forked from aws/amazon-sagemaker-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cifar10.py
186 lines (149 loc) · 7 KB
/
cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from __future__ import print_function
import json
import logging
import os
import time
import mxnet as mx
from mxnet import autograd as ag
from mxnet import gluon
from mxnet.gluon.model_zoo import vision as models
# ------------------------------------------------------------ #
# Training methods #
# ------------------------------------------------------------ #
def train(current_host, hosts, num_cpus, num_gpus, channel_input_dirs, model_dir, hyperparameters, **kwargs):
# retrieve the hyperparameters we set in notebook (with some defaults)
batch_size = hyperparameters.get('batch_size', 128)
epochs = hyperparameters.get('epochs', 100)
learning_rate = hyperparameters.get('learning_rate', 0.1)
momentum = hyperparameters.get('momentum', 0.9)
log_interval = hyperparameters.get('log_interval', 1)
wd = hyperparameters.get('wd', 0.0001)
if len(hosts) == 1:
kvstore = 'device' if num_gpus > 0 else 'local'
else:
kvstore = 'dist_device_sync'
ctx = [mx.gpu(i) for i in range(num_gpus)] if num_gpus > 0 else [mx.cpu()]
net = models.get_model('resnet34_v2', ctx=ctx, pretrained=False, classes=10)
batch_size *= max(1, len(ctx))
# load training and validation data
# we use the gluon.data.vision.CIFAR10 class because of its built in pre-processing logic,
# but point it at the location where SageMaker placed the data files, so it doesn't download them again.
part_index = 0
for i, host in enumerate(hosts):
if host == current_host:
part_index = i
break
data_dir = channel_input_dirs['training']
train_data = get_train_data(num_cpus, data_dir, batch_size, (3, 32, 32),
num_parts=len(hosts), part_index=part_index)
test_data = get_test_data(num_cpus, data_dir, batch_size, (3, 32, 32))
# Collect all parameters from net and its children, then initialize them.
net.initialize(mx.init.Xavier(magnitude=2), ctx=ctx)
# Trainer is for updating parameters with gradient.
trainer = gluon.Trainer(net.collect_params(), 'sgd',
optimizer_params={'learning_rate': learning_rate, 'momentum': momentum, 'wd': wd},
kvstore=kvstore)
metric = mx.metric.Accuracy()
loss = gluon.loss.SoftmaxCrossEntropyLoss()
best_accuracy = 0.0
for epoch in range(epochs):
# reset data iterator and metric at begining of epoch.
train_data.reset()
tic = time.time()
metric.reset()
btic = time.time()
for i, batch in enumerate(train_data):
data = gluon.utils.split_and_load(batch.data[0], ctx_list=ctx, batch_axis=0)
label = gluon.utils.split_and_load(batch.label[0], ctx_list=ctx, batch_axis=0)
outputs = []
Ls = []
with ag.record():
for x, y in zip(data, label):
z = net(x)
L = loss(z, y)
# store the loss and do backward after we have done forward
# on all GPUs for better speed on multiple GPUs.
Ls.append(L)
outputs.append(z)
for L in Ls:
L.backward()
trainer.step(batch.data[0].shape[0])
metric.update(label, outputs)
if i % log_interval == 0 and i > 0:
name, acc = metric.get()
logging.info('Epoch [%d] Batch [%d]\tSpeed: %f samples/sec\t%s=%f' %
(epoch, i, batch_size / (time.time() - btic), name, acc))
btic = time.time()
name, acc = metric.get()
logging.info('[Epoch %d] training: %s=%f' % (epoch, name, acc))
logging.info('[Epoch %d] time cost: %f' % (epoch, time.time() - tic))
name, val_acc = test(ctx, net, test_data)
logging.info('[Epoch %d] validation: %s=%f' % (epoch, name, val_acc))
# only save params on primary host
if current_host == hosts[0]:
if val_acc > best_accuracy:
net.save_params('{}/model-{:0>4}.params'.format(model_dir, epoch))
best_accuracy = val_acc
return net
def save(net, model_dir):
# model_dir will be empty except on primary container
files = os.listdir(model_dir)
if files:
best = sorted(os.listdir(model_dir))[-1]
os.rename(os.path.join(model_dir, best), os.path.join(model_dir, 'model.params'))
def get_data(path, augment, num_cpus, batch_size, data_shape, resize=-1, num_parts=1, part_index=0):
return mx.io.ImageRecordIter(
path_imgrec=path,
resize=resize,
data_shape=data_shape,
batch_size=batch_size,
rand_crop=augment,
rand_mirror=augment,
preprocess_threads=num_cpus,
num_parts=num_parts,
part_index=part_index)
def get_test_data(num_cpus, data_dir, batch_size, data_shape, resize=-1):
return get_data(os.path.join(data_dir, "test.rec"), False, num_cpus, batch_size, data_shape, resize, 1, 0)
def get_train_data(num_cpus, data_dir, batch_size, data_shape, resize=-1, num_parts=1, part_index=0):
return get_data(os.path.join(data_dir, "train.rec"), True, num_cpus, batch_size, data_shape, resize, num_parts,
part_index)
def test(ctx, net, test_data):
test_data.reset()
metric = mx.metric.Accuracy()
for i, batch in enumerate(test_data):
data = gluon.utils.split_and_load(batch.data[0], ctx_list=ctx, batch_axis=0)
label = gluon.utils.split_and_load(batch.label[0], ctx_list=ctx, batch_axis=0)
outputs = []
for x in data:
outputs.append(net(x))
metric.update(label, outputs)
return metric.get()
# ------------------------------------------------------------ #
# Hosting methods #
# ------------------------------------------------------------ #
def model_fn(model_dir):
"""
Load the gluon model. Called once when hosting service starts.
:param: model_dir The directory where model files are stored.
:return: a model (in this case a Gluon network)
"""
net = models.get_model('resnet34_v2', ctx=mx.cpu(), pretrained=False, classes=10)
net.load_params('%s/model.params' % model_dir, ctx=mx.cpu())
return net
def transform_fn(net, data, input_content_type, output_content_type):
"""
Transform a request using the Gluon model. Called once per request.
:param net: The Gluon model.
:param data: The request payload.
:param input_content_type: The request content type.
:param output_content_type: The (desired) response content type.
:return: response payload and content type.
"""
# we can use content types to vary input/output handling, but
# here we just assume json for both
parsed = json.loads(data)
nda = mx.nd.array(parsed)
output = net(nda)
prediction = mx.nd.argmax(output, axis=1)
response_body = json.dumps(prediction.asnumpy().tolist()[0])
return response_body, output_content_type