-
Notifications
You must be signed in to change notification settings - Fork 176
/
Copy pathgaittr.py
186 lines (163 loc) · 6.21 KB
/
gaittr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..base_model import BaseModel
from ..modules import Graph, SpatialAttention
import numpy as np
import math
class Mish(nn.Module):
def __init__(self):
super().__init__()
def forward(self,x):
return x * (torch.tanh(F.softplus(x)))
class STModule(nn.Module):
def __init__(self,in_channels, out_channels, incidence, num_point):
super(STModule, self).__init__()
"""
This class implements augmented graph spatial convolution in case of Spatial Transformer
Fucntion adapated from: https://github.com/Chiaraplizz/ST-TR/blob/master/code/st_gcn/net/gcn_attention.py
"""
self.in_channels = in_channels
self.out_channels = out_channels
self.incidence = incidence
self.num_point = num_point
self.relu = Mish()
self.bn = nn.BatchNorm2d(out_channels)
self.data_bn = nn.BatchNorm1d(self.in_channels * self.num_point)
self.attention_conv = SpatialAttention(in_channels=in_channels,out_channel=out_channels,A=self.incidence,num_point=self.num_point)
def forward(self,x):
N, C, T, V = x.size()
# data normlization
x = x.permute(0, 1, 3, 2).reshape(N, C * V, T)
x = self.data_bn(x)
x = x.reshape(N, C, V, T).permute(0, 1, 3, 2)
# adjacency matrix
self.incidence = self.incidence.cuda(x.get_device())
# N, T, C, V > NT, C, 1, V
xa = x.permute(0, 2, 1, 3).reshape(-1, C, 1, V)
# spatial attention
attn_out = self.attention_conv(xa)
# N, T, C, V > N, C, T, V
attn_out = attn_out.reshape(N, T, -1, V).permute(0, 2, 1, 3)
y = attn_out
y = self.bn(self.relu(y))
return y
class UnitConv2D(nn.Module):
'''
This class is used in GaitTR[TCN_ST] block.
'''
def __init__(self, D_in, D_out, kernel_size=9, stride=1, dropout=0.1, bias=True):
super(UnitConv2D,self).__init__()
pad = int((kernel_size-1)/2)
self.conv = nn.Conv2d(D_in,D_out,kernel_size=(kernel_size,1)
,padding=(pad,0),stride=(stride,1),bias=bias)
self.bn = nn.BatchNorm2d(D_out)
self.relu = Mish()
self.dropout = nn.Dropout(dropout, inplace=False)
#initalize
self.conv_init(self.conv)
def forward(self,x):
x = self.dropout(x)
x = self.bn(self.relu(self.conv(x)))
return x
def conv_init(self,module):
n = module.out_channels
for k in module.kernel_size:
n = n*k
module.weight.data.normal_(0, math.sqrt(2. / n))
class TCN_ST(nn.Module):
"""
Block of GaitTR: https://arxiv.org/pdf/2204.03873.pdf
TCN: Temporal Convolution Network
ST: Sptail Temporal Graph Convolution Network
"""
def __init__(self,in_channel,out_channel,A,num_point):
super(TCN_ST, self).__init__()
#params
self.in_channel = in_channel
self.out_channel = out_channel
self.A = A
self.num_point = num_point
#network
self.tcn = UnitConv2D(D_in=self.in_channel,D_out=self.in_channel,kernel_size=9)
self.st = STModule(in_channels=self.in_channel,out_channels=self.out_channel,incidence=self.A,num_point=self.num_point)
self.residual = lambda x: x
if (in_channel != out_channel):
self.residual_s = nn.Sequential(
nn.Conv2d(in_channel, out_channel, 1),
nn.BatchNorm2d(out_channel),
)
self.down = UnitConv2D(D_in=self.in_channel,D_out=out_channel,kernel_size=1,dropout=0)
else:
self.residual_s = lambda x: x
self.down = None
def forward(self,x):
x0 = self.tcn(x) + self.residual(x)
y = self.st(x0) + self.residual_s(x0)
# skip residual
y = y + (x if(self.down is None) else self.down(x))
return y
class GaitTR(BaseModel):
"""
GaitTR: Spatial Transformer Network on Skeleton-based Gait Recognition
Arxiv : https://arxiv.org/abs/2204.03873.pdf
"""
def build_network(self, model_cfg):
in_c = model_cfg['in_channels']
self.num_class = model_cfg['num_class']
self.joint_format = model_cfg['joint_format']
self.graph = Graph(joint_format=self.joint_format,max_hop=3)
#### Network Define ####
# ajaceny matrix
self.A = torch.from_numpy(self.graph.A.astype(np.float32))
#data normalization
num_point = self.A.shape[-1]
self.data_bn = nn.BatchNorm1d(in_c[0] * num_point)
#backbone
backbone = []
for i in range(len(in_c)-1):
backbone.append(TCN_ST(in_channel= in_c[i],out_channel= in_c[i+1],A=self.A,num_point=num_point))
self.backbone = nn.ModuleList(backbone)
self.fcn = nn.Conv1d(in_c[-1], self.num_class, kernel_size=1)
def forward(self, inputs):
ipts, labs, _, _, seqL = inputs
x= ipts[0]
pose = x
# x = N, T, C, V, M -> N, C, T, V, M
x = x.permute(0, 2, 1, 3, 4)
N, C, T, V, M = x.size()
if len(x.size()) == 4:
x = x.unsqueeze(1)
del ipts
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T)
x = self.data_bn(x)
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(
N * M, C, T, V)
#backbone
for _,m in enumerate(self.backbone):
x = m(x)
# V pooling
x = F.avg_pool2d(x, kernel_size=(1,V))
# M pooling
c = x.size(1)
t = x.size(2)
x = x.view(N, M, c, t).mean(dim=1).view(N, c, t)#[n,c,t]
# T pooling
x = F.avg_pool1d(x, kernel_size=x.size()[2]) #[n,c]
# C fcn
x = self.fcn(x) #[n,c']
x = F.avg_pool1d(x, x.size()[2:]) # [n,c']
x = x.view(N, self.num_class) # n,c
embed = x.unsqueeze(-1) # n,c,1
retval = {
'training_feat': {
'triplet': {'embeddings': embed, 'labels': labs}
},
'visual_summary': {
'image/pose': pose.view(N*T, M, V, C)
},
'inference_feat': {
'embeddings': embed
}
}
return retval