-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraffic-1600.py
138 lines (94 loc) · 3.88 KB
/
traffic-1600.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 14 19:16:24 2019
@author: z063638
"""
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
DAY_RANGE = 75
TIME = '16:00:00'
# Importing the training set
metro_traffic = pd.read_csv('Metro_Interstate_Traffic_Volume.csv')
# Converting datetime feature to datetime
metro_traffic['date_time'] = pd.to_datetime(metro_traffic.date_time)
# Segrigating datetime to date & time feature
metro_traffic['date'] = metro_traffic['date_time'].dt.date
metro_traffic['time'] = metro_traffic['date_time'].dt.time
# Converting time to string
metro_traffic['time'] = metro_traffic['time'].astype(str)
# Converting time to string
metro_traffic['date'] = metro_traffic['date'].astype(str)
# filtering only 9:00 oclock records
dataset=metro_traffic[metro_traffic['time'] == TIME]
dataset = dataset.drop_duplicates(subset=['date'], keep='first', inplace=False)
# divide the dataset into test and training dataset
dataset_train = dataset[dataset['date'] <= '2018-09-01']
dataset_test = dataset[dataset['date'] >= '2018-09-01']
training_set = dataset_train.iloc[:, 8:9].values
# Feature Scaling
from sklearn.preprocessing import MinMaxScaler
sc = MinMaxScaler(feature_range = (0, 1))
training_set_scaled = sc.fit_transform(training_set)
# Creating a data structure with 60 timesteps and 1 output
X_train = []
y_train = []
for i in range(DAY_RANGE, len(dataset_train)):
X_train.append(training_set_scaled[i-DAY_RANGE:i, 0])
y_train.append(training_set_scaled[i, 0])
X_train, y_train = np.array(X_train), np.array(y_train)
# Reshaping
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
training_set = dataset_train.iloc[:,8:9].values
# Part 2 - Building the RNN
# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import Dropout
# Initialising the RNN
regressor = Sequential()
# Adding the first LSTM layer and some Dropout regularisation
regressor.add(LSTM(units = 50, return_sequences = True, input_shape = (X_train.shape[1], 1)))
regressor.add(Dropout(0.2))
# Adding a second LSTM layer and some Dropout regularisation
regressor.add(LSTM(units = 50, return_sequences = True))
regressor.add(Dropout(0.2))
# Adding a third LSTM layer and some Dropout regularisation
#regressor.add(LSTM(units = 50, return_sequences = True))
#regressor.add(Dropout(0.2))
# Adding a fourth LSTM layer and some Dropout regularisation
regressor.add(LSTM(units = 50))
regressor.add(Dropout(0.2))
# Adding the output layer
regressor.add(Dense(units = 1))
# Compiling the RNN
regressor.compile(optimizer = 'adam', loss = 'mean_squared_error')
# Fitting the RNN to the Training set
regressor.fit(X_train, y_train, epochs = 100, batch_size = 32)
# Part 3 - Making the predictions and visualising the results
# Getting the real stock price of 2017
#dataset_test = pd.read_csv('Google_Stock_Price_Test.csv')
real_stock_price = dataset_test.iloc[:, 8:9].values
# Getting the predicted stock price of 2017
dataset_total = dataset.iloc[:, 8:9].values
inputs = dataset_total[len(dataset_total) - len(dataset_test) - DAY_RANGE:]
inputs = inputs.reshape(-1,1)
inputs = sc.transform(inputs)
X_test = []
for i in range(DAY_RANGE, len(inputs)):
X_test.append(inputs[i-DAY_RANGE:i, 0])
X_test = np.array(X_test)
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
predicted_stock_price = regressor.predict(X_test)
predicted_stock_price = sc.inverse_transform(predicted_stock_price)
# Visualising the results
plt.plot(real_stock_price, color = 'red', label = 'Real traffic')
plt.plot(predicted_stock_price, color = 'blue', label = 'Predicted traffic')
plt.title('Traffic Prediction at ' + TIME + 'Considering last ' + str(DAY_RANGE) + ' days' )
plt.xlabel('Date')
plt.ylabel('Traffic')
plt.legend()
plt.show()