-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patht5_prompt_creation.py
35 lines (24 loc) · 1.05 KB
/
t5_prompt_creation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import random
def create_model_inputs(prompt_tokens: list, training_prompts: list):
prompt_tokens_as_str = ' '.join(prompt_tokens)
model_inputs = []
for i in range(len(training_prompts)):
model_inputs.append(prompt_tokens_as_str + ' ' + training_prompts[i])
return model_inputs
def create_prompt_tokens(prompt_size: int):
# using random initialization
prompt_tokens = []
for i in range(0, prompt_size):
prompt_tokens.append('PROMPT_TOKEN' + str(i))
prompt_token_initializations = []
for i in range(0, prompt_size):
n = random.uniform(-0.5, 0.5)
prompt_token_initializations.append(n)
return prompt_tokens, prompt_token_initializations
def ensemble_prompt_creation(prompt_size: int, training_prompts):
prompt_tokens, prompt_inits = create_prompt_tokens(prompt_size)
inputs = create_model_inputs(prompt_tokens, training_prompts)
return inputs
if __name__ == '__main__':
# TODO: Create prompt class for different initialization strategies
print('you are running prompt tuning')