-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate.py
91 lines (66 loc) · 3.4 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os
import json
import torch
import argparse
from tqdm import tqdm
from datasets import load_dataset, load_metric
from utils import (
set_seed,
process_config,
prepare_dataloaders,
prepare_models,
to_value_list,
check_denotation
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", default = "./configs/wiki_tq_clustering_and_highlighting/tapex.json", type = str, help = "Path to experiment configuration")
parser.add_argument("--device", default = "cuda:1", type = str, help = "Device to put model and inputs")
parser.add_argument("--ckpt_path", default = "./checkpoints/cabinet_wikitq_ckpt.pt", type = str, help = "Path to model checkpoint")
args = parser.parse_args()
with open(args.config, "r") as f:
config = json.load(f)
config = process_config(config, args)
set_seed(config.seed)
if config.data.config_name is not None:
dataset = load_dataset(config.data.data_path, config.data.config_name)
else:
dataset = load_dataset(config.data.data_path)
if config.training.training_type == "descriptive_table_question_answering":
sacrebleu = load_metric("sacrebleu")
train_dataloader, validation_dataloader, test_dataloader, tokenizer = prepare_dataloaders(dataset, config)
model = prepare_models(config)
model.load_state_dict(torch.load(args.ckpt_path, map_location = "cpu"))
model.to(args.device)
count = 0
total = 0
for idx, batch in tqdm(enumerate(test_dataloader), position = 0, leave = True, total = len(test_dataloader)):
input_ids, attention_mask, token_type_ids, decoder_input_ids, highlighted_cells, labels = batch
actual_output_ids = decoder_input_ids.clone()
output_ids = model.model.generate(input_ids = input_ids.to(args.device), max_new_tokens = config.tokenizer.output_max_length,
num_beams = 3, early_stopping = True, attention_mask = attention_mask.to(args.device),
highlighted_cells = highlighted_cells.to(args.device))
predicted_sequence = tokenizer.batch_decode(output_ids, skip_special_tokens = True)
actual_sequence = tokenizer.batch_decode(actual_output_ids, skip_special_tokens = True)
if config.training.training_type == "descriptive_table_question_answering":
# NOTE: Compute SacreBLEU score - For FeTaQA dataset
# actual_sequence = [[a] for a in actual_sequence]
# predicted_sequence = [predicted_sequence]
for a, p in zip(actual_sequence, predicted_sequence):
res = sacrebleu.compute(predictions = [p], references = [[a]])
count += res["score"]
total += 1
else:
for a, p in zip(actual_sequence, predicted_sequence):
a = [x.strip() for x in a.split(",")]
p = [x.strip() for x in p.split(",")]
pred = to_value_list(p)
gold = to_value_list(a)
correct = check_denotation(gold, pred)
if correct:
count += 1
total += 1
if config.training.training_type == "descriptive_table_question_answering":
print(f"Sacre BLEU: {count / total: .4f}")
else:
print(f"Accuracy: {count / total: .4f}")