-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
143 lines (107 loc) · 5.84 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from model import SLT_Transformer
from dataloader import Vocab_tokenizer, get_loader
from sklearn.utils import shuffle
from bleu import calc_BLEU
import pandas as pd
import os
import numpy as np
import torch
import torch.nn as nn
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def eval(Model, iterator, metric, data_tokenizer, trial): # No gradient updatd, no optimizer and clipping
Model.eval()
epoch_loss = 0
with torch.no_grad():
total_len = len(iterator)
test_sentence = []
GT_sentence = []
for i, (features, glosses, translations) in enumerate(iterator):
src, orth, trg = \
features.to(device), glosses.to(device), translations.to(device)
predict_translation, predict_gloss = Model(src, trg[:, :-1])
for tokens in predict_translation:
# Get argmax of tokens, bring it back to CPU.
tokens = torch.argmax(tokens, dim = 1).to(dtype = torch.long, device = torch.device("cpu"))
tokens = tokens.numpy()
# make string, append it to test_sentence
itos = data_tokenizer.stringnize(tokens)
pred_string = ' '.join(itos)
test_sentence.append(pred_string)
for tokens in trg:
tokens = tokens.to(dtype=torch.long, device=torch.device("cpu"))
tokens = tokens.numpy()
# make string, append it to test_sentence
itos = data_tokenizer.stringnize(tokens[1:])
GT_string = ' '.join(itos)
GT_sentence.append(GT_string)
translation_dim = predict_translation.shape[-1]
gloss_dim = predict_gloss.shape[-1]
# Predictions
predict_translation = predict_translation.contiguous().view(-1, translation_dim)
predict_gloss = predict_gloss.contiguous().view(-1, gloss_dim)
# GTs
orth = orth.contiguous().view(-1)
orth = orth.type(torch.LongTensor).to(device)
trg = trg[:, 1:].contiguous().view(-1)
trg = trg.type(torch.LongTensor).to(device)
loss_translation = metric(predict_translation, trg)
loss_gloss = metric(predict_gloss, orth)
loss = loss_translation
epoch_loss += loss.item()
BLEU4 = calc_BLEU(test_sentence, GT_sentence)
with open(f"./bestmodel/TestPred_trial_{trial}.txt", "w", -1, "utf-8") as f:
f.write('\n'.join(test_sentence))
f.close()
with open(f"./bestmodel/TestGT_trial_{trial}.txt", "w", -1, "utf-8") as f:
f.write('\n'.join(GT_sentence))
f.close()
return epoch_loss / len(iterator), BLEU4
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def main():
base_path = 'C:/Users/Siryu_sci/2021-MLVU/SLT_project/'
train_data = pd.read_csv(base_path + "PHOENIX-2014-T.train.corpus.csv", delimiter='|')
val_data = pd.read_csv(base_path + "PHOENIX-2014-T.dev.corpus.csv", delimiter='|')
test_data = pd.read_csv(base_path + "PHOENIX-2014-T.test.corpus.csv", delimiter='|')
Traindata = pd.concat([train_data, val_data])
max_len = 55
# Define the tokenizer. data : translation, orth : gloss
data_tokenizer = Vocab_tokenizer(freq_th=1, max_len = max_len)
orth_tokenizer = Vocab_tokenizer(freq_th=1, max_len = max_len+1)
data_tokenizer.build_vocab(Traindata.translation)
orth_tokenizer.build_vocab(Traindata.orth)
#print(orth_tokenizer.stoi)
targets = data_tokenizer.numericalize(Traindata.translation)
glosses = orth_tokenizer.numericalize(Traindata.orth)
labels = Traindata.name.to_numpy()
print("Translation : ", targets.shape, len(data_tokenizer),
"\n", "Glosses : ", glosses.shape, len(orth_tokenizer)) # (7615, 300) 2948
############################# Split them into Train and dev set #############################
labels, targets, glosses = shuffle(labels, targets, glosses, random_state=42)
train_labels, train_glosses, train_translations = labels[:7115], glosses[:7115], targets[:7115]
val_labels, val_glosses, val_translations = labels[7115:], glosses[7115:], targets[7115:]
test_labels = test_data.name.to_numpy()
test_glosses = orth_tokenizer.numericalize(test_data.orth)
test_translations = data_tokenizer.numericalize(test_data.translation)
BATCH_SIZE = 8
train_loader, train_dataset, pad_idx = get_loader(base_path, train_labels, train_glosses,
train_translations, n_workers=2, BS=BATCH_SIZE, transform=None)
val_loader, val_dataset, pad_idx = get_loader(base_path, val_labels, val_glosses,
val_translations, n_workers=2, BS=BATCH_SIZE, transform=None)
test_loader, test_dataset, pad_idx = get_loader(base_path, test_labels, test_glosses,
test_translations, n_workers=2, BS=BATCH_SIZE, transform=None)
N_tokens = len(data_tokenizer) # Since we're only training the model on the training dataset!
N_glosses = len(orth_tokenizer)
######################### Define the model and auxiliary functions #########################
Transformer = SLT_Transformer(N_glosses, N_tokens, pad_idx, pad_idx, device=device).cuda()
criterion = nn.CrossEntropyLoss().cuda()
print(f'The model has {count_parameters(Transformer):,} trainable parameters')
Transformer.load_state_dict(torch.load('lr_7e-05_n2_d512_R3D.pt'))
total_loss = 0
N_trial = 5
for i in range(N_trial):
test_loss, BLEU4_score = eval(Transformer, test_loader, criterion, data_tokenizer, i)
print('BLEU4 = ', BLEU4_score) ; total_loss+=test_loss
print("average loss : ", total_loss/N_trial)
if __name__ == "__main__":
main()