diff --git a/autogpt/autogpt/agents/agent.py b/autogpt/autogpt/agents/agent.py index f3d7fc202b90..650589a0b50f 100644 --- a/autogpt/autogpt/agents/agent.py +++ b/autogpt/autogpt/agents/agent.py @@ -111,14 +111,18 @@ def __init__( # Components self.system = SystemComponent() - self.history = ActionHistoryComponent( - settings.history, - lambda x: self.llm_provider.count_tokens(x, self.llm.name), - llm_provider, - ActionHistoryConfiguration( - model_name=app_config.fast_llm, max_tokens=self.send_token_limit - ), - ).run_after(WatchdogComponent) + self.history = ( + ActionHistoryComponent( + settings.history, + lambda x: self.llm_provider.count_tokens(x, self.llm.name), + llm_provider, + ActionHistoryConfiguration( + model_name=app_config.fast_llm, max_tokens=self.send_token_limit + ), + ) + .run_after(WatchdogComponent) + .run_after(SystemComponent) + ) if not app_config.noninteractive_mode: self.user_interaction = UserInteractionComponent() self.file_manager = FileManagerComponent(file_storage, settings) diff --git a/autogpt/autogpt/agents/prompt_strategies/one_shot.py b/autogpt/autogpt/agents/prompt_strategies/one_shot.py index 620f39c0846b..d232e1ee820b 100644 --- a/autogpt/autogpt/agents/prompt_strategies/one_shot.py +++ b/autogpt/autogpt/agents/prompt_strategies/one_shot.py @@ -275,4 +275,5 @@ def parse_response_content( assistant_reply_dict["use_tool"] = response.tool_calls[0].function parsed_response = OneShotAgentActionProposal.parse_obj(assistant_reply_dict) + parsed_response.raw_message = response.copy() return parsed_response diff --git a/docs/content/forge/components/built-in-components.md b/docs/content/forge/components/built-in-components.md index ceed5f3e15fe..4a34117191fa 100644 --- a/docs/content/forge/components/built-in-components.md +++ b/docs/content/forge/components/built-in-components.md @@ -81,6 +81,7 @@ Keeps track of agent's actions and their outcomes. Provides their summary to the | `model_name` | Name of the llm model used to compress the history | `ModelName` | `"gpt-3.5-turbo"` | | `max_tokens` | Maximum number of tokens to use for the history summary | `int` | `1024` | | `spacy_language_model` | Language model used for summary chunking using spacy | `str` | `"en_core_web_sm"` | +| `full_message_count` | Number of cycles to include unsummarized in the prompt | `int` | `4` | **MessageProvider** diff --git a/forge/forge/agent/forge_agent.py b/forge/forge/agent/forge_agent.py index 2eb6710dd554..f494ccb56723 100644 --- a/forge/forge/agent/forge_agent.py +++ b/forge/forge/agent/forge_agent.py @@ -24,7 +24,7 @@ from forge.file_storage.base import FileStorage from forge.llm.prompting.schema import ChatPrompt from forge.llm.prompting.utils import dump_prompt -from forge.llm.providers.schema import AssistantFunctionCall +from forge.llm.providers.schema import AssistantChatMessage, AssistantFunctionCall from forge.llm.providers.utils import function_specs_from_commands from forge.models.action import ( ActionErrorResult, @@ -178,6 +178,9 @@ async def propose_action(self) -> ActionProposal: use_tool=AssistantFunctionCall( name="finish", arguments={"reason": "Unimplemented logic"} ), + raw_message=AssistantChatMessage( + content="finish(reason='Unimplemented logic')" + ), ) self.config.cycle_count += 1 diff --git a/forge/forge/components/action_history/action_history.py b/forge/forge/components/action_history/action_history.py index ce07bcfa5c44..cd9ffcd4910e 100644 --- a/forge/forge/components/action_history/action_history.py +++ b/forge/forge/components/action_history/action_history.py @@ -10,6 +10,7 @@ from forge.llm.providers import ChatMessage, MultiProvider from forge.llm.providers.multi import ModelName from forge.llm.providers.openai import OpenAIModelName +from forge.llm.providers.schema import ToolResultMessage from .model import ActionResult, AnyProposal, Episode, EpisodicActionHistory @@ -21,6 +22,8 @@ class ActionHistoryConfiguration(BaseModel): """Maximum number of tokens to use up with generated history messages""" spacy_language_model: str = "en_core_web_sm" """Language model used for summary chunking using spacy""" + full_message_count: int = 4 + """Number of latest non-summarized messages to include in the history""" class ActionHistoryComponent( @@ -46,12 +49,47 @@ def __init__( self.llm_provider = llm_provider def get_messages(self) -> Iterator[ChatMessage]: - if progress := self._compile_progress( - self.event_history.episodes, - self.config.max_tokens, - self.count_tokens, - ): - yield ChatMessage.system(f"## Progress on your Task so far\n\n{progress}") + messages: list[ChatMessage] = [] + step_summaries: list[str] = [] + tokens: int = 0 + n_episodes = len(self.event_history.episodes) + + # Include a summary for all except a few latest steps + for i, episode in enumerate(reversed(self.event_history.episodes)): + # Use full format for a few steps, summary or format for older steps + if i < self.config.full_message_count: + messages.insert(0, episode.action.raw_message) + tokens += self.count_tokens(str(messages[0])) # HACK + if episode.result: + result_message = self._make_result_message(episode, episode.result) + messages.insert(1, result_message) + tokens += self.count_tokens(str(result_message)) # HACK + continue + elif episode.summary is None: + step_content = indent(episode.format(), 2).strip() + else: + step_content = episode.summary + + step = f"* Step {n_episodes - i}: {step_content}" + + if self.config.max_tokens and self.count_tokens: + step_tokens = self.count_tokens(step) + if tokens + step_tokens > self.config.max_tokens: + break + tokens += step_tokens + + step_summaries.insert(0, step) + + if step_summaries: + step_summaries_fmt = "\n\n".join(step_summaries) + yield ChatMessage.system( + f"## Progress on your Task so far\n" + "Here is a summary of the steps that you have executed so far, " + "use this as your consideration for determining the next action!\n" + f"{step_summaries_fmt}" + ) + + yield from messages def after_parse(self, result: AnyProposal) -> None: self.event_history.register_action(result) @@ -62,6 +100,41 @@ async def after_execute(self, result: ActionResult) -> None: self.llm_provider, self.config.model_name, self.config.spacy_language_model ) + @staticmethod + def _make_result_message(episode: Episode, result: ActionResult) -> ChatMessage: + if result.status == "success": + return ( + ToolResultMessage( + content=str(result.outputs), + tool_call_id=episode.action.raw_message.tool_calls[0].id, + ) + if episode.action.raw_message.tool_calls + else ChatMessage.user( + f"{episode.action.use_tool.name} returned: " + + ( + f"```\n{result.outputs}\n```" + if "\n" in str(result.outputs) + else f"`{result.outputs}`" + ) + ) + ) + elif result.status == "error": + return ( + ToolResultMessage( + content=f"{result.reason}\n\n{result.error or ''}".strip(), + is_error=True, + tool_call_id=episode.action.raw_message.tool_calls[0].id, + ) + if episode.action.raw_message.tool_calls + else ChatMessage.user( + f"{episode.action.use_tool.name} raised an error: ```\n" + f"{result.reason}\n" + "```" + ) + ) + else: + return ChatMessage.user(result.feedback) + def _compile_progress( self, episode_history: list[Episode[AnyProposal]], @@ -76,8 +149,8 @@ def _compile_progress( n_episodes = len(episode_history) for i, episode in enumerate(reversed(episode_history)): - # Use full format for the latest 4 steps, summary or format for older steps - if i < 4 or episode.summary is None: + # Use full format for a few latest steps, summary or format for older steps + if i < self.config.full_message_count or episode.summary is None: step_content = indent(episode.format(), 2).strip() else: step_content = episode.summary diff --git a/forge/forge/models/action.py b/forge/forge/models/action.py index 4acf7b97f8d0..61d23b1f9ff3 100644 --- a/forge/forge/models/action.py +++ b/forge/forge/models/action.py @@ -3,8 +3,9 @@ from typing import Any, Literal, Optional, TypeVar from pydantic import BaseModel +from pydantic.schema import default_ref_template -from forge.llm.providers.schema import AssistantFunctionCall +from forge.llm.providers.schema import AssistantChatMessage, AssistantFunctionCall from .utils import ModelWithSummary @@ -13,6 +14,23 @@ class ActionProposal(BaseModel): thoughts: str | ModelWithSummary use_tool: AssistantFunctionCall + raw_message: AssistantChatMessage = None # type: ignore + """ + The message from which the action proposal was parsed. To be set by the parser. + """ + + @classmethod + def schema( + cls, by_alias: bool = True, ref_template: str = default_ref_template, **kwargs + ): + """ + The schema for this ActionProposal model, excluding the 'raw_message' property. + """ + schema = super().schema(by_alias=by_alias, ref_template=ref_template, **kwargs) + if "raw_message" in schema["properties"]: # must check because schema is cached + del schema["properties"]["raw_message"] + return schema + AnyProposal = TypeVar("AnyProposal", bound=ActionProposal)