-
Notifications
You must be signed in to change notification settings - Fork 176
/
Copy pathskeletongait_SUSTech1K.yaml
96 lines (90 loc) · 2.41 KB
/
skeletongait_SUSTech1K.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
data_cfg:
dataset_name: SUSTech1K
dataset_root: your_path
dataset_partition: ./datasets/SUSTech1K/SUSTech1K.json
num_workers: 4
data_in_use: [True, False] # heatmap, sil
remove_no_gallery: false # Remove probe if no gallery for it
test_dataset_name: SUSTech1K
evaluator_cfg:
enable_float16: true
restore_ckpt_strict: true
restore_hint: 50000
save_name: SkeletonGait
eval_func: evaluate_indoor_dataset #evaluate_Gait3D
sampler:
batch_shuffle: false
batch_size: 4
sample_type: all_ordered # all indicates whole sequence used to test, while ordered means input sequence by its natural order; Other options: fixed_unordered
frames_all_limit: 720 # limit the number of sampled frames to prevent out of memory
metric: euc # cos
transform:
- type: BaseSilCuttingTransform
loss_cfg:
- loss_term_weight: 1.0
margin: 0.2
type: TripletLoss
log_prefix: triplet
- loss_term_weight: 1.0
scale: 16
type: CrossEntropyLoss
log_prefix: softmax
log_accuracy: true
model_cfg:
model: DeepGaitV2
Backbone:
in_channels: 2
mode: p3d
layers:
- 1
- 1
- 1
- 1
channels:
- 64
- 128
- 256
- 512
SeparateBNNecks:
class_num: 250
optimizer_cfg:
lr: 0.1
momentum: 0.9
solver: SGD
weight_decay: 0.0005
scheduler_cfg:
gamma: 0.1
milestones: # Learning Rate Reduction at each milestones
- 20000
- 30000
- 40000
scheduler: MultiStepLR
trainer_cfg:
enable_float16: true # half_percesion float for memory reduction and speedup
fix_BN: false
with_test: true #true
log_iter: 100
restore_ckpt_strict: true
restore_hint: 0
save_iter: 10000
save_name: SkeletonGait
sync_BN: true
total_iter: 50000
sampler:
batch_shuffle: true
batch_size:
- 8 # TripletSampler, batch_size[0] indicates Number of Identity
- 8 # batch_size[1] indicates Samples sequqnce for each Identity
frames_num_fixed: 10 # fixed frames number for training
sample_type: fixed_unordered # fixed control input frames number, unordered for controlling order of input tensor; Other options: unfixed_ordered or all_ordered
type: TripletSampler
transform:
- type: Compose
trf_cfg:
- type: RandomPerspective
prob: 0.2
- type: BaseSilCuttingTransform
- type: RandomHorizontalFlip
prob: 0.2
- type: RandomRotate
prob: 0.2