-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
63 lines (53 loc) · 2.23 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
# Define the CNN architecture
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
self.fc1 = nn.Linear(32 * 8 * 8, 512)
self.fc2 = nn.Linear(512, 10)
self.pool = nn.MaxPool2d(2, 2)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.25)
def forward(self, x):
x = self.pool(self.relu(self.conv1(x)))
x = self.pool(self.relu(self.conv2(x)))
x = x.view(-1, 32 * 8 * 8)
x = self.relu(self.fc1(x))
x = self.dropout(x)
x = self.fc2(x)
return x
def train_model():
# Load CIFAR-10 dataset
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=100, shuffle=True, num_workers=2)
# Initialize model, loss function, and optimizer
net = SimpleCNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
# Training loop
#for epoch in range(10): # loop over the dataset multiple times
for epoch in range(3): # we change to 3 to accelerate the training
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad() # zero the parameter gradients
outputs = net(inputs) # forward pass
loss = criterion(outputs, labels) # compute loss
loss.backward() # backward pass
optimizer.step() # update weights
running_loss += loss.item()
if i % 100 == 99: # print every 100 mini-batches
print(f'[Epoch {epoch + 1}, Batch {i + 1}] loss: {running_loss / 100:.3f}')
running_loss = 0.0
print('Finished Training')
# Save the trained model
torch.save(net.state_dict(), 'model.pth')
if __name__ == "__main__":
train_model()