]
return values
def print_given_average_metrics(values, metric):
total = len(values)
avg = sum([float(v[metric]) for v in values])/total
print metric, str(avg)
def print_all_average_metrics(values, silent=False):
out = {}
kk = values[0].keys()
total = len(values)
for k in kk:
if k == 'filename': continue
avg = sum([float(v[k]) for v in values])/total
out[str(k)] = avg
if not silent:
print str(k), str(avg)
return out
def pprint_metrics(avg_metrics):
out = {}
for k,v in avg_metrics.iteritems():
model, metric = k.split('_')
if metric not in out:
out[metric] = {}
out[metric][model] = v
return out
def pprint_by_categories(values, metric=None, data_type='mit'):
from itertools import product
if data_type == 'mit':
categories = json.load(open('./categories.json'))
else:
categories = ['01', '02', '03', '04', '05', '06', '07', '08', '09'] + map(str, range(10,25))
out = []
for cat in categories:
filtered_values = filter(lambda x: cat in x['filename'], values)
avg_metrics = print_all_average_metrics(filtered_values, silent=True)
if metric is not None:
res = pprint_metrics(avg_metrics)[metric]
else:
res = pprint_metrics(avg_metrics)
pprint ( res )
out.append((cat,res))
return out
def plot(values, metric_name):
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import sys
plt.style.use('ggplot')
fig, ax = plt.subplots(1, 1, figsize=(25, 3))
ax.margins(0)
x = []
y = []
for index,v in enumerate( values ):
# if not index: continue
# plt.plot(x, new_recall, linewidth=2, label='Condensed Mem Network')
x.append(index)
y.append(v[1]['our']-v[1]['jpeg'])
# plt.plot(x,y, 'o')
# plt.semilogy(x,y)
y_neg = [max(0,i) for i in y]
y_pos = [min(0,i) for i in y]
plt.bar(x,y_neg)
plt.bar(x,y_pos, color='r')
plt.tick_params(axis='x', which='both', bottom='off', top='off', labelbottom='off')
plt.title(metric_name.upper(), x=0.5, y=0.8, fontsize=14)
plt.legend(loc='')
ax.get_xaxis().set_visible(False)
ax.xaxis.set_major_formatter(plt.NullFormatter())
fig.tight_layout()
# plt.savefig('plot_size_' + metric_name + '.png', bbox_inches='tight_layout', pad_inches=0)
plt.savefig('plot_kodak_' + metric_name + '.png')
if __name__ == '__main__':
import sys
import json
print_average = True
print_categories = False
if len(sys.argv) > 1:
filename = sys.argv[1]
else:
# filename = 'logs/log_small_ALL_model_69.log'
filename = 'logs/log_small_100_model_6_79.log'
values = process_log(filename)
metrics = "PSNR SSIM MSSSIM VIFP PSNRHVS PSNRHVSM".lower().split(' ')
if print_categories:
for metric_name in metrics:
out = pprint_by_categories(values, metric_name, data_type='size')
print metric_name, len(out)
plot(out, metric_name)
if print_average:
avg_metrics = print_all_average_metrics(values, silent=True)
avg_metrics = pprint_metrics(avg_metrics)
pprint ( avg_metrics )
print(filename, avg_metrics['ssim'])
print_given_average_metrics(values, 'filename')
print_given_average_metrics(values, 'our_q')
print_given_average_metrics(values, 'jpeg_q')
print_given_average_metrics(values, 'our_size')
print_given_average_metrics(values, 'jpeg_size')
print_given_average_metrics(values, 'jpeg_psnr')