diff --git a/README.md b/README.md
index bea09be..a0bddc7 100644
--- a/README.md
+++ b/README.md
@@ -50,7 +50,10 @@ environment.
 Installing
 ----------
 ----------
-Just type ```make python``` after creating and activating the virtual environment.
+
+For a standalone ```facs``` commandline tool, type: ```make```.
+
+To compile the python bindings: ```make python```, after creating and activating the virtual environment.
 
 
 Citation
diff --git a/facs/query.c b/facs/query.c
index 0ff19f6..69246b2 100644
--- a/facs/query.c
+++ b/facs/query.c
@@ -396,6 +396,7 @@ void read_process (bloom * bl, Queue * info, Queue * tail, F_set * File_head, fl
 	int result = 0;
 	next_job = check_fmt (info, tail, start_point, fmt_type);
 	// make sure it can handle DOS and Unix format ('\r\n' and '\n')
+	// XXX: what about OSX sinle '\n' ('a0' in hexa)?
 	if (next_job == NULL)
 		return;
 	while (start_point != next_job) 
diff --git a/facs/tool.c b/facs/tool.c
index 9781b1d..d6fe538 100644
--- a/facs/tool.c
+++ b/facs/tool.c
@@ -340,7 +340,7 @@ char *check_fmt (Queue *info, Queue *tail, char *start_point, char type)
                 next_job = info->next->location;
         }
         else
-        {
+        { // XXX: Does this account for OSX-style newlines? next_job is always NULL on OSX fastq files.
                 next_job = strchr (start_point, '\0');
                 if (next_job[-1] == '\n' && next_job[-2] == '\n')
                         next_job -= 1;
diff --git a/facs/utils/benchmarks_facs.ipynb b/facs/utils/benchmarks_facs.ipynb
index f7e3d01..5c12524 100644
--- a/facs/utils/benchmarks_facs.ipynb
+++ b/facs/utils/benchmarks_facs.ipynb
@@ -1,6 +1,6 @@
 {
  "metadata": {
-  "name": "benchmarks_facs"
+  "name": ""
  },
  "nbformat": 3,
  "nbformat_minor": 0,
@@ -11,6 +11,7 @@
      "cell_type": "code",
      "collapsed": false,
      "input": [
+      "%pylab inline\n",
       "import os\n",
       "import matplotlib\n",
       "import json\n",
@@ -19,8 +20,16 @@
      ],
      "language": "python",
      "metadata": {},
-     "outputs": [],
-     "prompt_number": 76
+     "outputs": [
+      {
+       "output_type": "stream",
+       "stream": "stdout",
+       "text": [
+        "Populating the interactive namespace from numpy and matplotlib\n"
+       ]
+      }
+     ],
+     "prompt_number": 23
     },
     {
      "cell_type": "code",
@@ -35,39 +44,39 @@
        "output_type": "stream",
        "stream": "stdout",
        "text": [
-        "[2014-01-21 23:26] INFO: FACS: Establishing connection with database http://facs2.nopcode.org:5984/\n"
+        "[2014-04-18 14:33] INFO: FACS: Establishing connection with database http://facs2.nopcode.org:5984/\n"
        ]
       },
       {
        "output_type": "stream",
        "stream": "stdout",
        "text": [
-        "[2014-01-21 23:26] INFO: FACS: Fetching all documents from database facs\n"
+        "[2014-04-18 14:33] INFO: FACS: Fetching all documents from database facs\n"
        ]
       },
       {
        "output_type": "stream",
        "stream": "stdout",
        "text": [
-        "[2014-01-21 23:27] INFO: FACS: Fetched 351 documents\n"
+        "[2014-04-18 14:34] INFO: FACS: Fetched 252 documents\n"
        ]
       },
       {
        "output_type": "stream",
        "stream": "stdout",
        "text": [
-        "[2014-01-21 23:27] INFO: FACS: Fetching all documents from database fastq_screen\n"
+        "[2014-04-18 14:34] INFO: FACS: Fetching all documents from database fastq_screen\n"
        ]
       },
       {
        "output_type": "stream",
        "stream": "stdout",
        "text": [
-        "[2014-01-21 23:27] INFO: FACS: Fetched 351 documents\n"
+        "[2014-04-18 14:34] INFO: FACS: Fetched 126 documents\n"
        ]
       }
      ],
-     "prompt_number": 77
+     "prompt_number": 24
     },
     {
      "cell_type": "code",
@@ -78,7 +87,7 @@
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 78
+     "prompt_number": 25
     },
     {
      "cell_type": "code",
@@ -93,11 +102,11 @@
        "output_type": "stream",
        "stream": "stdout",
        "text": [
-        "{u'threads_fqscr': u'16', u'threads_facs': 16, u'filter_facs': u'/pica/h1/roman/dev/facs/tests/data/bloom/phiX.bloom', u'sample_fqscr': u'simngs_eschColi_K12_1000000.fastq', u'sample_facs': u'/pica/h1/roman/dev/facs/tests/data/synthetic_fastq/simngs_eschColi_K12_1000000.fastq', u'contam_fqscr': 0.0, u'contam_facs': 0.0, u'delta': 3.02251, u'delta_facs': 0.219, u'filter_fqscr': u'phiX'}\n"
+        "{u'threads_fqscr': u'1', u'threads_facs': 16, u'filter_facs': u'/pica/h1/roman/dev/facs/tests/data/bloom/dm3.bloom', u'sample_fqscr': u'simngs_phiX_10000000.fastq', u'sample_facs': u'/pica/h1/roman/dev/facs/tests/data/synthetic_fastq/simngs_phiX_10000000.fastq', u'contam_fqscr': 0.0001, u'contam_facs': 7.1e-05, u'delta': 995.512687, u'delta_facs': 10.71, u'filter_fqscr': u'dm3'}\n"
        ]
       }
      ],
-     "prompt_number": 79
+     "prompt_number": 26
     },
     {
      "cell_type": "code",
@@ -108,7 +117,7 @@
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 80
+     "prompt_number": 27
     },
     {
      "cell_type": "code",
@@ -125,22 +134,18 @@
       "frame['filter_facs'] = [filt[0] for filt in frame.filter_facs.map(os.path.splitext)]\n",
       "\n",
       "# Individual column with read counts\n",
-      "frame['reads'] = [os.path.splitext(reads.split('_')[-1])[0] for reads in frame.sample_facs]\n",
-      "\n",
-      "# Normalize fastq_screen contamination rates\n",
-      "# XXX: to be removed soon since test_fastqscreen.py already normalizes this in new code\n",
-      "# frame['contam_fqscr'] = [ contam/100 for contam in frame.contam_fqscr ]"
+      "frame['reads'] = [os.path.splitext(reads.split('_')[-1])[0] for reads in frame.sample_facs]"
      ],
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 81
+     "prompt_number": 28
     },
     {
      "cell_type": "code",
      "collapsed": false,
      "input": [
-      "frame.sort('reads').loc[:,['reads', 'contam_fqscr', 'contam_facs']][:5]"
+      "frame.sort('reads')[:10]"
      ],
      "language": "python",
      "metadata": {},
@@ -152,191 +157,210 @@
         "  <thead>\n",
         "    <tr style=\"text-align: right;\">\n",
         "      <th></th>\n",
-        "      <th>reads</th>\n",
-        "      <th>contam_fqscr</th>\n",
         "      <th>contam_facs</th>\n",
+        "      <th>contam_fqscr</th>\n",
+        "      <th>delta_fqscr</th>\n",
+        "      <th>delta_facs</th>\n",
+        "      <th>filter_facs</th>\n",
+        "      <th>filter_fqscr</th>\n",
+        "      <th>sample_facs</th>\n",
+        "      <th>sample_fqscr</th>\n",
+        "      <th>threads_facs</th>\n",
+        "      <th>threads_fqscr</th>\n",
+        "      <th>reads</th>\n",
         "    </tr>\n",
         "  </thead>\n",
         "  <tbody>\n",
         "    <tr>\n",
-        "      <th>8 </th>\n",
+        "      <th>108</th>\n",
+        "      <td> 0.92</td>\n",
+        "      <td> 0.91</td>\n",
+        "      <td> 0.628752</td>\n",
+        "      <td> 0.774</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          simngs_dm3_100.fastq</td>\n",
+        "      <td>          simngs_dm3_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
         "      <td> 100</td>\n",
-        "      <td> 0</td>\n",
-        "      <td> 0</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <th>9 </th>\n",
+        "      <th>102</th>\n",
+        "      <td> 0.00</td>\n",
+        "      <td> 0.00</td>\n",
+        "      <td> 0.217739</td>\n",
+        "      <td> 0.017</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td> simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td> simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
         "      <td> 100</td>\n",
-        "      <td> 0</td>\n",
-        "      <td> 0</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <th>46</th>\n",
+        "      <th>120</th>\n",
+        "      <td> 1.00</td>\n",
+        "      <td> 1.00</td>\n",
+        "      <td> 0.208827</td>\n",
+        "      <td> 0.021</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td> simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
         "      <td> 100</td>\n",
-        "      <td> 0</td>\n",
-        "      <td> 0</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <th>47</th>\n",
+        "      <th>106</th>\n",
+        "      <td> 0.00</td>\n",
+        "      <td> 0.00</td>\n",
+        "      <td> 0.231580</td>\n",
+        "      <td> 0.016</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>          simngs_dm3_100.fastq</td>\n",
+        "      <td>          simngs_dm3_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
         "      <td> 100</td>\n",
-        "      <td> 1</td>\n",
-        "      <td> 1</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <th>49</th>\n",
+        "      <th>31 </th>\n",
+        "      <td> 1.00</td>\n",
+        "      <td> 1.00</td>\n",
+        "      <td> 0.220209</td>\n",
+        "      <td> 0.021</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td> simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
         "      <td> 100</td>\n",
-        "      <td> 0</td>\n",
-        "      <td> 0</td>\n",
-        "    </tr>\n",
-        "  </tbody>\n",
-        "</table>\n",
-        "</div>"
-       ],
-       "output_type": "pyout",
-       "prompt_number": 82,
-       "text": [
-        "   reads  contam_fqscr  contam_facs\n",
-        "8    100             0            0\n",
-        "9    100             0            0\n",
-        "46   100             0            0\n",
-        "47   100             1            1\n",
-        "49   100             0            0"
-       ]
-      }
-     ],
-     "prompt_number": 82
-    },
-    {
-     "cell_type": "code",
-     "collapsed": false,
-     "input": [
-      "frame.sort('reads')[:5]"
-     ],
-     "language": "python",
-     "metadata": {},
-     "outputs": [
-      {
-       "html": [
-        "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
-        "<table border=\"1\" class=\"dataframe\">\n",
-        "  <thead>\n",
-        "    <tr style=\"text-align: right;\">\n",
-        "      <th></th>\n",
-        "      <th>contam_facs</th>\n",
-        "      <th>contam_fqscr</th>\n",
-        "      <th>delta_fqscr</th>\n",
-        "      <th>delta_facs</th>\n",
-        "      <th>filter_facs</th>\n",
-        "      <th>filter_fqscr</th>\n",
-        "      <th>sample_facs</th>\n",
-        "      <th>sample_fqscr</th>\n",
-        "      <th>threads_facs</th>\n",
-        "      <th>threads_fqscr</th>\n",
-        "      <th>reads</th>\n",
         "    </tr>\n",
-        "  </thead>\n",
-        "  <tbody>\n",
         "    <tr>\n",
-        "      <th>8 </th>\n",
-        "      <td> 0</td>\n",
-        "      <td> 0</td>\n",
-        "      <td> 0.212956</td>\n",
-        "      <td> 0.173</td>\n",
+        "      <th>32 </th>\n",
+        "      <td> 0.00</td>\n",
+        "      <td> 0.00</td>\n",
+        "      <td> 0.674059</td>\n",
+        "      <td> 0.921</td>\n",
         "      <td>          dm3</td>\n",
         "      <td>          dm3</td>\n",
-        "      <td> simngs_phiX_100.fastq</td>\n",
-        "      <td> simngs_phiX_100.fastq</td>\n",
+        "      <td> simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td> simngs_eschColi_K12_100.fastq</td>\n",
         "      <td> 16</td>\n",
         "      <td> 16</td>\n",
         "      <td> 100</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <th>9 </th>\n",
-        "      <td> 0</td>\n",
-        "      <td> 0</td>\n",
-        "      <td> 0.121729</td>\n",
-        "      <td> 0.003</td>\n",
+        "      <th>33 </th>\n",
+        "      <td> 0.00</td>\n",
+        "      <td> 0.00</td>\n",
+        "      <td> 0.210950</td>\n",
+        "      <td> 0.539</td>\n",
         "      <td> eschColi_K12</td>\n",
         "      <td> eschColi_K12</td>\n",
-        "      <td> simngs_phiX_100.fastq</td>\n",
-        "      <td> simngs_phiX_100.fastq</td>\n",
+        "      <td>          simngs_dm3_100.fastq</td>\n",
+        "      <td>          simngs_dm3_100.fastq</td>\n",
         "      <td> 16</td>\n",
         "      <td> 16</td>\n",
         "      <td> 100</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <th>46</th>\n",
-        "      <td> 0</td>\n",
-        "      <td> 0</td>\n",
-        "      <td> 0.153477</td>\n",
-        "      <td> 0.006</td>\n",
-        "      <td> eschColi_K12</td>\n",
-        "      <td> eschColi_K12</td>\n",
-        "      <td> simngs_phiX_100.fastq</td>\n",
-        "      <td> simngs_phiX_100.fastq</td>\n",
+        "      <th>34 </th>\n",
+        "      <td> 0.00</td>\n",
+        "      <td> 0.00</td>\n",
+        "      <td> 0.227650</td>\n",
+        "      <td> 0.016</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>          simngs_dm3_100.fastq</td>\n",
+        "      <td>          simngs_dm3_100.fastq</td>\n",
         "      <td> 16</td>\n",
         "      <td> 16</td>\n",
         "      <td> 100</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <th>47</th>\n",
-        "      <td> 1</td>\n",
-        "      <td> 1</td>\n",
-        "      <td> 0.150855</td>\n",
-        "      <td> 0.000</td>\n",
+        "      <th>119</th>\n",
+        "      <td> 0.00</td>\n",
+        "      <td> 0.00</td>\n",
+        "      <td> 0.209239</td>\n",
+        "      <td> 0.017</td>\n",
         "      <td>         phiX</td>\n",
         "      <td>         phiX</td>\n",
-        "      <td> simngs_phiX_100.fastq</td>\n",
-        "      <td> simngs_phiX_100.fastq</td>\n",
-        "      <td> 16</td>\n",
+        "      <td> simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td> simngs_eschColi_K12_100.fastq</td>\n",
         "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
         "      <td> 100</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <th>49</th>\n",
-        "      <td> 0</td>\n",
-        "      <td> 0</td>\n",
-        "      <td> 0.244115</td>\n",
-        "      <td> 0.273</td>\n",
+        "      <th>17 </th>\n",
+        "      <td> 0.00</td>\n",
+        "      <td> 0.00</td>\n",
+        "      <td> 0.681134</td>\n",
+        "      <td> 1.017</td>\n",
         "      <td>          dm3</td>\n",
         "      <td>          dm3</td>\n",
-        "      <td> simngs_phiX_100.fastq</td>\n",
-        "      <td> simngs_phiX_100.fastq</td>\n",
+        "      <td>         simngs_phiX_100.fastq</td>\n",
+        "      <td>         simngs_phiX_100.fastq</td>\n",
         "      <td> 16</td>\n",
         "      <td> 16</td>\n",
         "      <td> 100</td>\n",
         "    </tr>\n",
         "  </tbody>\n",
         "</table>\n",
+        "<p>10 rows \u00d7 11 columns</p>\n",
         "</div>"
        ],
+       "metadata": {},
        "output_type": "pyout",
-       "prompt_number": 83,
+       "prompt_number": 29,
        "text": [
-        "    contam_facs  contam_fqscr  delta_fqscr  delta_facs   filter_facs  \\\n",
-        "8             0             0     0.212956       0.173           dm3   \n",
-        "9             0             0     0.121729       0.003  eschColi_K12   \n",
-        "46            0             0     0.153477       0.006  eschColi_K12   \n",
-        "47            1             1     0.150855       0.000          phiX   \n",
-        "49            0             0     0.244115       0.273           dm3   \n",
+        "     contam_facs  contam_fqscr  delta_fqscr  delta_facs   filter_facs  \\\n",
+        "108         0.92          0.91     0.628752       0.774           dm3   \n",
+        "102         0.00          0.00     0.217739       0.017          phiX   \n",
+        "120         1.00          1.00     0.208827       0.021  eschColi_K12   \n",
+        "106         0.00          0.00     0.231580       0.016          phiX   \n",
+        "31          1.00          1.00     0.220209       0.021  eschColi_K12   \n",
+        "32          0.00          0.00     0.674059       0.921           dm3   \n",
+        "33          0.00          0.00     0.210950       0.539  eschColi_K12   \n",
+        "34          0.00          0.00     0.227650       0.016          phiX   \n",
+        "119         0.00          0.00     0.209239       0.017          phiX   \n",
+        "17          0.00          0.00     0.681134       1.017           dm3   \n",
+        "\n",
+        "     filter_fqscr                    sample_facs  \\\n",
+        "108           dm3           simngs_dm3_100.fastq   \n",
+        "102          phiX  simngs_eschColi_K12_100.fastq   \n",
+        "120  eschColi_K12  simngs_eschColi_K12_100.fastq   \n",
+        "106          phiX           simngs_dm3_100.fastq   \n",
+        "31   eschColi_K12  simngs_eschColi_K12_100.fastq   \n",
+        "32            dm3  simngs_eschColi_K12_100.fastq   \n",
+        "33   eschColi_K12           simngs_dm3_100.fastq   \n",
+        "34           phiX           simngs_dm3_100.fastq   \n",
+        "119          phiX  simngs_eschColi_K12_100.fastq   \n",
+        "17            dm3          simngs_phiX_100.fastq   \n",
         "\n",
-        "    filter_fqscr            sample_facs           sample_fqscr  threads_facs  \\\n",
-        "8            dm3  simngs_phiX_100.fastq  simngs_phiX_100.fastq            16   \n",
-        "9   eschColi_K12  simngs_phiX_100.fastq  simngs_phiX_100.fastq            16   \n",
-        "46  eschColi_K12  simngs_phiX_100.fastq  simngs_phiX_100.fastq            16   \n",
-        "47          phiX  simngs_phiX_100.fastq  simngs_phiX_100.fastq            16   \n",
-        "49           dm3  simngs_phiX_100.fastq  simngs_phiX_100.fastq            16   \n",
+        "                      sample_fqscr  threads_facs threads_fqscr reads  \n",
+        "108           simngs_dm3_100.fastq            16             8   100  \n",
+        "102  simngs_eschColi_K12_100.fastq            16            16   100  \n",
+        "120  simngs_eschColi_K12_100.fastq            16             8   100  \n",
+        "106           simngs_dm3_100.fastq            16             8   100  \n",
+        "31   simngs_eschColi_K12_100.fastq            16            16   100  \n",
+        "32   simngs_eschColi_K12_100.fastq            16            16   100  \n",
+        "33            simngs_dm3_100.fastq            16            16   100  \n",
+        "34            simngs_dm3_100.fastq            16            16   100  \n",
+        "119  simngs_eschColi_K12_100.fastq            16             8   100  \n",
+        "17           simngs_phiX_100.fastq            16            16   100  \n",
         "\n",
-        "   threads_fqscr reads  \n",
-        "8             16   100  \n",
-        "9             16   100  \n",
-        "46            16   100  \n",
-        "47            16   100  \n",
-        "49            16   100  "
+        "[10 rows x 11 columns]"
        ]
       }
      ],
-     "prompt_number": 83
+     "prompt_number": 29
     },
     {
      "cell_type": "code",
@@ -364,109 +388,117 @@
         "  <tbody>\n",
         "    <tr>\n",
         "      <th>count</th>\n",
-        "      <td> 351.000000</td>\n",
-        "      <td> 351.000000</td>\n",
-        "      <td> 351.000000</td>\n",
-        "      <td> 351.000000</td>\n",
-        "      <td> 351.000000</td>\n",
+        "      <td> 126.000000</td>\n",
+        "      <td> 126.000000</td>\n",
+        "      <td>  126.000000</td>\n",
+        "      <td> 126.000000</td>\n",
+        "      <td> 126</td>\n",
         "    </tr>\n",
         "    <tr>\n",
         "      <th>mean</th>\n",
-        "      <td>   0.323096</td>\n",
-        "      <td>   0.323178</td>\n",
-        "      <td>  23.442771</td>\n",
-        "      <td>   5.636427</td>\n",
-        "      <td>   8.333333</td>\n",
+        "      <td>   0.322119</td>\n",
+        "      <td>   0.321750</td>\n",
+        "      <td>  100.674748</td>\n",
+        "      <td>   6.908905</td>\n",
+        "      <td>  16</td>\n",
         "    </tr>\n",
         "    <tr>\n",
         "      <th>std</th>\n",
-        "      <td>   0.456670</td>\n",
-        "      <td>   0.456916</td>\n",
-        "      <td>  59.944428</td>\n",
-        "      <td>  23.227286</td>\n",
-        "      <td>   6.137007</td>\n",
+        "      <td>   0.444938</td>\n",
+        "      <td>   0.444609</td>\n",
+        "      <td>  265.897376</td>\n",
+        "      <td>  17.113048</td>\n",
+        "      <td>   0</td>\n",
         "    </tr>\n",
         "    <tr>\n",
         "      <th>min</th>\n",
         "      <td>   0.000000</td>\n",
         "      <td>   0.000000</td>\n",
-        "      <td>   0.108737</td>\n",
-        "      <td>   0.000000</td>\n",
-        "      <td>   1.000000</td>\n",
+        "      <td>    0.207451</td>\n",
+        "      <td>   0.013000</td>\n",
+        "      <td>  16</td>\n",
         "    </tr>\n",
         "    <tr>\n",
         "      <th>25%</th>\n",
         "      <td>   0.000000</td>\n",
         "      <td>   0.000000</td>\n",
-        "      <td>   0.148589</td>\n",
-        "      <td>   0.006000</td>\n",
-        "      <td>   1.000000</td>\n",
+        "      <td>    0.228632</td>\n",
+        "      <td>   0.038000</td>\n",
+        "      <td>  16</td>\n",
         "    </tr>\n",
         "    <tr>\n",
         "      <th>50%</th>\n",
-        "      <td>   0.000067</td>\n",
+        "      <td>   0.000156</td>\n",
         "      <td>   0.000100</td>\n",
-        "      <td>   0.470986</td>\n",
-        "      <td>   0.246000</td>\n",
-        "      <td>   8.000000</td>\n",
+        "      <td>    1.094079</td>\n",
+        "      <td>   1.202500</td>\n",
+        "      <td>  16</td>\n",
         "    </tr>\n",
         "    <tr>\n",
         "      <th>75%</th>\n",
-        "      <td>   0.918067</td>\n",
-        "      <td>   0.915400</td>\n",
-        "      <td>  15.466919</td>\n",
-        "      <td>   2.172500</td>\n",
-        "      <td>  16.000000</td>\n",
+        "      <td>   0.917631</td>\n",
+        "      <td>   0.914900</td>\n",
+        "      <td>   68.664951</td>\n",
+        "      <td>   5.319000</td>\n",
+        "      <td>  16</td>\n",
         "    </tr>\n",
         "    <tr>\n",
         "      <th>max</th>\n",
         "      <td>   1.000000</td>\n",
         "      <td>   1.000000</td>\n",
-        "      <td> 445.017706</td>\n",
-        "      <td> 270.101000</td>\n",
-        "      <td>  16.000000</td>\n",
+        "      <td> 1747.636472</td>\n",
+        "      <td> 101.781000</td>\n",
+        "      <td>  16</td>\n",
         "    </tr>\n",
         "  </tbody>\n",
         "</table>\n",
+        "<p>8 rows \u00d7 5 columns</p>\n",
         "</div>"
        ],
+       "metadata": {},
        "output_type": "pyout",
-       "prompt_number": 84,
+       "prompt_number": 30,
        "text": [
         "       contam_facs  contam_fqscr  delta_fqscr  delta_facs  threads_facs\n",
-        "count   351.000000    351.000000   351.000000  351.000000    351.000000\n",
-        "mean      0.323096      0.323178    23.442771    5.636427      8.333333\n",
-        "std       0.456670      0.456916    59.944428   23.227286      6.137007\n",
-        "min       0.000000      0.000000     0.108737    0.000000      1.000000\n",
-        "25%       0.000000      0.000000     0.148589    0.006000      1.000000\n",
-        "50%       0.000067      0.000100     0.470986    0.246000      8.000000\n",
-        "75%       0.918067      0.915400    15.466919    2.172500     16.000000\n",
-        "max       1.000000      1.000000   445.017706  270.101000     16.000000"
+        "count   126.000000    126.000000   126.000000  126.000000           126\n",
+        "mean      0.322119      0.321750   100.674748    6.908905            16\n",
+        "std       0.444938      0.444609   265.897376   17.113048             0\n",
+        "min       0.000000      0.000000     0.207451    0.013000            16\n",
+        "25%       0.000000      0.000000     0.228632    0.038000            16\n",
+        "50%       0.000156      0.000100     1.094079    1.202500            16\n",
+        "75%       0.917631      0.914900    68.664951    5.319000            16\n",
+        "max       1.000000      1.000000  1747.636472  101.781000            16\n",
+        "\n",
+        "[8 rows x 5 columns]"
        ]
       }
      ],
-     "prompt_number": 84
+     "prompt_number": 30
     },
     {
      "cell_type": "code",
      "collapsed": false,
      "input": [
-      "# Selects specific datasets built with a predefined amount of simulated reads from different combinations of organisms\n",
-      "# and quantity of reads\n",
+      "# Slicing main dataframe into individual organism dataframes\n",
+      "\n",
+      "dm3 = frame['sample_fqscr'].map(lambda x: 'dm3' in x)\n",
+      "eschColi = frame['sample_fqscr'].map(lambda x: 'eschColi_K12' in x)\n",
+      "phiX = frame['sample_fqscr'].map(lambda x: 'phiX' in x)\n",
       "\n",
-      "accuracy1 = frame[ frame.sample_facs.str.contains('100vs400') ]\n",
-      "accuracy2 = frame[ frame.sample_facs.str.contains('3000vs6000') ]"
+      "dm3 = frame[dm3]\n",
+      "eschColi = frame[eschColi]\n",
+      "phiX = frame[phiX]"
      ],
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 86
+     "prompt_number": 13
     },
     {
      "cell_type": "code",
      "collapsed": false,
      "input": [
-      "accuracy2"
+      "eschColi.sort('reads')"
      ],
      "language": "python",
      "metadata": {},
@@ -493,304 +525,4372 @@
         "  </thead>\n",
         "  <tbody>\n",
         "    <tr>\n",
-        "      <th>4  </th>\n",
-        "      <td> 0.032462</td>\n",
-        "      <td> 0.0322</td>\n",
-        "      <td>  0.838452</td>\n",
-        "      <td> 0.151</td>\n",
+        "      <th>102</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.217739</td>\n",
+        "      <td>  0.017</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                   simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td>                   simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>32 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.674059</td>\n",
+        "      <td>  0.921</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                   simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td>                   simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>121</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.442168</td>\n",
+        "      <td>  0.921</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                   simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td>                   simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>119</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.209239</td>\n",
+        "      <td>  0.017</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                   simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td>                   simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>120</th>\n",
+        "      <td> 1.000000</td>\n",
+        "      <td> 1.0000</td>\n",
+        "      <td>    0.208827</td>\n",
+        "      <td>  0.021</td>\n",
         "      <td> eschColi_K12</td>\n",
         "      <td> eschColi_K12</td>\n",
-        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
-        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>                   simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td>                   simngs_eschColi_K12_100.fastq</td>\n",
         "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>64 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    1.041629</td>\n",
+        "      <td>  0.921</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                   simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td>                   simngs_eschColi_K12_100.fastq</td>\n",
         "      <td> 16</td>\n",
-        "      <td> 3000vs6000</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>         100</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <th>5  </th>\n",
+        "      <th>63 </th>\n",
+        "      <td> 1.000000</td>\n",
+        "      <td> 1.0000</td>\n",
+        "      <td>    0.210353</td>\n",
+        "      <td>  0.021</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                   simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td>                   simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>62 </th>\n",
         "      <td> 0.000000</td>\n",
         "      <td> 0.0000</td>\n",
-        "      <td>  0.988345</td>\n",
-        "      <td> 0.080</td>\n",
+        "      <td>    0.210363</td>\n",
+        "      <td>  0.017</td>\n",
         "      <td>         phiX</td>\n",
         "      <td>         phiX</td>\n",
-        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
-        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>                   simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td>                   simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>31 </th>\n",
+        "      <td> 1.000000</td>\n",
+        "      <td> 1.0000</td>\n",
+        "      <td>    0.220209</td>\n",
+        "      <td>  0.021</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                   simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td>                   simngs_eschColi_K12_100.fastq</td>\n",
         "      <td> 16</td>\n",
         "      <td> 16</td>\n",
-        "      <td> 3000vs6000</td>\n",
+        "      <td>         100</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <th>10 </th>\n",
-        "      <td> 0.032462</td>\n",
-        "      <td> 0.0322</td>\n",
-        "      <td>  0.809962</td>\n",
-        "      <td> 0.154</td>\n",
+        "      <th>53 </th>\n",
+        "      <td> 0.999000</td>\n",
+        "      <td> 0.9990</td>\n",
+        "      <td>    0.218013</td>\n",
+        "      <td>  0.035</td>\n",
         "      <td> eschColi_K12</td>\n",
         "      <td> eschColi_K12</td>\n",
-        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
-        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
-        "      <td>  8</td>\n",
-        "      <td>  8</td>\n",
-        "      <td> 3000vs6000</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>        1000</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <th>11 </th>\n",
+        "      <th>21 </th>\n",
         "      <td> 0.000000</td>\n",
         "      <td> 0.0000</td>\n",
-        "      <td>  0.688489</td>\n",
-        "      <td> 0.099</td>\n",
+        "      <td>    0.220144</td>\n",
+        "      <td>  0.030</td>\n",
         "      <td>         phiX</td>\n",
         "      <td>         phiX</td>\n",
-        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
-        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
-        "      <td>  8</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
         "      <td>  8</td>\n",
-        "      <td> 3000vs6000</td>\n",
+        "      <td>        1000</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <th>13 </th>\n",
-        "      <td> 0.888462</td>\n",
-        "      <td> 0.8861</td>\n",
-        "      <td>  2.676200</td>\n",
-        "      <td> 1.416</td>\n",
-        "      <td>          dm3</td>\n",
-        "      <td>          dm3</td>\n",
-        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
-        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
-        "      <td>  8</td>\n",
+        "      <th>22 </th>\n",
+        "      <td> 0.999000</td>\n",
+        "      <td> 0.9990</td>\n",
+        "      <td>    0.218054</td>\n",
+        "      <td>  0.035</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
         "      <td>  8</td>\n",
-        "      <td> 3000vs6000</td>\n",
+        "      <td>        1000</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <th>60 </th>\n",
-        "      <td> 0.888462</td>\n",
-        "      <td> 0.8861</td>\n",
-        "      <td>  4.258616</td>\n",
-        "      <td> 1.030</td>\n",
+        "      <th>25 </th>\n",
+        "      <td> 0.002000</td>\n",
+        "      <td> 0.0020</td>\n",
+        "      <td>    0.838629</td>\n",
+        "      <td>  1.092</td>\n",
         "      <td>          dm3</td>\n",
         "      <td>          dm3</td>\n",
-        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
-        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
         "      <td> 16</td>\n",
-        "      <td> 16</td>\n",
-        "      <td> 3000vs6000</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>        1000</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <th>242</th>\n",
-        "      <td> 0.032462</td>\n",
-        "      <td> 0.0322</td>\n",
-        "      <td>  4.522326</td>\n",
-        "      <td> 0.784</td>\n",
+        "      <th>98 </th>\n",
+        "      <td> 0.999000</td>\n",
+        "      <td> 0.9990</td>\n",
+        "      <td>    0.421589</td>\n",
+        "      <td>  0.035</td>\n",
         "      <td> eschColi_K12</td>\n",
         "      <td> eschColi_K12</td>\n",
-        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
-        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
-        "      <td>  1</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
         "      <td>  1</td>\n",
-        "      <td> 3000vs6000</td>\n",
+        "      <td>        1000</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <th>243</th>\n",
+        "      <th>97 </th>\n",
         "      <td> 0.000000</td>\n",
         "      <td> 0.0000</td>\n",
-        "      <td>  1.595111</td>\n",
-        "      <td> 0.393</td>\n",
+        "      <td>    0.207451</td>\n",
+        "      <td>  0.030</td>\n",
         "      <td>         phiX</td>\n",
         "      <td>         phiX</td>\n",
-        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
-        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
         "      <td>  1</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>95 </th>\n",
+        "      <td> 0.002000</td>\n",
+        "      <td> 0.0020</td>\n",
+        "      <td>    0.631262</td>\n",
+        "      <td>  1.092</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
         "      <td>  1</td>\n",
-        "      <td> 3000vs6000</td>\n",
+        "      <td>        1000</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <th>245</th>\n",
-        "      <td> 0.888462</td>\n",
-        "      <td> 0.8861</td>\n",
-        "      <td> 13.889459</td>\n",
-        "      <td> 7.139</td>\n",
+        "      <th>81 </th>\n",
+        "      <td> 0.002000</td>\n",
+        "      <td> 0.0020</td>\n",
+        "      <td>    0.658294</td>\n",
+        "      <td>  1.092</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>54 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.223678</td>\n",
+        "      <td>  0.030</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>45 </th>\n",
+        "      <td> 0.003942</td>\n",
+        "      <td> 0.0032</td>\n",
+        "      <td>   11.681972</td>\n",
+        "      <td>  3.251</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>10 </th>\n",
+        "      <td> 0.003942</td>\n",
+        "      <td> 0.0032</td>\n",
+        "      <td>   98.408732</td>\n",
+        "      <td>  3.251</td>\n",
         "      <td>          dm3</td>\n",
         "      <td>          dm3</td>\n",
-        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
-        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
         "      <td>  1</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>43 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   10.272867</td>\n",
+        "      <td>  1.828</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>46 </th>\n",
+        "      <td> 0.995472</td>\n",
+        "      <td> 0.9959</td>\n",
+        "      <td>   86.200919</td>\n",
+        "      <td>  5.319</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>79 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   16.837692</td>\n",
+        "      <td>  1.828</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
         "      <td>  1</td>\n",
-        "      <td> 3000vs6000</td>\n",
+        "      <td>     1000000</td>\n",
         "    </tr>\n",
-        "  </tbody>\n",
-        "</table>\n",
-        "</div>"
-       ],
-       "output_type": "pyout",
-       "prompt_number": 87,
-       "text": [
-        "     contam_facs  contam_fqscr  delta_fqscr  delta_facs   filter_facs  \\\n",
-        "4       0.032462        0.0322     0.838452       0.151  eschColi_K12   \n",
-        "5       0.000000        0.0000     0.988345       0.080          phiX   \n",
-        "10      0.032462        0.0322     0.809962       0.154  eschColi_K12   \n",
-        "11      0.000000        0.0000     0.688489       0.099          phiX   \n",
-        "13      0.888462        0.8861     2.676200       1.416           dm3   \n",
-        "60      0.888462        0.8861     4.258616       1.030           dm3   \n",
-        "242     0.032462        0.0322     4.522326       0.784  eschColi_K12   \n",
-        "243     0.000000        0.0000     1.595111       0.393          phiX   \n",
-        "245     0.888462        0.8861    13.889459       7.139           dm3   \n",
-        "\n",
-        "     filter_fqscr                                     sample_facs  \\\n",
-        "4    eschColi_K12  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
-        "5            phiX  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
-        "10   eschColi_K12  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
-        "11           phiX  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
-        "13            dm3  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
-        "60            dm3  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
-        "242  eschColi_K12  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
-        "243          phiX  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
-        "245           dm3  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
-        "\n",
-        "                                       sample_fqscr  threads_facs  \\\n",
-        "4    simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
-        "5    simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
-        "10   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq             8   \n",
-        "11   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq             8   \n",
-        "13   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq             8   \n",
-        "60   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
-        "242  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq             1   \n",
-        "243  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq             1   \n",
-        "245  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq             1   \n",
+        "    <tr>\n",
+        "      <th>107</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    6.285596</td>\n",
+        "      <td>  1.828</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>109</th>\n",
+        "      <td> 0.003942</td>\n",
+        "      <td> 0.0032</td>\n",
+        "      <td>   15.347968</td>\n",
+        "      <td>  3.251</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>110</th>\n",
+        "      <td> 0.995472</td>\n",
+        "      <td> 0.9959</td>\n",
+        "      <td>   24.531883</td>\n",
+        "      <td>  5.319</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>113</th>\n",
+        "      <td> 0.995472</td>\n",
+        "      <td> 0.9959</td>\n",
+        "      <td>  105.642662</td>\n",
+        "      <td>  5.319</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>70 </th>\n",
+        "      <td> 0.995490</td>\n",
+        "      <td> 0.9959</td>\n",
+        "      <td>  230.793156</td>\n",
+        "      <td> 41.880</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>71 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   60.088921</td>\n",
+        "      <td> 10.476</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>52 </th>\n",
+        "      <td> 0.995490</td>\n",
+        "      <td> 0.9959</td>\n",
+        "      <td>  848.533965</td>\n",
+        "      <td> 41.880</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>51 </th>\n",
+        "      <td> 0.003922</td>\n",
+        "      <td> 0.0032</td>\n",
+        "      <td>  114.119080</td>\n",
+        "      <td> 12.478</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>4  </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>  162.226401</td>\n",
+        "      <td> 10.476</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>99 </th>\n",
+        "      <td> 0.995490</td>\n",
+        "      <td> 0.9959</td>\n",
+        "      <td> 1091.302946</td>\n",
+        "      <td> 41.880</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>100</th>\n",
+        "      <td> 0.003922</td>\n",
+        "      <td> 0.0032</td>\n",
+        "      <td>  975.072816</td>\n",
+        "      <td> 12.478</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>57 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   97.366328</td>\n",
+        "      <td> 10.476</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>69 </th>\n",
+        "      <td> 0.003922</td>\n",
+        "      <td> 0.0032</td>\n",
+        "      <td>  148.931867</td>\n",
+        "      <td> 12.478</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>48 </th>\n",
+        "      <td> 0.333000</td>\n",
+        "      <td> 0.3325</td>\n",
+        "      <td>    0.835371</td>\n",
+        "      <td>  0.070</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>  3000vs6000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>104</th>\n",
+        "      <td> 0.333000</td>\n",
+        "      <td> 0.3325</td>\n",
+        "      <td>    0.434019</td>\n",
+        "      <td>  0.070</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>  3000vs6000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>28 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.237581</td>\n",
+        "      <td>  0.020</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>  3000vs6000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>80 </th>\n",
+        "      <td> 0.613556</td>\n",
+        "      <td> 0.6113</td>\n",
+        "      <td>    1.733639</td>\n",
+        "      <td>  1.421</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>  3000vs6000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>12 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.444665</td>\n",
+        "      <td>  0.020</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>  3000vs6000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>83 </th>\n",
+        "      <td> 0.333000</td>\n",
+        "      <td> 0.3325</td>\n",
+        "      <td>    0.461494</td>\n",
+        "      <td>  0.070</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  3000vs6000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>84 </th>\n",
+        "      <td> 0.613556</td>\n",
+        "      <td> 0.6113</td>\n",
+        "      <td>    1.091974</td>\n",
+        "      <td>  1.421</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  3000vs6000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>86 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.223083</td>\n",
+        "      <td>  0.020</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  3000vs6000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>103</th>\n",
+        "      <td> 0.613556</td>\n",
+        "      <td> 0.6113</td>\n",
+        "      <td>    0.845511</td>\n",
+        "      <td>  1.421</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>  3000vs6000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>116</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.855492</td>\n",
+        "      <td>  0.456</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td> 3000vs93000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>61 </th>\n",
+        "      <td> 0.888462</td>\n",
+        "      <td> 0.8861</td>\n",
+        "      <td>   14.623352</td>\n",
+        "      <td>  1.809</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td> 3000vs93000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>68 </th>\n",
+        "      <td> 0.032462</td>\n",
+        "      <td> 0.0322</td>\n",
+        "      <td>    4.827130</td>\n",
+        "      <td>  0.576</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td> 3000vs93000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>67 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    2.106148</td>\n",
+        "      <td>  0.456</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td> 3000vs93000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>101</th>\n",
+        "      <td> 0.888462</td>\n",
+        "      <td> 0.8861</td>\n",
+        "      <td>    9.079349</td>\n",
+        "      <td>  1.809</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 3000vs93000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>118</th>\n",
+        "      <td> 0.888462</td>\n",
+        "      <td> 0.8861</td>\n",
+        "      <td>    3.006585</td>\n",
+        "      <td>  1.809</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td> 3000vs93000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>20 </th>\n",
+        "      <td> 0.032462</td>\n",
+        "      <td> 0.0322</td>\n",
+        "      <td>    1.096185</td>\n",
+        "      <td>  0.576</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 3000vs93000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>13 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    1.127904</td>\n",
+        "      <td>  0.456</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 3000vs93000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>117</th>\n",
+        "      <td> 0.032462</td>\n",
+        "      <td> 0.0322</td>\n",
+        "      <td>    0.851774</td>\n",
+        "      <td>  0.576</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td> 3000vs93000</td>\n",
+        "    </tr>\n",
+        "  </tbody>\n",
+        "</table>\n",
+        "<p>54 rows \u00d7 11 columns</p>\n",
+        "</div>"
+       ],
+       "metadata": {},
+       "output_type": "pyout",
+       "prompt_number": 14,
+       "text": [
+        "     contam_facs  contam_fqscr  delta_fqscr  delta_facs   filter_facs  \\\n",
+        "102     0.000000        0.0000     0.217739       0.017          phiX   \n",
+        "32      0.000000        0.0000     0.674059       0.921           dm3   \n",
+        "121     0.000000        0.0000     0.442168       0.921           dm3   \n",
+        "119     0.000000        0.0000     0.209239       0.017          phiX   \n",
+        "120     1.000000        1.0000     0.208827       0.021  eschColi_K12   \n",
+        "64      0.000000        0.0000     1.041629       0.921           dm3   \n",
+        "63      1.000000        1.0000     0.210353       0.021  eschColi_K12   \n",
+        "62      0.000000        0.0000     0.210363       0.017          phiX   \n",
+        "31      1.000000        1.0000     0.220209       0.021  eschColi_K12   \n",
+        "53      0.999000        0.9990     0.218013       0.035  eschColi_K12   \n",
+        "21      0.000000        0.0000     0.220144       0.030          phiX   \n",
+        "22      0.999000        0.9990     0.218054       0.035  eschColi_K12   \n",
+        "25      0.002000        0.0020     0.838629       1.092           dm3   \n",
+        "98      0.999000        0.9990     0.421589       0.035  eschColi_K12   \n",
+        "97      0.000000        0.0000     0.207451       0.030          phiX   \n",
+        "95      0.002000        0.0020     0.631262       1.092           dm3   \n",
+        "81      0.002000        0.0020     0.658294       1.092           dm3   \n",
+        "54      0.000000        0.0000     0.223678       0.030          phiX   \n",
+        "45      0.003942        0.0032    11.681972       3.251           dm3   \n",
+        "10      0.003942        0.0032    98.408732       3.251           dm3   \n",
+        "43      0.000000        0.0000    10.272867       1.828          phiX   \n",
+        "46      0.995472        0.9959    86.200919       5.319  eschColi_K12   \n",
+        "79      0.000000        0.0000    16.837692       1.828          phiX   \n",
+        "107     0.000000        0.0000     6.285596       1.828          phiX   \n",
+        "109     0.003942        0.0032    15.347968       3.251           dm3   \n",
+        "110     0.995472        0.9959    24.531883       5.319  eschColi_K12   \n",
+        "113     0.995472        0.9959   105.642662       5.319  eschColi_K12   \n",
+        "70      0.995490        0.9959   230.793156      41.880  eschColi_K12   \n",
+        "71      0.000000        0.0000    60.088921      10.476          phiX   \n",
+        "52      0.995490        0.9959   848.533965      41.880  eschColi_K12   \n",
+        "51      0.003922        0.0032   114.119080      12.478           dm3   \n",
+        "4       0.000000        0.0000   162.226401      10.476          phiX   \n",
+        "99      0.995490        0.9959  1091.302946      41.880  eschColi_K12   \n",
+        "100     0.003922        0.0032   975.072816      12.478           dm3   \n",
+        "57      0.000000        0.0000    97.366328      10.476          phiX   \n",
+        "69      0.003922        0.0032   148.931867      12.478           dm3   \n",
+        "48      0.333000        0.3325     0.835371       0.070  eschColi_K12   \n",
+        "104     0.333000        0.3325     0.434019       0.070  eschColi_K12   \n",
+        "28      0.000000        0.0000     0.237581       0.020          phiX   \n",
+        "80      0.613556        0.6113     1.733639       1.421           dm3   \n",
+        "12      0.000000        0.0000     0.444665       0.020          phiX   \n",
+        "83      0.333000        0.3325     0.461494       0.070  eschColi_K12   \n",
+        "84      0.613556        0.6113     1.091974       1.421           dm3   \n",
+        "86      0.000000        0.0000     0.223083       0.020          phiX   \n",
+        "103     0.613556        0.6113     0.845511       1.421           dm3   \n",
+        "116     0.000000        0.0000     0.855492       0.456          phiX   \n",
+        "61      0.888462        0.8861    14.623352       1.809           dm3   \n",
+        "68      0.032462        0.0322     4.827130       0.576  eschColi_K12   \n",
+        "67      0.000000        0.0000     2.106148       0.456          phiX   \n",
+        "101     0.888462        0.8861     9.079349       1.809           dm3   \n",
+        "118     0.888462        0.8861     3.006585       1.809           dm3   \n",
+        "20      0.032462        0.0322     1.096185       0.576  eschColi_K12   \n",
+        "13      0.000000        0.0000     1.127904       0.456          phiX   \n",
+        "117     0.032462        0.0322     0.851774       0.576  eschColi_K12   \n",
         "\n",
-        "    threads_fqscr       reads  \n",
-        "4              16  3000vs6000  \n",
-        "5              16  3000vs6000  \n",
-        "10              8  3000vs6000  \n",
-        "11              8  3000vs6000  \n",
-        "13              8  3000vs6000  \n",
-        "60             16  3000vs6000  \n",
-        "242             1  3000vs6000  \n",
-        "243             1  3000vs6000  \n",
-        "245             1  3000vs6000  "
+        "     filter_fqscr                                      sample_facs  \\\n",
+        "102          phiX                    simngs_eschColi_K12_100.fastq   \n",
+        "32            dm3                    simngs_eschColi_K12_100.fastq   \n",
+        "121           dm3                    simngs_eschColi_K12_100.fastq   \n",
+        "119          phiX                    simngs_eschColi_K12_100.fastq   \n",
+        "120  eschColi_K12                    simngs_eschColi_K12_100.fastq   \n",
+        "64            dm3                    simngs_eschColi_K12_100.fastq   \n",
+        "63   eschColi_K12                    simngs_eschColi_K12_100.fastq   \n",
+        "62           phiX                    simngs_eschColi_K12_100.fastq   \n",
+        "31   eschColi_K12                    simngs_eschColi_K12_100.fastq   \n",
+        "53   eschColi_K12                   simngs_eschColi_K12_1000.fastq   \n",
+        "21           phiX                   simngs_eschColi_K12_1000.fastq   \n",
+        "22   eschColi_K12                   simngs_eschColi_K12_1000.fastq   \n",
+        "25            dm3                   simngs_eschColi_K12_1000.fastq   \n",
+        "98   eschColi_K12                   simngs_eschColi_K12_1000.fastq   \n",
+        "97           phiX                   simngs_eschColi_K12_1000.fastq   \n",
+        "95            dm3                   simngs_eschColi_K12_1000.fastq   \n",
+        "81            dm3                   simngs_eschColi_K12_1000.fastq   \n",
+        "54           phiX                   simngs_eschColi_K12_1000.fastq   \n",
+        "45            dm3                simngs_eschColi_K12_1000000.fastq   \n",
+        "10            dm3                simngs_eschColi_K12_1000000.fastq   \n",
+        "43           phiX                simngs_eschColi_K12_1000000.fastq   \n",
+        "46   eschColi_K12                simngs_eschColi_K12_1000000.fastq   \n",
+        "79           phiX                simngs_eschColi_K12_1000000.fastq   \n",
+        "107          phiX                simngs_eschColi_K12_1000000.fastq   \n",
+        "109           dm3                simngs_eschColi_K12_1000000.fastq   \n",
+        "110  eschColi_K12                simngs_eschColi_K12_1000000.fastq   \n",
+        "113  eschColi_K12                simngs_eschColi_K12_1000000.fastq   \n",
+        "70   eschColi_K12               simngs_eschColi_K12_10000000.fastq   \n",
+        "71           phiX               simngs_eschColi_K12_10000000.fastq   \n",
+        "52   eschColi_K12               simngs_eschColi_K12_10000000.fastq   \n",
+        "51            dm3               simngs_eschColi_K12_10000000.fastq   \n",
+        "4            phiX               simngs_eschColi_K12_10000000.fastq   \n",
+        "99   eschColi_K12               simngs_eschColi_K12_10000000.fastq   \n",
+        "100           dm3               simngs_eschColi_K12_10000000.fastq   \n",
+        "57           phiX               simngs_eschColi_K12_10000000.fastq   \n",
+        "69            dm3               simngs_eschColi_K12_10000000.fastq   \n",
+        "48   eschColi_K12   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
+        "104  eschColi_K12   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
+        "28           phiX   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
+        "80            dm3   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
+        "12           phiX   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
+        "83   eschColi_K12   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
+        "84            dm3   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
+        "86           phiX   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
+        "103           dm3   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
+        "116          phiX  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq   \n",
+        "61            dm3  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq   \n",
+        "68   eschColi_K12  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq   \n",
+        "67           phiX  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq   \n",
+        "101           dm3  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq   \n",
+        "118           dm3  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq   \n",
+        "20   eschColi_K12  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq   \n",
+        "13           phiX  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq   \n",
+        "117  eschColi_K12  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq   \n",
+        "\n",
+        "                                        sample_fqscr  threads_facs  \\\n",
+        "102                    simngs_eschColi_K12_100.fastq            16   \n",
+        "32                     simngs_eschColi_K12_100.fastq            16   \n",
+        "121                    simngs_eschColi_K12_100.fastq            16   \n",
+        "119                    simngs_eschColi_K12_100.fastq            16   \n",
+        "120                    simngs_eschColi_K12_100.fastq            16   \n",
+        "64                     simngs_eschColi_K12_100.fastq            16   \n",
+        "63                     simngs_eschColi_K12_100.fastq            16   \n",
+        "62                     simngs_eschColi_K12_100.fastq            16   \n",
+        "31                     simngs_eschColi_K12_100.fastq            16   \n",
+        "53                    simngs_eschColi_K12_1000.fastq            16   \n",
+        "21                    simngs_eschColi_K12_1000.fastq            16   \n",
+        "22                    simngs_eschColi_K12_1000.fastq            16   \n",
+        "25                    simngs_eschColi_K12_1000.fastq            16   \n",
+        "98                    simngs_eschColi_K12_1000.fastq            16   \n",
+        "97                    simngs_eschColi_K12_1000.fastq            16   \n",
+        "95                    simngs_eschColi_K12_1000.fastq            16   \n",
+        "81                    simngs_eschColi_K12_1000.fastq            16   \n",
+        "54                    simngs_eschColi_K12_1000.fastq            16   \n",
+        "45                 simngs_eschColi_K12_1000000.fastq            16   \n",
+        "10                 simngs_eschColi_K12_1000000.fastq            16   \n",
+        "43                 simngs_eschColi_K12_1000000.fastq            16   \n",
+        "46                 simngs_eschColi_K12_1000000.fastq            16   \n",
+        "79                 simngs_eschColi_K12_1000000.fastq            16   \n",
+        "107                simngs_eschColi_K12_1000000.fastq            16   \n",
+        "109                simngs_eschColi_K12_1000000.fastq            16   \n",
+        "110                simngs_eschColi_K12_1000000.fastq            16   \n",
+        "113                simngs_eschColi_K12_1000000.fastq            16   \n",
+        "70                simngs_eschColi_K12_10000000.fastq            16   \n",
+        "71                simngs_eschColi_K12_10000000.fastq            16   \n",
+        "52                simngs_eschColi_K12_10000000.fastq            16   \n",
+        "51                simngs_eschColi_K12_10000000.fastq            16   \n",
+        "4                 simngs_eschColi_K12_10000000.fastq            16   \n",
+        "99                simngs_eschColi_K12_10000000.fastq            16   \n",
+        "100               simngs_eschColi_K12_10000000.fastq            16   \n",
+        "57                simngs_eschColi_K12_10000000.fastq            16   \n",
+        "69                simngs_eschColi_K12_10000000.fastq            16   \n",
+        "48    simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
+        "104   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
+        "28    simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
+        "80    simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
+        "12    simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
+        "83    simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
+        "84    simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
+        "86    simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
+        "103   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
+        "116  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq            16   \n",
+        "61   simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq            16   \n",
+        "68   simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq            16   \n",
+        "67   simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq            16   \n",
+        "101  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq            16   \n",
+        "118  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq            16   \n",
+        "20   simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq            16   \n",
+        "13   simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq            16   \n",
+        "117  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq            16   \n",
+        "\n",
+        "    threads_fqscr        reads  \n",
+        "102            16          100  \n",
+        "32             16          100  \n",
+        "121             8          100  \n",
+        "119             8          100  \n",
+        "120             8          100  \n",
+        "64              1          100  \n",
+        "63              1          100  \n",
+        "62              1          100  \n",
+        "31             16          100  \n",
+        "53             16         1000  \n",
+        "21              8         1000  \n",
+        "22              8         1000  \n",
+        "25              8         1000  \n",
+        "98              1         1000  \n",
+        "97              1         1000  \n",
+        "95              1         1000  \n",
+        "81             16         1000  \n",
+        "54             16         1000  \n",
+        "45             16      1000000  \n",
+        "10              1      1000000  \n",
+        "43             16      1000000  \n",
+        "46             16      1000000  \n",
+        "79              1      1000000  \n",
+        "107             8      1000000  \n",
+        "109             8      1000000  \n",
+        "110             8      1000000  \n",
+        "113             1      1000000  \n",
+        "70              8     10000000  \n",
+        "71              8     10000000  \n",
+        "52             16     10000000  \n",
+        "51             16     10000000  \n",
+        "4               1     10000000  \n",
+        "99              1     10000000  \n",
+        "100             1     10000000  \n",
+        "57             16     10000000  \n",
+        "69              8     10000000  \n",
+        "48              1   3000vs6000  \n",
+        "104             8   3000vs6000  \n",
+        "28              8   3000vs6000  \n",
+        "80              1   3000vs6000  \n",
+        "12              1   3000vs6000  \n",
+        "83             16   3000vs6000  \n",
+        "84             16   3000vs6000  \n",
+        "86             16   3000vs6000  \n",
+        "103             8   3000vs6000  \n",
+        "116             8  3000vs93000  \n",
+        "61              1  3000vs93000  \n",
+        "68              1  3000vs93000  \n",
+        "67              1  3000vs93000  \n",
+        "101            16  3000vs93000  \n",
+        "118             8  3000vs93000  \n",
+        "20             16  3000vs93000  \n",
+        "13             16  3000vs93000  \n",
+        "117             8  3000vs93000  \n",
+        "\n",
+        "[54 rows x 11 columns]"
        ]
       }
      ],
-     "prompt_number": 87
+     "prompt_number": 14
     },
     {
      "cell_type": "code",
      "collapsed": false,
      "input": [
-      "accuracy1 = accuracy1.loc[:,['contam_facs', 'contam_fqscr']]\n",
-      "accuracy1.pivot_table(values=['contam_facs', 'contam_fqscr'], rows=['contam_fqscr'])\n",
-      "accuracy1.plot(title='Contamination detection accuracy for simNGS-generated dm3 sample (~100% dm3)', kind='barh', logy=True, logx=True, figsize=(8,6))\n",
-      "\n",
-      "accuracy2 = accuracy2.loc[:,['contam_facs', 'contam_fqscr']]\n",
-      "accuracy2.pivot_table(values=['contam_facs', 'contam_fqscr'], rows=['contam_fqscr'])\n",
-      "accuracy2.plot(title='Contamination detection accuracy for simNGS-generated ecoli/dm3 sample (3000vs6000 simNGS reads)', kind='barh', logy=True, logx=True, figsize=(8,6))"
+      "phiX.sort('reads')"
      ],
      "language": "python",
      "metadata": {},
      "outputs": [
       {
-       "output_type": "pyout",
-       "prompt_number": 88,
-       "text": [
-        "<matplotlib.axes.AxesSubplot at 0xc4002ec>"
-       ]
-      },
-      {
-       "output_type": "display_data",
-       "png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAF6CAYAAACa12twAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcVPX+P/DXDKCxDAwMu6xqFsh69bqmoqmpxXVNxVQQ\nb+W1eqT4cylL0VzIRFPvLa0UC0yta6HlklqOWylp4FriwsiOyKIMoDDw/v3Bl3MdNlHnDAPzfj4e\n89Czv+d9zpzz4fP5nHMkRERgjDHGGHsIaUsHwBhjjLHWgQsNjDHGGGsWLjQwxhhjrFm40MAYY4yx\nZuFCA2OMMcaahQsNjDHGGGuWNl1o+Ne//oVly5aJsu5t27bhhRdeEGXddUmlUty4cUMv22qKn58f\njh071tJhtFrl5eUIDQ2FXC7HhAkTRN0W7yvD5uXlhZ9//rlZ827duhX9+vUTOSLDER0djSlTpjz2\n8u+88w7WrVunw4gMy6McO48iLy8Pvr6+qKioaHK+ZhUavv76a3Tv3h0ymQyurq4YMWIETp48+cRB\nRkRE4P3333/i9TTm008/xXvvvffE61GpVJBKpaiurhbGvfLKK/jpp5+eeN26pFQq4e7urpN1NbRv\nLl68iP79++tk/cbov//9L27duoXCwkLs3LlT1G09yb4KCQmBubk5MjMzhXGHDx+Gt7e31nw7duxA\nz549YWVlBScnJ/Tq1QuffvqpMD0zMxNjx46Fg4MD5HI5/P398eWXXz7eFzIguvidSSQSSCQSHUXU\nuMuXL6N79+6ws7ODXC5H3759ceLECdG3+ySeJC/5+fmIj4/HjBkzHmm5yspKjBs3Dt7e3pBKpTh6\n9Gi9eebPnw97e3vY29tjwYIFWtNUKhUGDhwIS0tL+Pj4aF3Uz507h65du8LBwQFr167V2mavXr2Q\nlZX1SLE+ybEzb948eHh4wNraGm5uboiKioJGowEAODk5YeDAgfjss8+aXMdDCw1r1qzB7Nmz8d57\n7+HWrVvIyMjAG2+8gT179jxW0K0ZPwerbXqwMCimmzdvokuXLpBKH72Cr/aHrS+Wlpb44IMPGp0e\nGxuLWbNmYf78+cjLy0NeXh42btyIkydPorKyEgAwZcoUeHp6Ij09HYWFhYiPj4eTk5O+vsJjIaI2\n9Tvv0KEDvv32WxQUFKCoqAgTJ07EuHHjWjqsJj1J/rdu3YoXX3wR7du3f+Rl+/fvj4SEBDg7O9e7\nKG/atAm7d+/G+fPncf78efzwww/YtGmTMD0sLAzdunVDYWEhli9fjnHjxqGgoABATc3HmjVrcO7c\nOSxfvhy3bt0CUHNtHTduHDp06PDY3/dRTZ8+HZcvX8bdu3eRlJSEgwcP4osvvhCmv/LKK1rfq0HU\nhOLiYrKysqL//ve/jc5z7949evvtt8nV1ZVcXV1p1qxZdP/+fSIiOnLkCHXo0IFiY2PJ0dGRXFxc\nKC4ujoiINm3aRGZmZtSuXTuysrKif/zjH0REtHLlSurUqRPJZDLy9fWl77//XthWXFwc9enTh2bP\nnk1yuZw6depEJ0+epC1btpC7uzs5OjrSl19+KcwfHh5O77333kNjISL68ccfKSgoiKytrcnd3Z2i\no6OFae7u7iSRSMjKyopkMhn99ttvFBcXR88995wwz8mTJ6l79+5kY2NDf//73+nXX38Vpg0YMIDe\nf/996tu3L8lkMho6dCjdvn270ZyuWrWKXFxcqEOHDrR582aSSCR0/fp1Id9z5swhDw8PcnJyohkz\nZlB5eTmp1Wp66qmnSCqVCnHm5ORQdXW1kFOFQkHjx4+nwsJCYVvHjx+n3r17k1wuJ3d3d9q6dSt9\n9tlnDe4bT09POnz48BPt94Zs2bKFfHx8SCaTUceOHWnTpk1a0xMTEykwMJCsra2pU6dOdODAASIi\nKigooIiICHJ1dSVbW1saNWqUcJw8uG+ISCuH4eHhNGPGDBo+fDhZWlrSzz//3OT+byxPSUlJ5OTk\nRNXV1cJ8u3btosDAwHrfcdGiRdSuXTsyMzMjKysr2rJlC1VXV9MHH3xAnp6e5OjoSFOnTqU7d+4Q\nEVFaWhpJJBLavHkzeXh40IABA+qtMz8/n1588UWSy+VkZ2dH/fr1E6Z5enrSzz//TEREixcvpnHj\nxtHkyZNJJpORv78/paam0ooVK8jR0ZE8PDzo4MGDwrIhISG0ZMkSkslkQs4OHTpEXl5eRFRzXrC0\ntKTvvvuusV1KRERWVlZ07ty5Jud50I0bN6hfv34kk8lo8ODBNHPmTJo8ebIw/bfffhP2QWBgICmV\nSmHaw35jD1t24cKF1KdPHzI3N6dr1641ekw+7u/sq6++Ig8PD1IoFLR8+XLy8vIS9k9dt2/fptDQ\nULK2tqYePXrQe++9p3U8SyQS+uSTT6hz584kk8no/fffp2vXrlGvXr3IxsaGJkyYQBUVFfXWW1lZ\nSf/+978pKCio0X0QFxdHHTt2JJlMRt7e3rRt2zYiIrp27RoNHDiQFAoF2dvb0yuvvELFxcXCcp6e\nnvTRRx+Rv78/WVlZUWRkJOXm5tKwYcPI2tqaBg8eTEVFRUT0v2P7s88+I1dXV3JxcaHVq1cL61q8\neHGz93tdgwYNEmJ+XG5ubnT06FGtcb1796bPP/9cGN6yZQv16tWLiIiuXLlC7du3J7VaLUzv378/\nbdy4kYiIfHx8hP3Rq1cv+v3330mlUlGPHj1Io9E8NJ6mjp1H/W0/KDMzk/z9/SkxMVEYV1lZSRYW\nFpSent5oPE0WGvbv30+mpqZUVVXV6Dzvv/8+9e7dm/Lz8yk/P5/69OlD77//PhHVXDxMTU1p8eLF\npNFoaN++fWRhYSEcbBEREcK8tb799lvKyckhIqKdO3eSpaUl5ebmElHNAW1qakpbt26l6upqeu+9\n96hDhw705ptvUkVFBR08eJBkMhmVlpbWW//DYlEqlXTx4kUiIjp//jw5OTkJyVSpVCSRSLTy8OCF\nqaCggORyOSUkJFBVVRVt376dbG1thZPGgAEDqHPnznT16lUqLy+nkJAQWrBgQaM5d3JyokuXLlFp\naSmFhYVpXfBmzZpFI0eOpKKiIiopKaHQ0FB65513hO/g5uamtb6PP/6YevfuTVlZWVRRUUGvv/46\nhYWFCd9LJpPRjh07SKPRUEFBAaWkpDS6bx48WJ9kv9e1d+9eunHjBhERHT16lCwsLOiPP/4gIqLT\np0+TjY2NUFjJysqiv/76i4iIRowYQRMnTqTi4mKqrKykY8eO1ds3teoWGmxsbISC3b179x66/+vm\nqfZi6OvrS/v37xe2M2rUKFqzZk2D3zM6OpqmTJkiDG/evJk6d+5MaWlppFaracyYMcL02hNreHg4\nlZWV0b179+qtb8GCBTRjxgzSaDSk0WjoxIkTDe6rxYsX01NPPUUHDx4kjUZDU6dOJU9PT1qxYgVp\nNBr6/PPPydvbW1g2JCSEvvjiC4qKihJO3g8WGppzXiAiGjx4MPXt25d27NhBN2/ebHJeopoT6ty5\nc6myspJOnDhB1tbWQj4yMzNJoVAIuT506BApFAqhYNDUb6w5y3p6etLly5epqqqKKisrmzwmH/V3\ndunSJbKysqLjx4/T/fv3KSoqikxNTRstNEyYMIEmTJhAZWVldPHiRerQoYNWgVAikdCoUaOopKSE\nLl26RO3ataOBAwdSWloa3blzh3x9fbX+eCIisrGxIVNTU/Lw8KBr1641uF21Wk3W1taUmppKRES5\nubl06dIlIqopNBw+fJgqKiooPz+f+vfvT7NmzRKW9fLyot69e9OtW7coKyuLHB0dKTg4mFJSUuje\nvXs0aNAgWrJkCRH979ieNGkSlZWV0YULF8jBwUH4jT9YaGhs3+Xn5zf4HRwcHOjMmTMNTmuuhgoN\nNjY2lJSUJAyfOXOGZDIZERF999135OPjozX/W2+9RW+99RYREb388sv0ww8/UEZGBjk7O1NBQQGN\nHDlSOF815WHHzqP+tolq/jC3srIiiUQiXDseFBAQQHv27Gk0piYLDQkJCeTs7Nzkl+rUqZPWSfOn\nn34STi5Hjhwhc3NzrZOLo6MjnT59mohqLky1NQGNCQoKot27dxNRzcXg6aefFqadP3+eJBIJ3bp1\nSxinUCiEE/qD639YLHW9/fbbNHv2bCL630HeWKHhq6++op49e2ot37t3b9q6dSsR1ZyEly9fLkz7\n5JNPaNiwYQ1ud9q0aVo7MjU1VbjgVVdXk6WlpXDxIyL69ddfhYPiyJEj9U5mPj4+Wien7OxsMjMz\nI41GQytWrKAxY8Y0GEdD++bBC9GT7PeHGTVqFK1bt46IiF577TWKioqqN092djZJpdIGCyLNKTSE\nh4c3GcOD+7+pPMXExNArr7xCRDWFRwsLC6GQW1fdv6AGDRpEn376qTB85coVMjMzo6qqKuGYS0tL\nazTGRYsW0ciRIxu8CNQtNAwdOlSYtmfPHrKyshJqSO7evUsSiUSo5QgJCaHNmzdTfn4+2djY0KVL\nl7QKDfHx8fXOC7V/CZqbmwsnw6KiIlqwYAF17dqVTExMKCgoiH7//fcGv8vNmzfJ1NSUysvLhXGT\nJ08WCg0xMTFaBS4iohdeeEG4ODb1G2vOsosXL24wrloPHpOP+jtbsmSJUIAgIiotLaV27do1WGjQ\naDRkZmZGV65cEca9++679WoaHqzJ7NatG61atUoYnjNnjtYF/cHtzps3j4KDg7Vqx2qp1WqSy+W0\na9cuKisrazIf33//PQUHBwvDXl5e9PXXXwvDY8eOpZkzZwrDGzZsEGoCa4/tB7/jvHnzaPr06USk\n/Tt52L6rq27uqquradWqVeTj40Ourq40c+ZMOnPmDN2+fZvWrFlD27dvr7eOhgoNJiYmWuutPS8T\n1Zz/a2sdai1cuJAiIiKIqObYHjFiBP3tb3+jHTt20O7du2nq1KmUnp5O//jHP2jAgAH07bffNvh9\nHnbsPOpv+0F//PEHeXh40K5du7TG9+3bl+Lj4xuMh4ioycZVhUKB27dvN9nmm52dDU9PT2HYw8MD\n2dnZWut4sA3XwsICarW60fV99dVXCA4Ohq2tLWxtbXHx4kWhbQiAVpuoubk5AMDBwUFrXGPrbyqW\n06dPY+DAgXB0dIRcLsemTZu0ttuU7OxseHh4aI3z9PTUyoOzs3OzYszJydHqZPXgevPz81FWVoZu\n3boJ+Rk+fDhu377daGwqlQqjR48W5vf19YWpqSny8vKQmZmJjh07Nus71qXL/b5//3706tULCoUC\ntra22Ldvn5D7zMxMdOrUqd4yGRkZsLOzg42NzSPHLpFI6nVka2r/Z2RkNJqnV155BT/88APKysrw\nzTffoH///s1ut8/JyamXQ41Gg7y8PGFcUx3u5s6di86dO2Po0KHo1KkTPvzww0bndXR0FP5vbm4O\ne3t7od229ndUd//Y29vjzTffxKJFi7TaeBs6L/z6668oKiqCQqEQ2qTlcjlWrlyJixcvIi8vD0FB\nQRg1ahQAYMaMGZDJZJDJZIiJiUF2djbs7Ozw1FNPCet0c3MT1nXz5k18++23wnFsa2uLkydPIjc3\nV5i/sd9Yc5atm+emjsmGNPU7y8nJgZubmzCvhYUFFApFg+vJz8+HRqNp9BxQq+55sO5wQ781CwsL\nxMTEIDU1FRcuXKg33dLSEjt37sTGjRvh6uqKl156CVeuXAFQ07N+4sSJcHNzg42NDaZMmVIvH03F\n9NRTT9WLqe53fPD8Uas5++5Btra2KCkpEYbT09ORnp6O3377DefOnYO3tzemTJmC4OBg3Lx5EyNH\njmxwPXVZWVnh7t27wvCdO3dgZWXV4DQAKC4uhrW1tfDd9u7di7NnzyI0NBSLFi3C6tWrMWfOHISF\nhWHPnj2IiopCUVFRve0259h5nN82AAQHB2PmzJmIj4/XGl9SUgK5XN5oLposNPTu3Rvt27fH999/\n3+g8rq6uUKlUwnB6ejpcXV2bWq2gbmeTmzdv4rXXXsN//vMfFBYWoqioCH5+fk/UMaa5vUwnTZqE\nUaNGITMzE8XFxZgxY4ZwUnzYOjp06ICbN29qjbt58+ZjdXBxcXFBenq6MPzg/+3t7WFubo7Lly+j\nqKgIRUVFKC4uFg7YhuL08PDAgQMHhPmLiopQVlYGV1dXuLu74/r16w3G8bDv/CT7/UH379/H2LFj\nMW/ePNy6dQtFRUUYMWKEsM/d3d1x7dq1esu5u7ujsLAQd+7cqTfN0tISZWVlwnBjJ5gHNbT/a2Pw\n8PBoNE9ubm7o1asXvvvuOyQkJDR5q1jdnDaUQ1NTU62TbVP7wcrKCqtXr8b169exZ88erFmzBkeO\nHHnod30Uc+fOxZEjR3D27FlhXO15ITExsdnrUSgUmDNnDrKzs1FUVISNGzeipKQEJSUlWLBgAVxc\nXFBYWIjy8nJhmYyMDOH7e3h4YMqUKVrHcUlJCebNm/fQbTdn2Qfz/LBj8lF/Zy4uLsjIyBDmLSsr\na7QA4uDgAFNT00bPAU+qqqoK1dXVsLCwaHD60KFDcfDgQeTm5uLZZ5/Fq6++CgB49913YWJigosX\nL+LOnTuIj49/aAfih523637Hhs6Xj7rfAwIChIJO7fIbNmyAjY0N7O3t8f/+3//D5cuXkZ6ejo8/\n/li4qD5M165dkZKSIgyfO3cOfn5+wrQbN25oXZhr75ioa+nSpXjttdfg4OCAixcvonv37sKdDA2d\nYx7l2HkclZWVsLS0FIY1Gg2uXbuGwMDARpdpstBgY2ODpUuX4o033sDu3btRVlaGyspK7N+/H/Pn\nzwdQ02t02bJluH37Nm7fvo2lS5c2+x5bJycnrecPlJaWQiKRwN7eHtXV1YiLi8PFixebta6G0CP0\nhFar1bC1tUW7du2QlJSEr7/+Wjg5ODg4QCqVNnrhGD58OFJTU7F9+3ZoNBrs3LkTf/31F1566SWt\nWJpj/Pjx2Lp1K/7880+UlZVhyZIlwjSpVIpXX30Vs2bNQn5+PgAgKysLBw8eBFCTz4KCAq1S74wZ\nM/Duu+8KP9D8/HzhzpdXXnkFhw8fxrfffguNRoOCggKcO3dOWFdTz4Z4kv3+oIqKClRUVMDe3h5S\nqRT79+8Xvg9Q09s3Li4Ov/zyC6qrq5GVlYUrV67AxcUFw4cPx8yZM1FcXIzKykrhuQSBgYG4dOkS\nzp07h3v37iE6Olprmw3ti4b2f61JkyY1micAmDp1Kj788ENcvHgRY8aMafS71t1uWFgY1q5dC5VK\nBbVajXfffRcTJ05s9t0Ve/fuxbVr10BEsLa2homJyWPdmdFUrDY2NpgzZ45WLYZcLsfixYsxc+ZM\n7Nq1CyUlJaiurkZKSgpKS0uF+ebPn49Lly5Bo9GgpKQEn376KZ5++mnY2trW256npye6d++O6Oho\nVFZW4rfffsOPP/4oTJ88eTJ++OEHHDx4EFVVVbh37x6USqXW7WqN/cYeddmHHZOP+jsbN24cfvzx\nR5w8eRIVFRVYtGhRoxdcExMTjBkzBtHR0SgvL8fly5ebdZvqg/E/+P/Dhw8jJSUFVVVVuHv3LqKi\novDMM8+gc+fO9dZx69Yt7N69G6WlpTAzM4OlpSVMTEwA1Pw+LC0tYW1tjaysLHz00UcPjelhli1b\nhvLycly6dAlbt25t8Nklzdl3DxoxYoTW7ZKPcmvi/fv3ce/evXr/B2p+42vWrEF2djaysrKwZs0a\nREREAAC6dOmCoKAgLFmyBPfu3cN3332HixcvYuzYsVrrv3z5Mo4ePYp//etfAABvb2/8/PPPyMvL\nw9WrVxusUXqUY+dhiAibNm1CcXExiAhJSUn45JNPtM5ZSUlJ8PLyarKG86FnmKioKKxZswbLli2D\no6MjPDw88Mknn2D06NEAgPfeew/du3dHQEAAAgIC0L17d61nIzS102pv/7C1tcWYMWPg6+uLOXPm\noHfv3nB2dsbFixfx3HPPaa2r7vqaWn/d+Zua95NPPsGiRYtgbW2NDz74QOsAtrCwwMKFC9G3b1/Y\n2dnh9OnTWutWKBT48ccfERsbC3t7e6xevRo//vgj7OzsGtx2U/fZDhs2DLNmzcKgQYPQpUsXPP/8\n81rzfvjhh+jcuTN69eoFGxsbDBkyBKmpqQCAZ599FmFhYejYsSPs7OyQm5uLt99+G//4xz8wdOhQ\nWFtbo3fv3khKSgJQ89f6vn37EBsbC4VCgeDgYJw/fx5A/X1T15Ps9wfJZDKsX78e48ePh52dHbZv\n365VZfj3v/8dcXFxmD17NuRyOUJCQoQTc3x8PMzMzPDss8/CyckJ69evB1DzI160aBEGDx6MZ555\nBv369Xto/pva/x4eHo3mCQDGjBmD9PR0jB49Wqt6va66242MjMSUKVPQv39/dOzYERYWFtiwYUOz\nc3j16lUMGTIEMpkMffr0wRtvvIEBAwY8dLsNrbup4bfffhumpqZa4+bOnYs1a9Zg1apVcHZ2hrOz\nM2bMmIFVq1ahd+/eAGoeZlVbZd+pUydkZGQ0eav2tm3b8Ntvv0GhUOD999/HhAkT0K5dOwA1NTq7\nd+/GihUrhPNQbGys1gWysX38qMs+7Jh81N+Zr68v/vOf/2DSpElwdXWFnZ1dkyflf//731Cr1XB2\ndkZkZCQiIyMfeh5r7LsXFxcjLCwMcrkczzzzjFZhpq7q6mqsXbsWHTp0gEKhwPHjx4XnbixevBh/\n/PEHbGxsEBoairFjxz70+HzYb27AgAHo3LkzBg8ejLlz52Lw4MH15m1s3zV24Zw6dSr27dundcFv\nrmeeeQYWFhbIzs7GCy+8AEtLS+Fc8/rrryM0NBT+/v4ICAhAaGgoXnvtNWHZHTt24MyZM7Czs8PC\nhQuxa9eues0Ib775JtavXy98t5UrV2L9+vXw8/PDwoULtZoZaj3s2HnU33ZiYiI6deoEGxsbTJ8+\nHcuWLdM6v2/btk0o1DRGQk9S988YAwA8/fTT2LRpEwYNGtTSobQZEyZMgK+vLxYvXtzSoTAdUqlU\n6NixIzQajc5qxh5UewF+++23db7utuzWrVsICQlBSkqKUFhvCBcaGHtC3333HRYsWCDU+LDHc+bM\nGdja2sLb2xs//fQTxowZg1OnTjXZvspaH7ELDUxcpi0dAGOtWUhICP766696PZDZo8vNzcWYMWNQ\nUFAAd3d3bNy4kQsMbZQ+HqHNxME1DYwxxhhrFq4bYowxxlizGHzzRFBQkNbtbYwxxlhbFhgYqPVc\nCENi8M0TEomkTb11zhBFR0fXe5YB0y3OsX5wnsXHORafIV/3uHmCaT2VkImDc6wfnGfxcY6NGxca\nGGOMMdYsXGhgwuNQmXg4x/rBeRYf59i4GXxHSIDv6WWMMaZ7MhsZ7hbfffiMTNAqOkIiuqWjaOPS\nAHi3dBBtHOdYP1p5nk0/MoWmVNPSYTA9sbW1RWFhYb3xRtERMiMjAwMHDkTXrl3h5+cnvDwIADZs\n2AAfHx/4+fkJb8dMSkpCcHAwgoODERAQgJ07d+oqFMYYa5U0pRrh7bz8afufoqKilj7kHpnOahpy\nc3ORm5uLoKAgqNVqdOvWDYmJicjNzcWKFSuwb98+mJmZIT8/Hw4ODigvL0f79u0hlUqRm5sLPz8/\n5OXlCa9iFQLkmgbGmLGIbvwV36ztaaxGwZBrGnTWp6H29bgAYGVlBR8fH2RlZeHzzz/HO++8AzMz\nMwCAg4MDAMDc3FxYtry8HDY2NvUKDIwxxhgzHKLcPaFSqZCcnIyePXsiNTUVx44dQ69evRASEoIz\nZ84I8yUlJaFr167o2rUr1qxZI0YorDnSWjoAI8A51g/OM2Oi0vndE2q1GuPGjcO6desgk8mg0WhQ\nVFSEU6dO4ffff8f48eNx48YNAECPHj1w6dIl/PXXXxg2bBhCQkJgY2NTf6XRuo6SMcYYa3lKpVL4\nt1U8OIt0qKKigoYOHUpr164Vxg0bNoyUSqUw3KlTJ7p9+3a9ZQcNGkRnzpypNx4AAcQf/vCHP0bw\nQb1zoExmSzXnQXE+Mpmtjq4ArUtERATZ2tpSz549WyyGxi7BOr4065TOmieICNOnT4evry9mzZol\njB81ahR++eUXAEBqaioqKyuhUCigUqmg0dTcWnTz5k1cvXoVTz/9tK7CYYyxNqGkpAgilhn+b/0t\nIzo6GlOmTNH7do8fP47Dhw8jOzsbp06d0vv2WzOdNU+cPHkSCQkJCAgIQHBwMABg5cqViIyMRGRk\nJPz9/dGuXTt8+eWXAIATJ04gJiYGZmZmMDMzw2effQZra2tdhcMeiRJASAvH0NYpwTnWByU4z+xh\nbt68CS8vLzz11FMtHUrr09JVHQ8DcPOE+J8jBhBDW/9wjjnPzfmgBc6B9bfZmPT0dBo9ejQ5ODiQ\nQqGgN998k6qrq+mDDz4gT09PcnR0pKlTp9KdO3eIiCgtLY0kEgl9+eWX5OHhQfb29rR8+XIiItq/\nfz+1a9eOzMzMyMrKioKCgoiIaMuWLeTj40MymYw6duxImzZtErZ/5MgR6tChA61atYocHBzIxcWF\nvv/+e9q7dy89/fTTZGdnRytXrmzyO3zxxRf01FNPkYmJCVlZWVF0dDQVFRXRiy++SA4ODmRra0sv\nvfQSZWZmCssUFBRQREQEubq6kq2tLY0aNYqIiPLz8+nFF18kuVxOdnZ21K9fP6qurm52PhvLvSFf\nmg03sv/DhQb+8Ic/xvNBC5wD62+zIRqNhgICAigqKorKysro/v37dOLECdq8eTN17tyZ0tLSSK1W\n05gxY2jKlClE9L9Cw2uvvUb37t2jc+fOUfv27emvv/4iIqLo6Ghh3lp79+6lGzduEBHR0aNHycLC\ngv744w8iqik0mJqa0gcffEAajYY+//xzUigUNGnSJFKr1XTp0iUyNzcnlUrV5HfZunUrPffcc8Jw\nQUEBfffdd1ReXk4lJSX08ssvCwUDIqIRI0bQxIkTqbi4mCorK+nYsWNERLRgwQKaMWMGaTQa0mg0\ndOLEiWblshYXGkTAhQb+8Ic/xvNBC5wD62+zIb/++is5ODhQVVWV1vhBgwbRp59+KgxfuXKFzMzM\nqKqqSii5pEPTAAAgAElEQVQ0ZGVlCdN79OhBO3fuJCKixYsX0+TJk5vc7qhRo2jdunVEVFNoMDc3\nF/6av3v3LkkkEkpKShLm79atGyUmJja5zri4OK1CQ13Jyclka1vTQTQ7O5ukUikVFxfXm2/RokU0\ncuRIunbtWpPba0xrLDS0krdcSvjDH/7wxwg+hisjIwOenp6QSrUvGzk5OfD09BSGPTw8oNFokJeX\nJ4yrffAfAFhYWECtVje6nf3796NXr15QKBSwtbXFvn37UFBQIExXKBTCSwxrHxLo5OQkTDc3N0dp\naekjfbeysjK8/vrr8PLygo2NDQYMGIA7d+6AiJCRkQE7O7sGHwcwd+5cdO7cGUOHDkWnTp3w4Ycf\nPtJ2W6NWUWggavlnhLflz5EjR1o8hrb+4RxznpvzMWTu7u5IT09HVVWV1nhXV1et5wukp6fD1NRU\n60LemLpvML5//z7Gjh2LefPm4datWygqKsKIESNEz01sbCxSU1ORlJSEO3fu4OjRo8I+cXd3R2Fh\nIe7cuVNvOSsrK6xevRrXr1/Hnj17sGbNGuFuwbaqVRQamLhCQkJaOoQ2j3OsH5xn8fTs2RMuLi5Y\nsGABysrKcO/ePZw8eRJhYWFYu3YtVCoV1Go13n33XUycOLFejURDnJ2doVKphEJBRUUFKioqYG9v\nD6lUiv379+PgwYNifzWo1WqYm5vDxsYGhYWFWLJkiTDNxcUFw4cPx8yZM1FcXIzKykocP34cALB3\n715cu3YNRARra2uYmJi0+dchcKGBMcYMmExmCzGbRGrW/3BSqRQ//PADrl27Bg8PD7i7u+Pbb79F\nZGQkpkyZgv79+6Njx46wsLDAhg0bhOXq1iY86OWXXwZQ0+TQvXt3yGQyrF+/HuPHj4ednR22b9+O\nkSNHai1Td31Nrb8xEolEa7lZs2ahvLwc9vb26NOnD4YPH641PT4+HmZmZnj22Wfh5OSEdevWAQCu\nXr2KIUOGQCaToU+fPnjjjTcwYMCAR46nNdHZWy7FYshv+2orlEol/4UmMs6xfrT2PPP5zri0xrdc\nck0DY4wxxpqFaxoYY8xA8PlOd4YPH44TJ07UG79w4UIsWLCgBSKqz6hrGjIyMjBw4EB07doVfn5+\nWL9+vTBtw4YN8PHxgZ+fH+bPnw8AKCgowMCBAyGTyfDWW2/pKgzGGGMM+/fvR0lJSb2PoRQYWiud\nvXvCzMwMa9euRVBQENRqNbp164YhQ4YgNzcXe/bswfnz52FmZob8/HwANffSLlu2DBcvXsTFixd1\nFQZ7DK29Hbg14BzrB+eZMXHprKbB2dkZQUFBAGruXfXx8UFWVhY2btyId955B2ZmZgAABwcHADUP\n+Ojbty/at2+vqxAYY4wxJiJROkKqVCokJyejZ8+eSE1NxbFjx9CrVy+EhITgzJkzWvM+zu0yTLf4\nLzPxcY71g/PMmLh01jxRS61WY9y4cVi3bh1kMhk0Gg2Kiopw6tQp/P777xg/fjxu3Lih680yxhhj\nTGQ6LTRUVlZi7NixmDx5MkaNGgUAcHNzw5gxYwAAf//73yGVSlFQUACFQtHs9UZERMDLywsAIJfL\nERQUJPxFoVQqAYCHn2A4JSUFs2bNMph42uJw7ThDiaetDn/88cet+vzA9GfatGnYvXs3unTpglOn\nTrVYHLXHgFKp1Hoct6HS2S2XRITw8HAoFAqsXbtWGL9p0yZkZ2djyZIlSE1NxeDBg5Geni5M37p1\nK86ePav1BDGtAA341pO2Qsmdx0THOdaP1p7nhs531nJrlNwpEW2bMhsZ7hbfFW39TYmOjsb169cR\nHx+v1+0eP34ckyZNwtWrV/HUU0/pddsPao23XOqspuHkyZNISEhAQEAAgoODAQArV65EZGQkIiMj\n4e/vj3bt2uGrr74SlvHy8kJJSQkqKiqwe/duHDx4EM8++6yuQmLN1JpPsq0F51g/2mKeS+6UANEi\nrj9avAKJobp58ya8vLz0VmCoLQC0hT58OusI+dxzz6G6uhopKSlITk5GcnIyhg0bBjMzM8THx+PC\nhQs4e/as1o9apVKhoKAAJSUlSE9P5wIDY4wZsIyMDIwZMwaOjo6wt7fHW2+9BSLCsmXL4OXlBScn\nJ4SHh+Pu3ZqaC5VKBalUiq+++gqenp5wcHDAihUrAAAHDhzAypUrsXPnTshkMuGPzbi4OPj6+sLa\n2hqdOnXCZ599JmxfqVTCzc0NH330ERwdHeHq6orExETs27cPXbp0gUKhQExMTJPfYfPmzXj11Vfx\n22+/QSaTCS+n+uijj+Dq6go3Nzds2bIFUqlU6H+3b98+dO3aFdbW1nBzc0NsbKywvt27dyMoKAg2\nNjbo3Lmz8IKtkJAQvPfee+jbty8sLS2Rlpamo73Qsvgx0kyr3Z2Jg3OsH5xn8VRVVeGll16Ct7c3\nbt68iezsbEycOBFxcXH48ssvoVQqcePGDajVarz55ptay548eRKpqan4+eefsXTpUly5cgXDhg0T\n3ohZUlKC5ORkAICTkxP27t2Lu3fvIi4uDrNnzxamAUBeXh7u37+PnJwcLF26FP/85z+xbds2JCcn\n4/jx41i6dClu3rzZ6PeYPn06Nm7ciN69e6OkpASLFy/GgQMHEBsbi8OHDyM1NRWHDx+ut8xnn32G\nu3fv4tKlSxg0aBAAICkpCeHh4YiNjcWdO3dw7NgxeHp6CsslJCTgiy++gFqthoeHxxPvA0PAhQbG\nGGMPlZSUhJycHHz00UcwNzdHu3bt0LdvX2zbtg1z5syBl5cXLC0tsXLlSuzYsQPV1dXCsosXL0b7\n9u0REBCAwMBAnDt3DkBNtX3dtvsRI0bA29sbANC/f38MHTpUeBU1UPMgwYULF8LExAQTJkxAYWEh\nZs2aBUtLS/j6+sLX1xcpKSlNfpe62/zmm28QGRkJX19fWFhYaL0aGwDatWuHS5cu4e7du7CxsRFq\nRTZv3ozp06fj+eefBwC4urrimWeeAVDTFBEREQEfHx9IpVKYmur8ZsUWwYUG1ibbgQ0N51g/OM/i\nycjIgKenJ6RS7ctGTk6O1l/XHh4e0Gg0yMvLE8Y5OzsL/7ewsIBarW50O/v370evXr2gUChga2uL\nffv2oaCgQJiuUCiEvgHm5uYAamonapmbm6O0tPSRvltOTg7c3d21vsODdu3ahX379sHLywshISHC\n3RaZmZno1KlTo+t9cJ1tBRcaGGOMPZS7uzvS09NRVVWlNd7V1VXrVsH09HSYmppqXcgbU7dj4P37\n9zF27FjMmzcPt27dQlFREUaMGCH6nQQuLi5ad/U9+H8A6N69OxITE5Gfn49Ro0Zh/PjxAGpycu3a\ntUbX2xY6PtbFhQbG7cB6wDnWD86zeHr27AkXFxcsWLAAZWVluHfvHk6ePImwsDCsXbsWKpUKarVa\n6KdQt0aiIc7OzlCpVEKhoKKiAhUVFbC3t4dUKsX+/fuFjoViGj9+PLZu3Yo///wTZWVlWs0TlZWV\n2LZtG+7cuQMTExPIZDKYmJgAqOnrEBcXh19++QXV1dXIysrClStXhGUN9bbJJ8GFBsYYYw8llUrx\nww8/4Nq1a/Dw8IC7uzu+/fZbREZGYsqUKejfvz86duwICwsLrefuNPXX9ssvvwygpsmhe/fukMlk\nWL9+PcaPHw87Ozts374dI0eO1Fqm7voe5695iUSitdywYcMwa9YsDBo0CF26dBH6KNRKSEiAt7c3\nbGxs8Nlnn2Hbtm0Aah5YWNtZUy6XIyQkRKuWoi3WNOjs4U5iMeSHXDDGmC4Z28OdDJlUKsW1a9fQ\nsWNH0bZh1A93Yowxpnt8QWeGhJsnGLcD6wHnWD84z6zW8OHDIZPJ6n0e9vCnWm2xaUEXdFZoyMjI\nwMCBA9G1a1f4+flh/fr1wrQNGzbAx8cHfn5+mD9/vjB+5cqVePrpp/Hss8/qpbMLY4wx47B//36U\nlJTU+yxYsKBZy1dVVYnaNNFa6axPQ25uLnJzcxEUFAS1Wo1u3bohMTERubm5WLFiBfbt2wczMzPk\n5+fDwcEBly9fxqRJk/D7778jKysLgwcPRmpqar0et4bctsMYY7rE5zvj0hr7NOispsHZ2RlBQUEA\nACsrK/j4+CArKwsbN27EO++8AzMzMwCAg4MDgJrndYeFhcHMzAxeXl7o3LkzkpKSdBUOY4wxxnRM\nlD4NKpUKycnJ6NmzJ1JTU3Hs2DH06tULISEhOHPmDAAgOzsbbm5uwjJubm7IysoSIxz2ENwOLD7O\nsX5wnhkTl87vnlCr1Rg3bhzWrVsHmUwGjUaDoqIinDp1Cr///jvGjx8vvDmsLu54whhjjBkunRYa\nKisrMXbsWEyePBmjRo0CUFODMGbMGAA1D8KQSqW4ffs2OnTogIyMDGHZzMxMdOjQocH1RkREwMvL\nCwAgl8sRFBQkPGO+9i8LHn6y4VqGEg8P8/DjDNeOM5R4HnXY2tqa/3gyItbW1sIxoFQqtR7Hbah0\n1hGSiBAeHg6FQoG1a9cK4zdt2oTs7GwsWbIEqampGDx4MNLT04WOkElJSUJHyGvXrjX4tC9D7RDC\nGGOM6ZohX/d01qfh5MmTSEhIwJEjRxAcHIzg4GAcOHAAkZGRuHHjBvz9/REWFoavvvoKAODr64vx\n48fD19cXw4cPxyeffMIl7BZSt7aB6R7nWD84z+LjHBs3nTVPPPfcc1rvT39QfHx8g+PfffddvPvu\nu7oKgTHGGGMi4ndPMMYYYwbEkK97/BhpxhhjjDULFxoYt1HqAedYPzjP4uMcGzcuNDDGGGOsWbhP\nA2OMMWZADPm6xzUNjDHGGGsWLjQwbqPUA86xfnCexcc5Nm5caGCMMcZYs3CfBsYYY8yAGPJ1j2sa\nGGOMMdYsOis0ZGRkYODAgejatSv8/Pywfv16remxsbGQSqUoLCzUGp+eng4rKyvExsbqKhT2iLiN\nUnycY/3gPIuPc2zcdPbuCTMzM6xduxZBQUFQq9Xo1q0bhgwZAh8fH2RkZODQoUPw9PSst1xUVBRe\nfPFFXYXBGGOMMZHorKbB2dkZQUFBAAArKyv4+PggOzsbQE3BYNWqVfWWSUxMRMeOHeHr66urMNhj\nCAkJaekQ2jzOsX5wnsXHOTZuovRpUKlUSE5ORs+ePbF79264ubkhICBAax61Wo1Vq1YhOjpajBAY\nY4wxpmM6LzSo1WqMGzcO69atg1QqxYoVK7BkyRJhem2P0OjoaMyePRsWFhYG20vUWHAbpfg4x/rB\neRYf59i46axPAwBUVlZi7NixmDx5MkaNGoULFy5ApVIhMDAQAJCZmYlu3brh9OnTSEpKwq5duzBv\n3jwUFxdDKpXC3NwcM2fOrLfeiIgIeHl5AQDkcjmCgoKEKrLaA5iHH384JSXFoOJpi8O1DCWetjqc\nkpJiUPG0xWE+X4hzflAqlVCpVDB0OntOAxEhPDwcCoUCa9eubXAeb29vnD17FnZ2dlrjlyxZAplM\nhqioqPoBGvD9qowxxpiuGfJ1T2fNEydPnkRCQgKOHDmC4OBgBAcHY//+/VrzSCQSXW2OMcYYY3rG\nT4RkUCqVQnUZEwfnWD84z+LjHIvPkK97/ERIxhhjjDUL1zQwxhhjBsSQr3tc08AYY4yxZuFCA9O6\n7YeJg3OsH5xn8XGOjRsXGhhjjDHWLNyngTHGGDMghnzd45oGxhhjjDWLTh8jLRZ+KBRjjLHHIbOR\n4W7x3ZYOo81oFc0TiG7pKNq4NADeLR1EG8c51g/Os/haW46jYbBV/Y0xiuaJjIwMDBw4EF27doWf\nnx/Wr18PAHj//fcRGBiIoKAgPP/888jIyAAA3Lt3D2FhYQgICICvry9iYmJ0FQp7VK3pBNBacY71\ng/MsPs6xUdNZTUNubi5yc3MRFBQEtVqNbt26ITExEW5ubpDJZACADRs24Ny5c/jiiy+wdetW/PTT\nT9i+fTvKy8vh6+uLo0ePwsPDQztArmlgjDH2uKK5pkGXdFbT4OzsjKCgIACAlZUVfHx8kJ2dLRQY\nAECtVsPe3h4A4OLigtLSUlRVVaG0tBTt2rWDtbW1rsJhjyKtpQMwApxj/eA8i49zbNRE6QipUqmQ\nnJyMnj17AgAWLlyI+Ph4WFhY4NSpUwCAF154AfHx8XBxcUFZWRk+/vhjyOVyMcJhjDHGmA7o/JZL\ntVqNcePGYd26dbCysgIALF++HOnp6YiIiMDs2bMBAAkJCSgvL0dOTg7S0tKwevVqpKVxEbZFcBul\n+DjH+sF5Fh/n2KjptKahsrISY8eOxeTJkzFq1Kh60ydNmoQRI0YAAH799VeMHj0aJiYmcHBwQN++\nfXHmzBl4ezdwREbrMkrGGGNGQ1LTR0Ams8WePd8BgPBq79pHYrf0cO3/VSrVo38/PdNZR0giQnh4\nOBQKBdauXSuMv3r1Kp5++mkANR0hk5KSEB8fj/Xr1yMlJQVbtmxBaWkpevTogZ07d8LPz087QIkE\ngGF2CGk7lABCWjiGtk4JzrE+KMF5FpsSrTPHhtu5sC5D7gips5qGkydPIiEhAQEBAQgODgYArFix\nAps3b8aVK1dgYmKCTp064dNPPwUAvP7665g+fTr8/f1RXV2NyMjIegUGxhhjjBmO1vFwJ65pYIwx\n9kQM96/3ugy5poHfPcEYY4yxZuFCA0NNGyUTl7KlAzASypYOwAgoWzoA1oK40MAYY4yxZmkVb7kE\n+C2XjDHGHp9MZtvSIbQJraLQYKgdQhhjjDFjws0TTOsBI0wcnGP94DyLj3Ns3LjQwBhjjLFmaSXP\naWiYzEaGu8V39RgNY4wxJi5Dfk5D6yg0RDcyMZr7OzDGGGtbDLnQoLPmicjISDg5OcHf318YFx0d\nDTc3NwQHByM4OBgHDhzQWiY9PR1WVlaIjY3VVRjsMXAbpfg4x/rBeRYf59i46azQMG3atHqFAolE\ngqioKCQnJyM5ORnDhg3Tmh4VFYUXX3xRVyEwxhhjTEQ6u+WyX79+Db7Ws7EqlsTERHTs2BGWlpa6\nCoE9ptrXtDLxcI71g/MsPs6xcRP97okNGzYgMDAQ06dPR3FxMQBArVZj1apViI6OFnvzjDHGGNMR\nUQsN//rXv5CWloaUlBS4uLhgzpw5AGr6OsyePRsWFhYG29nDmHAbpfg4x/rBeRYf59i4ifpESEdH\nR+H///znPxEaGgoASEpKwq5duzBv3jwUFxdDKpXC3NwcM2fObHhF0Y1sQPq/A7i2yoyHH304JSXF\noOJpi8O1DCWetjqckpJiUPG0xWE+X4hzflAqlQ028Rsand5yqVKpEBoaigsXLgAAcnJy4OLiAgBY\nu3Ytfv/9d3z99ddayyxZsgQymQxRUVENByiRAGgsRMO9LYUxxhh7HIZ8y6XOahrCwsJw9OhR3L59\nG+7u7liyZIlQKpVIJPD29samTZt0tTnGGGOM6VnreLgT1zSISqlUCtVlTBycY/3gPIuPcyw+Q65p\n4HdPMMYYY6xZuKaBMcYYMyBc08AYY4yxVq+VFBokDX5kMtsWjaqtePC2HyYOzrF+cJ7Fxzk2bqI+\np0FXDLWahjHGGDMmraJPg4GHyBhjjOmMIV/3WknzBGOMMcZaGhcaGLdR6gHnWD84z+LjHBu3VtGn\noea2S8YYY0x3ZDYy3C2+29JhtCqtok9Doy+sYowxxh5XtGF2tDeKPg2RkZFwcnKCv79/vWmxsbGQ\nSqUoLCwEAFRUVGDatGkICAhAUFAQjh49qqswGGOMMSYSnRUapk2bhgMHDtQbn5GRgUOHDsHT01MY\n9/nnn0MqleL8+fM4dOgQ5syZY7ClKqOQ1tIBGAHOsX5wnsXHOTZqOis09OvXD7a29R+2FBUVhVWr\nVmmN+/PPPzFw4EAAgIODA+RyOc6cOaOrUBhjjDEmAlHvnti9ezfc3NwQEBCgNT4wMBB79uxBVVUV\n0tLScPbsWWRmZooZCmuKd0sHYAQ4x/rBeRYf59ioiXb3RFlZGVasWIFDhw4J42qbICIjI/Hnn3+i\ne/fu8PT0RJ8+fWBiYiJWKIwxxhjTAdEKDdevX4dKpUJgYCAAIDMzE926dUNSUhIcHR2xZs0aYd6+\nffuiS5cuja8sWqwoGWOMGS0JYGEhQ1lZCYD/PYMiJCREr8O1/1epVE/2ffRAp7dcqlQqhIaG4sKF\nC/WmeXt74+zZs7Czs0N5eTmqq6thaWmJQ4cOYfny5Y0+MKTpV2Mz3VACCGnhGNo6JTjH+qAE51ls\nSrStHBve7Y1GcctlWFgY+vTpg9TUVLi7uyMuLk5r+oMPaMrLy0O3bt3g6+uLjz76CPHx8boKgz2W\nkJYOwAiEtHQARiKkpQMwAiEtHQBrQa3j4U5c08AYY0wUhvdXvVHUNLDWTNnSARgBZUsHYCSULR2A\nEVC2dACsBXGhgTHGGGPN0ipeWAXwC6sYY4zpnkxW/6GErHGtotBgqG07jDHGmDHh5gnW6O2uTHc4\nx/rBeRYf59i4caGBMcYYY83SKm65NPAQGWOMMZ0x5Ose1zQwxhhjrFm40MC4jVIPOMf6wXkWH+fY\nuOms0BAZGQknJyf4+/vXmxYbGwupVIrCwkIAwL179xAWFoaAgAD4+voiJiZGV2EwxhhjTCQ669Nw\n/PhxWFlZYerUqVovrMrIyMCrr76KK1euCC+s2rp1K3766Sds374d5eXl8PX1xdGjR+Hh4VE/QANu\n22GMMcZ0zZCvezqraejXrx9sbes/JCMqKgqrVq3SGufi4oLS0lJUVVWhtLQU7dq1g7W1ta5CYYwx\nxpgIRO3TsHv3bri5uSEgIEBr/AsvvABra2u4uLjAy8sLc+fOhVwuFzMU1gRuoxQf51g/OM/i4xwb\nN9GeCFlWVoYVK1bg0KFDwrja6paEhASUl5cjJycHhYWF6NevH55//nl4e3uLFQ5jjDHGnpBohYbr\n169DpVIhMDAQAJCZmYlu3brh9OnT+PXXXzF69GiYmJjAwcEBffv2xZkzZxotNERERMDLywsAIJfL\nERQUhJCQEAD/K/Xy8JMN1zKUeHiYhx9nuHacocTTVodrGUo8rX249v8qlQqGTqcPd1KpVAgNDdXq\nCFnL29tb6Ai5fv16pKSkYMuWLSgtLUWPHj2wc+dO+Pn51Q/QgDuEMMYYY7pmyNc9nfVpCAsLQ58+\nfZCamgp3d3fExcVpTZdI/vemytdffx0VFRXw9/dHjx49EBkZ2WCBgelH3b8emO5xjvWD8yw+zrFx\n01nzxPbt25ucfuPGDeH/7du3R0JCgq42zRhjjDE94HdPMMYYYwbEkK97/BhpxhhjjDULFxoYt1Hq\nAedYPzjP4uMcGzcuNDDGGGOsWbhPA2OMMWZADPm6xzUNjDHGGGsWLjQwbqPUA86xfnCexcc5Nm5c\naGCMMcZYs3CfBsYYY8yAGPJ1T6c1DZGRkXBycoK/v3+9abGxsZBKpSgsLAQAbNu2DcHBwcLHxMQE\n58+f12U4jDHGGNMhnRYapk2bhgMHDtQbn5GRgUOHDsHT01MY98orryA5ORnJycmIj49Hx44dERAQ\noMtwWDNxG6X4OMf6wXkWH+fYuOm00NCvXz/Y2trWGx8VFYVVq1Y1utzXX3+NiRMn6jIUxhhjjOmY\nzl5Y1Zjdu3fDzc2tyVqEb775Bnv27BE7FNaI2ne7M/FwjvWD8yw+zrFxE7XQUFZWhhUrVuDQoUPC\nuLqdO06fPg0LCwv4+vqKGQpjjDHGnpCohYbr169DpVIhMDAQAJCZmYlu3bohKSkJjo6OAIAdO3Zg\n0qRJTa4nIiICXl5eAAC5XI6goCChtFvbvsbDjz+ckpKCWbNmGUw8bXG4dpyhxNNWhz/++GM+P4g8\nzOcLcc4PSqUSKpUKhk7nt1yqVCqEhobiwoUL9aZ5e3vj7NmzsLOzAwBUV1fDw8MDJ06cEAoF9QI0\n4FtP2gqlUikcxEwcnGP94DyLj3MsPkO+7um0I2RYWBj69OmD1NRUuLu7Iy4uTmu6RCLRGj527Bg8\nPDwaLTAw/eATgPg4x/rBeRYf59i48cOdGGOMMQNiyNc9fow002pXY+LgHOsH51l8nGPjxoUGxhhj\njDULN08wxhhjBsSQr3tc08AYY4yxZuFCA+M2Sj3gHOsH51l8nGPjxoUGxhhjjDUL92lgjDHGDIgh\nX/e4poExxhhjzSL6Wy51oe6TJBljjLEnJbOR4W7x3ZYOo1VpFc0TiG7pKNq4NADeLR1EG8c51g/O\ns/jaUo6j67952RAYRfNEZGQknJyc4O/vL4wrLCzEkCFD0KVLFwwdOhTFxcUAgIqKCkybNg0BAQEI\nCgrC0aNHdRUGexxt5QRgyDjH+sF5Fh/n2KjprNAwbdo0HDhwQGtcTEwMhgwZgtTUVDz//POIiYkB\nAHz++eeQSqU4f/48Dh06hDlz5hhsqYoxxhhjNXRWaOjXrx9sbW21xu3Zswfh4eEAgPDwcCQmJgIA\n/vzzTwwcOBAA4ODgALlcjjNnzugqFPao0lo6ACPAOdYPzrP4OMdGTdS7J/Ly8uDk5AQAcHJyQl5e\nHgAgMDAQe/bsQVVVFdLS0nD27FlkZmaKGQpjjDHGnpDe7p6QSCTCXRCRkZH4888/0b17d3h6eqJP\nnz4wMTHRVyisLm6jFB/nWD84z+LjHBs1UQsNTk5OyM3NhbOzM3JycuDo6AgAMDExwZo1a4T5+vbt\niy5dujS+omgxo2SMMWaUJICFhQxlZSUA/veI7JCQEL0O1/5fpVI92ffRA53ecqlSqRAaGooLFy4A\nAObNmweFQoH58+cjJiYGxcXFiImJQXl5Oaqrq2FpaYlDhw5h+fLljT7PvKZ2gjtJiksJIKSFY2jr\nlOAc64MSnGexKdG2cmx4tzca8i2XOqtpCAsLw9GjR3H79m24u7tj6dKlWLBgAcaPH4/NmzfDy8sL\n33zzDYCavg7Dhg2DVCqFm5sb4uPjdRUGY4wxxkTSOh7uxDUNjDHGRGF4f9Ubck0Dv3uCMcYYY83C\nhbM+NJgAABbaSURBVAaGmjZKJi5lSwdgJJQtHYARULZ0AKwFtYoXVgH8wirGGGO6J5PZPnwmJmgV\nhQZDbdthjDHGjAk3TzDGGGOsWbjQwBp9RgbTHc6xfnCexcc5Nm5caGCMMcZYs7SK5zQYeIiMMcaY\nzhjydY9rGhhjjDHWLDorNERGRsLJyQn+/v7CuMLCQgwZMgRdunTB0KFDUVxcDAC4d+8ewsLCEBAQ\nAF9fX8TExOgqDPYYuI1SfJxj/eA8i49zbNx0VmiYNm0aDhw4oDUuJiYGQ4YMQWpqKp5//nmhcLBj\nxw4AwPnz53H27Fls2rQJ6enpugqFMcYYYyLQWaGhX79+sLXVfkjGnj17EB4eDgAIDw9HYmIiAMDF\nxQWlpaWoqqpCaWkp2rVrB2tra12Fwh5R7WtamXg4x/rBeRYf59i4idqnIS8vD05OTgAAJycn5OXl\nAQBeeOEFWFtbw8XFBV5eXpg7dy7kcrmYoTDGGGPsCemtI6REIvm/N1YCCQkJKC8vR05ODtLS0rB6\n9WqkpaXpKxRWB7dRio9zrB+cZ/Fxjo2bqI+RdnJyQm5uLpydnZGTkwNHR0cAwK+//orRo0fDxMQE\nDg4O6Nu3L86cOQNvb+8G1xMREQEvLy8AgFwuR1BQkFBFVnsA8/DjD6ekpBhUPG1xuJahxNNWh1NS\nUgwqnrY4zOcLcc4PSqUSKpUKhk6nz2lQqVQIDQ3FhQsXAADz5s2DQqHA/PnzERMTg+LiYsTExGD9\n+vVISUnBli1bUFpaih49emDnzp3w8/OrH6AB36/KGGOM6ZohX/d0VmgICwvD0aNHcfv2bTg5OWHp\n0qUYOXIkxo8fj/T0dHh5eeGbb76BXC7H/fv3MX36dJw7dw7V1dWIjIzEnDlzGg7QgJPHGGOM6Zoh\nX/f4iZAMSqVSqC5j4uAc6wfnWXycY/EZ8nWPnwjJGGOMsWbhmgbGGGPMgBjydY9rGhhjjDHWLFxo\nYFq3/TBxcI71g/MsPs6xceNCA2OMMcaahfs0MMYYYwbEkK97XNPAGGOMsWbhQgPjNko94BzrB+dZ\nfJxj48aFBsYYY4w1i077NERGRmLv3r1wdHQU3j9RWFiICRMm4ObNm1qPkt62bRtWr14tLHv+/Hkk\nJycjICBAO0ADbtthjDHGdM2Qr3s6LTQcP34cVlZWmDp1qtZLq+zt7TFv3jx8+OGHKCoqQkxMjNZy\nFy9exOjRo3H16tX6ARpw8hhjjDFdM+Trnk6bJ/r16wdbW1utcXv27EF4eDgAIDw8HImJifWW+/rr\nrzFx4kRdhsIeAbdRio9zrB+cZ/Fxjo2bqdgbyMvLg5OTEwDAyckJeXl59eb55ptvsGfPHrFDYYwx\nxtgT0GtHSIlEAolEojXu9OnTsLCwgK+vrz5DYQ/gN9aJj3OsH5xn8XGOjZvoNQ1OTk7Izc2Fs7Mz\ncnJy4OjoqDV9x44dmDRpUpPriIiIgJeXFwBALpcjKChIOHBrq8p4mId5mId5mIdb43Dt/1UqFQyd\nzp8IqVKpEBoaqtURUqFQYP78+YiJiUFxcbHQEbK6uhoeHh44ceKEUCioF6ABdwhpK5RKpXAQM3Fw\njvWD8yw+zrH4DPm6p9PmibCwMPTp0wdXrlyBu7s74uLisGDBAhw6dAhdunTBL7/8ggULFgjzHzt2\nDB4eHo0WGBhjjDFmOPjdE4wxxpgBMeTrHj8RkjHGGGPNwoUGptUZh4mDc6wfnGfxcY6NGxcaGGOM\nMdYs3KeBMcYYMyCGfN3jmgbGGGOMNQsXGhi3UeoB51g/OM/i4xwbNy40MMYYY6xZuE8DY4wxZkAM\n+bon+rsndKHuS64YY4yx5pDZyHC3+G5Lh9FmtIqaBkS3dBRtXBoA75YOoo3jHOsH51l8rS3H0TDY\nv9obY8g1DXrr01BcXIxx48bBx8cHvr6+OHXqFKKjo+Hm5obg4GAEBwfjwIED+gqHMcYYY49IbzUN\n4eHhGDBgACIjI6HRaFBaWoqPP/4YMpkMUVFRjQfINQ2MMcYeVzTXNOiSXvo03LlzB8ePH8eXX35Z\ns1FTU9jY2ABofTuTMcYYM1Z6aZ5IS0uDg4MDpk2bhr/97W949dVXUVZWBgDYsGEDAgMDMX36dBQX\nF+sjHFZXWksHYAQ4x/rBeRYf59io6aXQoNFo8Mf/b+/+Q6uq/ziOv7ZmJLavbqlr7Q6dU3Freucv\nTMM1EckfLLD2hytINx3iIPMHgdgfXoNkWmKh/0jmDyL7o18olKMhXVvp2HJuMxMLuTc20ch0Siq5\n1fn+IVvqnJ7Nnc85597nAwb73Hvrvn1xuee98/mcz2loUEVFhRoaGjRo0CBVVlaqoqJCkUhEjY2N\nSk9P19q1a02UAwAA+sDI9EQgEFAgENDUqVMlScXFxaqsrNSwYcO6XrNs2TIVFRXd+38QMlAkACD2\nJNxaI5CcnKKDB7+QJBUWFkr6b3dLt8edv0ej0d7/+wwzthCyoKBAu3bt0tixYxUKhXTjxg2tXr1a\nTz75pCRp27Ztqq+v1/79++8sMCFBEuseAAAPw7uLC+/m5YWQxpqGpqYmLVu2TDdv3lR2drZ2796t\nlStXqrGxUQkJCcrKytLOnTuVlpZ2Z4E0DQaEJRW6XEOsC4uMTQiLnJ0Wlj8z9u6B+G40DQ+BpsGE\nsPz5JeAnYZGxCWGRs9PC8mfG3j0Q342m4SHQNAAAHp53D8R383LTwF0uAQCALb64YZXEDasAAH2X\nnJzidgkxwRdNg1dP08SKcDjcdQkQnEHGZpCz88g4vvliTYPHSwQAoN94+bjHmgYAAGALTQPu2JUM\nziBjM8jZeWQc33zRNCQkJNzz539D/ud2aQAAxA1frGno8d4TIRZJAgBiS9yvaWhra1NxcbFycnKU\nm5ur2trarue2bt2qxMREXbp0yUQpAACgj4w0Da+//rrmz5+v06dPq7m5WTk5OZKklpYWVVdXa8SI\nESbKQA+Yo3QeGZtBzs4j4/jmeNNw5coV1dTUqKysTJKUlJSkwYMHS5LWrFmjLVu2OF0CAADoB443\nDZFIRMOGDVNpaakmTZqk8vJyXb9+XQcOHFAgENCECROcLgEPwEYtziNjM8jZeWQc3xzfEbKjo0MN\nDQ3asWOHpk6dqlWrVmnDhg2qqanRN9980/U6ry76AAAAtzh+9cSFCxc0ffp0RSIRSdL333+vUCik\nn376SQMHDpQktba2KiMjQ3V1dRo+fPidBSbc574TidK3h7+V9F/32znfxtj+uLGxUatWrfJMPbE4\n7nzMK/XE6vi9995Tfn6+Z+qJxTHfF858P4TDYUWjUUnSvn37PPuHtJFLLgsKCrRr1y6NHTtWoVBI\nN27c0ObNm7uez8rK0vHjx5Wamtq9wPveGtu7l6X4SZi95B1HxmaQs/PI2HlevuTSSNPQ1NSkZcuW\n6ebNm8rOztaePXu6FkNK0qhRo/Tjjz/SNAAA4l7cNw0Pg6YBABBPvNw0+GIbaTjr9nk1OIOMzSBn\n55FxfKNpAAAAtjA9AQCAh3h5esLxfRr6x70vu0xOTjFcBwAA8csX0xOWZd3z5+pVbnLVH5ijdB4Z\nm0HOziPj+OaLpgEAALjPF2saPF4iAAD9xsvHPc40AAAAW2gawBylAWRsBjk7j4zjm7Gmoa2tTcXF\nxcrJyVFubq5qa2v16aef6umnn9YjjzyihoYGU6UAAIA+MLamYfHixXruuedUVlamjo4OXbt2TefP\nn1diYqKWL1+urVu3atKkSd0L9PDcDgAA/c3Lxz0j+zRcuXJFNTU12rdv3603TUrS4MGD77hpFQAA\n8DYj0xORSETDhg1TaWmpJk2apPLycl2/ft3EW8MG5iidR8ZmkLPzyDi+GWkaOjo61NDQoIqKCjU0\nNGjQoEGqrKw08dYAAKCfGJmeCAQCCgQCmjp1qiSpuLi4V03DkiVLNHLkSEnSkCFDlJ+fr8LCQkn/\ndb2MH27cySv1MGbcl3HnY16pJ1bHnbxSj9/Hnb9Ho1F5nbGFkAUFBdq1a5fGjh2rUCikGzduaPPm\nzZKkWbNm6d1339XkyZO7F+jhBSEAAPQ3Lx/3jF1yuX37dr3yyisKBoNqbm7W+vXr9eWXXyozM1O1\ntbVasGCB5s2bZ6oc3Obuvx7Q/8jYDHJ2HhnHN2N3uQwGg6qvr7/jsYULF2rhwoWmSgAAAA+Be08A\nAOAhXj7usY00AACwhaYBzFEaQMZmkLPzyDi+0TQAAABbWNMAAICHePm4x5kGAABgC00DmKM0gIzN\nIGfnkXF8o2kAAAC2+GJNQ0+SByfrattVg9UAAOAsL69p8EfTEOrhyZA8GywAAH3h5abByPREWVmZ\n0tLSNH78+K7HQqGQAoGAJk6cqIkTJ6qqqspEKbgH5iidR8ZmkLPzyDi+GWkaSktLuzUFCQkJWrNm\njU6cOKETJ05o7ty5JkoBAAB9ZKRpmDlzplJSUro97tXTL/Gm897ucA4Zm0HOziPj+Obq1RPbt29X\nMBjU0qVL1dbW5mYpAADgAVxrGlasWKFIJKLGxkalp6dr7dq1bpUS95ijdB4Zm0HOziPj+Jbk1hsP\nHz686/dly5apqKio5xeHeng88b8PcOcpM8a9Hzc2Nnqqnlgcd/JKPbE6bmxs9FQ9sTjm+8KZ74dw\nOKxoNCqvM3bJZTQaVVFRkU6ePClJOn/+vNLT0yVJ27ZtU319vfbv39+9wIQEST2V6N3LUgAA6Asv\nX3Jp5ExDSUmJjhw5oosXLyozM1MbN27s6lgTEhKUlZWlnTt3migFAAD0kT82d+JMg6PC4XDX6TI4\ng4zNIGfnkbHzvHymgXtPAAAAWzjTAACAh3CmAQAA+J5PmoaEe/4kJ3ffZRK9d/tlP3AGGZtBzs4j\n4/jm2j4NveHV0zQAAMQTX6xp8HiJAAD0Gy8f93wyPQEAANzmi+mJW1dQAADQO8mDk3W17arbZcQM\nX0xP9HjvCfSPiKQst4uIcWRsBjk7z28Zh/y3Li7upyfKysqUlpam8ePHd3tu69atSkxM1KVLl0yU\ngnvx0xeAX5GxGeTsPDKOa0aahtLSUlVVVXV7vKWlRdXV1RoxYoSJMgAAwEMw0jTMnDlTKSnd91RY\ns2aNtmzZYqIE3E/E7QLiABmbQc7OI+O45trVEwcOHFAgENCECRPcKgEAAPSCK1dPXL9+XZs2bVJ1\ndXXXY15d9BEXmKN0HhmbQc7OI+O45krTcPbsWUWjUQWDQUlSa2urJk+erLq6Og0fPrz7fxAyWx8A\nIEYk3LoaITk5RQcPfiFJXbf27twS2+1x5+/RaLT3/z7DjF1yGY1GVVRUpJMnT3Z7LisrS8ePH1dq\namr3Au97l0v0j7CkQpdriHVhkbEJYZGz08LyZ8bevYzxbnF/yWVJSYlmzJihX375RZmZmdqzZ88d\nz7N5EwAA3uePzZ040wAAeCje/ev9bnF/pgEAAPgfTQN0a44Szgq7XUCcCLtdQBwIu10AXETTAAAA\nbPHFXS4lFkoCAPouObn7rsToPV80DV5dEAIAQDxhegJ3bDACZ5CxGeTsPDKObzQNAADAFl/s0+Dx\nEgEA6DdePu5xpgEAANhC0wDmKA0gYzPI2XlkHN+MNA1lZWVKS0vT+PHjux574403lJOTo2AwqBdf\nfFFXrlwxUQoAAOgjI2saampq9Pjjj+vVV1/tustldXW1Zs+ercTERK1bt06SVFlZ2b1AD8/tAADQ\n37x83DNypmHmzJlKSblzY405c+YoMfHW20+bNk2tra0mSgEAAH3kiTUNu3fv1vz5890uI24xR+k8\nMjaDnJ1HxvHN9R0h3377bT366KN6+eWXe3zNkiVLNHLkSEnSkCFDlJ+fr8LCQkn/fYAZ933c2Njo\nqXpicdzJK/XE6rixsdFT9cTimO8LZ74fwuGwotGovM7YPg3RaFRFRUVdaxokae/evfrggw90+PBh\nPfbYY/cu0MNzOwAA9DcvH/dcO9NQVVWld955R0eOHOmxYQAAAN5hZE1DSUmJZsyYoTNnzigzM1O7\nd+/Wa6+9pr/++ktz5szRxIkTVVFRYaIU3MPtp8jgDDI2g5ydR8bxzciZhk8++aTbY2VlZSbeGgAA\n9BPuPQEAgId4+bjniUsuAQCA99E0gDlKA8jYDHJ2HhnHN5oGdF3bDueQsRnk7Dwyjm80DVBbW5vb\nJcQ8MjaDnJ1HxvGNpgEAANhC0wBfbF3qd2RsBjk7j4zjm+cvuczPz1dTU5PbZQAAYEQwGPTs2hHP\nNw0AAMAbmJ4AAAC20DQAAABbPNE0VFVVady4cRozZow2b958z9esXLlSY8aMUTAY1IkTJwxXGBse\nlPPHH3+sYDCoCRMm6Nlnn1Vzc7MLVfqbnc+yJNXX1yspKUlffPGFwepig52Mw+GwJk6cqLy8PBUW\nFpotMEY8KOeLFy9q7ty5ys/PV15envbu3Wu+SB8rKytTWlqaxo8f3+NrPHncs1zW0dFhZWdnW5FI\nxLp586YVDAatn3/++Y7XfPXVV9a8efMsy7Ks2tpaa9q0aW6U6mt2cj569KjV1tZmWZZlHTp0iJx7\nyU7Gna+bNWuWtWDBAuuzzz5zoVL/spPx5cuXrdzcXKulpcWyLMv6448/3CjV1+zkvGHDBmvdunWW\nZd3KODU11Wpvb3ejXF/67rvvrIaGBisvL++ez3v1uOf6mYa6ujqNHj1aI0eO1IABA7Ro0SIdOHDg\njtccPHhQixcvliRNmzZNbW1t+v33390o17fs5Dx9+nQNHjxY0q2cW1tb3SjVt+xkLEnbt29XcXGx\nhg0b5kKV/mYn4/379+ull15SIBCQJA0dOtSNUn3NTs7p6em6evWqJOnq1at64oknlJRk5MbJMWHm\nzJlKSUnp8XmvHvdcbxrOnTunzMzMrnEgENC5c+ce+BoOaL1jJ+fbffjhh5o/f76J0mKG3c/ygQMH\ntGLFCkm37mYH++xk/Ouvv+rSpUuaNWuWpkyZoo8++sh0mb5nJ+fy8nKdOnVKTz31lILBoN5//33T\nZcY0rx73XG8L7X5pWnddGcqXbe/0Jq9vv/1Wu3fv1g8//OBgRbHHTsarVq1SZWVl161v7/5c4/7s\nZNze3q6GhgYdPnxY169f1/Tp0/XMM89ozJgxBiqMDXZy3rRpk/Lz8xUOh3X27FnNmTNHTU1NSk5O\nNlBhfPDicc/1piEjI0MtLS1d45aWlq7Tij29prW1VRkZGcZqjAV2cpak5uZmlZeXq6qq6r6nztCd\nnYyPHz+uRYsWSbq1kOzQoUMaMGCAXnjhBaO1+pWdjDMzMzV06FANHDhQAwcOVEFBgZqammgaesFO\nzkePHtWbb74pScrOzlZWVpbOnDmjKVOmGK01Vnn2uOfukgrLam9vt0aNGmVFIhHr77//fuBCyGPH\njnlmQYif2Mn5t99+s7Kzs61jx465VKW/2cn4dkuWLLE+//xzgxX6n52MT58+bc2ePdvq6Oiwrl27\nZuXl5VmnTp1yqWJ/spPz6tWrrVAoZFmWZV24cMHKyMiw/vzzTzfK9a1IJGJrIaSXjnuun2lISkrS\njh079Pzzz+uff/7R0qVLlZOTo507d0qSli9frvnz5+vrr7/W6NGjNWjQIO3Zs8flqv3HTs5vvfWW\nLl++3DXfPmDAANXV1blZtq/YyRgPx07G48aN09y5czVhwgQlJiaqvLxcubm5LlfuL3ZyXr9+vUpL\nSxUMBvXvv/9qy5YtSk1Ndbly/ygpKdGRI0d08eJFZWZmauPGjWpvb5fk7eMe20gDAABbXL96AgAA\n+ANNAwAAsIWmAQAA2ELTAAAAbKFpAAAAttA0AAAAW2gaAACALTQNAADAlv8D2tpAU58WhzoAAAAA\nSUVORK5CYII=\n"
-      },
-      {
-       "output_type": "display_data",
-       "png": "iVBORw0KGgoAAAANSUhEUgAAAoUAAAF6CAYAAABvBSKFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcVPX+P/DXDKixDDDDJiibmLmkQNh1S8VKS69eccnC\nPcvyWn2z/FWWqVimZi7lvWVWSpld87a5pJaWjFtdKc2NUnMZBLdUQEFSAd+/P3hwYlhdBubw4fV8\nPHw8nJkzZ96vOXPmvOdzPjMYRERARERERHWa0dkFEBEREZHzsSkkIiIiIjaFRERERMSmkIiIiIjA\nppCIiIiIwKaQiIiIiKB4U/jPf/4T06ZNq5Z1f/LJJ7jvvvuqZd2lGY1GHDlypEYeqzK33347Nm/e\n7Owyaq0///wTffr0gY+PDx588MFqfSxuK30LDw/H999/X2OPl5iYiGHDhgEAjh07BpPJhGv9NbKS\n960LRo4ciUmTJt3w/RMSErBy5UoHVkQlVedxvTay2WwwGo24evVqpcutXr0aDz30UJXru6am8D//\n+Q/atm0Lk8mE4OBg9OrVC9u2bbu2iitxsztfVRYsWICXX375ptdT3pM+ZMgQfPvttze9bkeyWq0I\nCQlxyLrK2zb79u1Dly5dHLL+uujzzz/HH3/8gczMTCxfvrxaH+tmtlVcXBzc3NyQkZGhXffdd98h\nIiLCbrlPP/0U7dq1g6enJwIDA9G+fXssWLBAuz0jIwMDBgyAv78/fHx80Lp1a3z00Uc3FkhHHLGf\nGQwGGAwGB1V0bY9XLDQ0FDk5OXbXXblyBf7+/sjLy6v0vtcrOTkZbdq0gdlshsViQY8ePfDrr7/e\n8Ppqws1smz179mDPnj3o27cvgKrzX758GaNGjYK3tzeCgoIwb948u/Xt2rULsbGx8PDwQNu2bbF7\n92672+fNm4egoCB4e3vjkUcewZUrV26o7pLOnDmDwYMHw8fHBxaLBUOHDtVVvTdzXE9MTITRaMRn\nn32mXVdQUACj0Yhjx45p1/3888/o3bs3LBYLzGYzWrVqhZdffhnZ2dkAivaX8ePHIyQkBCaTCRER\nEXjmmWduqKaa0qdPH6SmpmLv3r2VLldlUzh37lw888wzePnll/HHH38gPT0dTzzxBFatWuWwYmsL\n/s63mqr6hOUoaWlpaNasGYzG6x+gLygoqIaKKubh4YFXX321wtvnzJmDcePG4YUXXsDp06dx+vRp\nvPvuu9i2bRvy8/MBAMOGDUNYWBiOHTuGzMxMfPzxxwgMDKypCDdERJTcz6vKtHnzZsTExMDd3d2h\nj9uqVSusW7cOWVlZOH36NGJiYjBq1CiHPkZ1uNHXwMKFC+2aqKryJyYm4vDhwzh27BiSk5Mxa9Ys\nbbDhypUr6Nu3L4YPH47s7GyMGDECffv21favb7/9Fq+//jo2btyItLQ0HDlyBFOmTLmJ1EX69++P\n4OBgpKen48yZM/h//+//6bre62WxWDBlypQK3/d/+OEHdOvWDZ07d8aBAweQlZWFb775Bq6urlqT\nO2PGDOzcuRM//fQTcnJyYLVaERsbe02PX9Pv5SUlJCTgvffeq3whqUR2drZ4enrK559/XuEyly5d\nkqefflqCg4MlODhYxo0bJ5cvXxYRkeTkZGnUqJHMmTNHAgICJCgoSJKSkkREZOHChVKvXj2pX7++\neHp6yj/+8Q8REZkxY4ZERkaKyWSSli1byldffaU9VlJSknTs2FGeeeYZ8fHxkcjISNm2bZssXrxY\nQkJCJCAgQD766CNt+REjRsjLL79cZS0iIl9//bVER0eLl5eXhISESGJionZbSEiIGAwG8fT0FJPJ\nJD/++KMkJSXJXXfdpS2zbds2adu2rXh7e8udd94pP/zwg3Zb165dZdKkSdKpUycxmUzSo0cPOXv2\nbIXP6axZsyQoKEgaNWokixYtEoPBIIcPH9ae7/Hjx0toaKgEBgbKmDFj5M8//5Tc3Fy55ZZbxGg0\nanWePHlSrl69qj2nvr6+MmjQIMnMzNQea8uWLdKhQwfx8fGRkJAQ+fDDD+W9994rd9uEhYXJd999\nd1PbvTyLFy+WFi1aiMlkkiZNmsjChQvtbl+xYoVERUWJl5eXREZGyjfffCMiIufOnZORI0dKcHCw\nmM1miY+P114nJbeNiNg9hyNGjJAxY8ZIz549xcPDQ77//vtKt39Fz1NKSooEBgbK1atXteW++OIL\niYqKKpNx8uTJUr9+falXr554enrK4sWL5erVq/Lqq69KWFiYBAQEyPDhw+X8+fMiInL06FExGAyy\naNEiCQ0Nla5du5ZZ55kzZ+Tvf/+7+Pj4iMVikc6dO2u3hYWFyffffy8iIlOmTJGBAwfK0KFDxWQy\nSevWreXgwYMyffp0CQgIkNDQUFm/fr1237i4OJk6daqYTCbtOduwYYOEh4eLSNH7goeHh3z55ZcV\nbVIREfH09JTdu3dXukxJR44ckc6dO4vJZJJ7771Xxo4dK0OHDtVu//HHH7VtEBUVJVarVbutqn2s\nqvtOnDhROnbsKG5ubnLo0KEKX5M3up8tWbJEQkNDxdfXV1577TUJDw/Xtk9pFe3jxSraH44fPy59\n+vQRi8UiTZs2lffff1+7z5QpU7Tnsvi1VVhYqN3+zDPPyLx587Tt0KVLFzGZTNK9e3d58skny9w3\nKSlJQkJCxGKxyIIFCyQlJUVat24tPj4+8uSTT1aYa8KECdp+Wp6ZM2dKo0aNxGQyyW233aY9R9u3\nb5f27duLj4+PBAUFyZNPPilXrlzR7mcwGOSdd96Rpk2bislkkkmTJsmhQ4ekffv24u3tLQ8++KC2\nfPH70/Tp08XPz0/Cw8Plk08+0dY1cuRI7bghIrJ69WqJiooSHx8f6dixo+zZs6fC+ps0aSLbtm27\n5vzBwcGyYcMG7fLkyZPloYceEhGRb7/9Vho1amS3jtDQUPn2229FRCQhIUEmTpyo3bZx40Zp2LCh\n9jwOHDjQ7r7/93//J//3f/8nIkXvkU2aNBGTySQRERFa/m+//VbCw8PtXhslVVe95Rk3bpwEBASI\nl5eXtG7dWlJTU0Wk/OP6rFmzxN/fX4KCguSrr76SNWvWyK233ioWi0VmzJihrTMxMVGGDBkiUVFR\nWq+Qn58vBoNB0tLSRESkU6dO2vNUkd69e8ubb75Z6TIlGQwGefvtt6Vp06bSpEkTEan8dVVZH1RY\nWCjjx48XPz8/adKkifz73/+2258r2rYiRX1KREREpbVW2hSuW7dOXF1dK3yBiIhMmjRJOnToIGfO\nnJEzZ85Ix44dZdKkSSJStMFcXV1lypQpUlBQIGvXrhV3d3fJzs4WkaKdr3jZYp999pmcPHlSRESW\nL18uHh4ecurUKS2sq6urfPjhh3L16lV5+eWXpVGjRtobxPr168VkMsnFixfLrL+qWqxWq+zbt09E\nRPbs2SOBgYGyYsUKERGx2Wxl3kRLNh7nzp0THx8fWbp0qRQWFsqyZcvEbDZrB4WuXbtK06ZN5fff\nf5c///xT4uLiZMKECRU+54GBgZKamioXL16UhIQEu4Zm3Lhx0rdvX8nKypKcnBzp06ePvPjii1qG\nxo0b263vzTfflA4dOsjx48flypUr8vjjj0tCQoKWy2QyyaeffioFBQVy7tw52bVrV4XbpuSB7Ga2\ne2lr1qyRI0eOiIjIpk2bxN3dXXbu3CkiRQcDb29vrRk9fvy47N+/X0REevXqJQ899JBkZ2dLfn6+\nbN68ucy2KVa6KfT29tYa90uXLlW5/Us/T8XNTsuWLWXdunXa48THx8vcuXPLzZmYmCjDhg3TLi9a\ntEiaNm0qR48eldzcXOnfv792e/HBd8SIEZKXlyeXLl0qs74JEybImDFjpKCgQAoKCmTr1q3lbqsp\nU6bILbfcIuvXr5eCggIZPny4hIWFyfTp06WgoEDef/99uzeKuLg4+eCDD+TZZ5/VmoGSTeG1vC+I\niNx7773SqVMn+fTTT7U33Mq0b99ennvuOcnPz5etW7eKl5eX9nxkZGSIr6+v9lxv2LBBfH19tcav\nsn3sWu4bFhYmv/76qxQWFkp+fn6lr8nr3c9SU1PF09NTtmzZIpcvX5Znn31WXF1dK2wKK9vHK9sf\nOnfuLE888YRcvnxZdu3aJf7+/rJx40YRqbopbN68uRw8eFDbDuPHj5crV67I5s2bxWQylXld/vOf\n/5TLly/L+vXrpX79+hIfHy9nzpyR48ePS0BAgGzatElbd1pamvj4+IjRaJTWrVvLuXPnys29f/9+\nCQkJ0d7/09LStH12x44dsn37diksLBSbzSYtWrSwOygbDAaJj4+XnJwcSU1Nlfr160u3bt3k6NGj\ncv78eWnZsqXWBBS/PxVn3LRpk3h4eGj5SzaFO3fulICAAElJSZGrV6/KRx99JOHh4doH4JJyc3PF\nYDCU+cBfOn/x7ZmZmWIwGOSPP/7Qlv3888+ldevWIiIyd+5c6dmzp926+vTpo72/REVFyX//+1/t\ntrNnz4rBYJDMzExJS0sTd3d3ycnJERGRgoICCQoKku3bt0tubq54eXlpeU+dOqU1XFOnTpX77rtP\nhg4dKr6+vnLnnXdq27I66y3tm2++kdjYWO1D8v79+7XXRXnH9VdffVV7L/P19ZXBgwdLbm6upKam\nipubm9hsNhEpeg8eOnSorFq1Spo0aSIFBQV2TWFubq64uLjYvX7LM23aNAkNDZV33nlH9uzZYzcw\nUB6DwSA9evSQrKwsuXTpUoWvq+IPLpX1QQsWLJDmzZtLRkaGZGZmSlxcnBiNRiksLKx024oU9SoG\ng0F7XZSn0qZw6dKllXbyIiKRkZF2B8XiTxoiRRvMzc3N7s0nICBAtm/fLiJlP5GVJzo6WlauXCki\nRQf7W2+9Vbttz549ZV6kvr6+2gG75PqrqqW0p59+Wp555hkRKf9NtGTjsWTJEmnXrp3d/Tt06CAf\nfvihiBQdZF977TXttnfeeUfuv//+ch/34Ycf1g4AIiIHDx7UGpqrV6+Kh4eH9kYpIvLDDz9oB/Tk\n5OQyB6sWLVrYHXxOnDgh9erVk4KCApk+fbr079+/3DrK2zYlG42b2e5ViY+Pl7feektERB577DF5\n9tlnyyxz4sQJMRqN5Taa19IUjhgxotIaSm7/yp6nmTNnypAhQ0SkaIdzd3fXdt7SSh6YRUTuvvtu\nWbBggXb5wIEDUq9ePSksLNRec0ePHq2wxsmTJ0vfvn3l0KFDZW4r3RT26NFDu23VqlXi6empvZFd\nuHBBDAaD9gYcFxcnixYtkjNnzoi3t7ekpqbaNYUff/xxmfeF4lE4Nzc3rTnPysqSCRMmSKtWrcTF\nxUWio6Plp59+KjdLWlqauLq62o2IDR06VGtGZs6caddQi4jcd9992oG+sn3sWu47ZcqUcusqVvI1\neb372dSpU7UGUUTk4sWLUr9+/XKbwqr28Yr2h2PHjomLi4vk5uZq17344osycuRIEam8KTx06JA0\nbdpURP7aDnl5edp6Bg8eXOa+J06c0G739fW1O9gPGDCg3FGUzMxMGTp0qHbmobTff/9dAgIC5Lvv\nvrMbBSzPvHnzpF+/ftplg8Fgd3YmNjZWZs2apV0eP368jBs3TkT+aiRKZhw0aJC8+uqrImLfdIwZ\nM6bMh+Pbbrut3KYhIyNDDAZDuQ1jefmPHTtWZvn169dr+9krr7yijcIVGzJkiEydOlVEit6Di0fh\nRESuXLliN+J11113yZIlS7T1RkZGikhR8+rj4yNffPGF3XMgIjJ69GgxGAyyePFiKSgokE8//VR8\nfHzk3Llz1V5vSRs3bpRmzZrJ//73vzIfPss7rpd+L0tJSdGWj42N1XqIKVOmaO8F7dq1kwULFtg1\nhenp6WIwGOTAgQPa/Z977jnx8fERDw8PmTZtmogUjda9/fbb0qlTJ2nQoIEEBwfbnaUszWAwSHJy\nsnb5el5XIkV90KpVq0REpFu3bnZn09avX6/tz5VtW5G/nvP09PQKa610cpOvry/Onj1b6ZyrEydO\nICwsTLscGhqKEydO2K2j5Bwqd3d35ObmVri+JUuWICYmBmazGWazGfv27cO5c+e020vOSXJzcwMA\n+Pv7211X0forq2X79u3o1q0bAgIC4OPjg4ULF9o9bmVOnDiB0NBQu+vCwsLsnoeGDRteU40nT560\nm8Recr1nzpxBXl4eYmNjteenZ8+eOHv2bIW12Ww29OvXT1u+ZcuWcHV1xenTp5GRkYEmTZpcU8bS\nHLnd161bh/bt28PX1xdmsxlr167VnvuMjAxERkaWuU96ejosFgu8vb2vu3aDwVDmiwKVbf/09PQK\nn6chQ4Zg9erVyMvLw3//+1906dLlmufNnTx5ssxzWFBQgNOnT2vXVfaFhueeew5NmzZFjx49EBkZ\niddff73CZQMCArT/u7m5wc/PT5tMX7wfld4+fn5+ePLJJzF58mS7ifflvS/88MMPyMrKgq+vrzYf\ny8fHBzNmzMC+fftw+vRpREdHIz4+HgAwZswYmEwmmEwmzJw5EydOnIDFYsEtt9yirbNx48bautLS\n0vDZZ59pr2Oz2Yxt27bh1KlT2vIV7WPXct/Sz3Nlr8nyVLafnTx5Eo0bN9aWdXd3h6+vb7nrqWof\nr2h/KH7+PDw8tOtCQ0Nx/PjxCmsutnbtWvTq1Utbj9ls1l4TAOxeo8VKvw+Xvlzevm42mzF79mys\nXr0aFy5cKHN706ZN8eabbyIxMRGBgYFISEjAyZMnAQAHDx5E7969tS8pTJw4scz2qKymW265xa6m\n8jIWP1ZJaWlpmDNnjt1rJyMjo9xlfXx8AAA5OTllbisvv6enJwDYPRfnz5+HyWQCAHh6epZ5nrKz\nsyu8/fz58wCg3T548GAsW7YMQNGXRYcMGQKgaL7w8uXL8e677yI4OBi9e/fGgQMHtOctIiICDz/8\nMFxcXPDggw8iJCQE27Ztq/Z6S+rWrRuefPJJPPHEEwgMDMTjjz9e4fPq6+tb5r2sstdj8XvKtGnT\n8Nprr+Hy5cvabWazGUaj0W77zpo1C1lZWejXrx8KCwsBFP0iyNixY7F161acP38eEydOxKhRo7B/\n//5yawTs32Oqel2V1wcVvwdU1iNUtm2Bv16bxa/V8lTaFHbo0AENGjTAV199VeEywcHBsNls2uVj\nx44hODi4stVqSn/DKy0tDY899hjefvttZGZmIisrC7fffvtNTfy+1m+RDR48GPHx8cjIyEB2djbG\njBmjHfSqWkejRo2QlpZmd11aWhoaNWp03fUGBQXZfQuq5P/9/Pzg5uaGX3/9FVlZWcjKykJ2dra2\no5VXZ2hoKL755htt+aysLOTl5SE4OBghISE4fPhwuXVUlflmtntJly9fxoABA/D888/jjz/+QFZW\nFnr16qVt85CQEBw6dKjM/UJCQpCZmam9sZTk4eFh9y3Kkgf/ipS3/YtrCA0NrfB5aty4Mdq3b48v\nv/wSS5curfSnO0o/p+U9h66urnZvaJVtB09PT8yePRuHDx/GqlWrMHfuXCQnJ1eZ9Xo899xzSE5O\nxo4dO7Trit8XVqxYcc3r8fX1xfjx43HixAlkZWXh3XffRU5ODnJycjBhwgQEBQUhMzMTf/75p3af\n9PR0LX9oaCiGDRtm9zrOycnB888/X+VjX8t9Sz7PVb0mr3c/CwoKQnp6urZsXl5ehQ1mVft4RftD\ncHAwMjMz7Q5+x44ds2tGK1KyKQwKCtJqL5aWlnbd38ataPn8/HwYjUY0aNCg3NsTEhKwZcsW7TFf\neOEFAEU/Q9KyZUscOnQI58+fx2uvvXZdXxArXU95Gct7/woNDcXEiRPttmtubm65Pynl4eGByMhI\nu4NwaSXzm81mBAUFYdeuXdrtu3fvxu233w6g6Esqe/bssbv/3r170apVK+320vcNDAyE2WwGAAwc\nOBBWqxXHjx/HihUrMHjwYG3ZHj16YP369Th16hSaN2+O0aNHAwCioqLK1Fz83FV3vaU99dRT+Pnn\nn/Hrr7/i4MGDeOONN8rUdDPuvfdeNG3aFG+//bZ2nYeHB9q1a4cvvviizPJSwZfQGjRogLFjx8Js\nNuO3336r8PFK/wJARa+rqvqgynoEoOJtCwC//fYbwsPDtQa/PJU2hd7e3njllVfwxBNPYOXKlcjL\ny0N+fj7WrVun7awJCQmYNm0azp49i7Nnz+KVV1655t+0CgwMtPv9vYsXL8JgMMDPzw9Xr15FUlIS\n9u3bd03rKk9FG7E8ubm5MJvNqF+/PlJSUvCf//xH24j+/v4wGo0VNgY9e/bEwYMHsWzZMhQUFGD5\n8uXYv38/evfubVfLtRg0aBA+/PBD/Pbbb8jLy8PUqVO124xGI0aPHo1x48bhzJkzAIDjx49j/fr1\nAIqez3Pnztl9GhszZgxeeukl7YVz5swZ7ZvjQ4YMwXfffYfPPvsMBQUFOHfunPbtqtLbprSb2e4l\nXblyBVeuXIGfnx+MRiPWrVun5QGARx55BElJSdi4cSOuXr2K48eP48CBAwgKCkLPnj0xduxYZGdn\nIz8/X/tdvqioKKSmpmL37t24dOkSEhMT7R6zvG1R3vYvNnjw4AqfJwAYPnw4Xn/9dezbtw/9+/ev\nMGvpx01ISMC8efNgs9mQm5uLl156CQ899NA1fzt5zZo1OHToEEQEXl5ecHFxuaFvNldWq7e3N8aP\nH283Cunj44MpU6Zg7Nix+OKLL5CTk4OrV69i165duHjxorbcCy+8gNTUVBQUFCAnJwcLFizArbfe\nWu5BICwsDG3btkViYiLy8/Px448/4uuvv9ZuHzp0KFavXo3169ejsLAQly5d0g54pWsu7XrvW9Vr\n8nr3s4EDB+Lrr7/Gtm3bcOXKFUyePLnChqaqfbyi/SEkJAQdO3bEiy++iMuXL2PPnj1YvHix3Tdh\ny5OXl4effvoJ3bp1s9sOU6ZMQX5+PrZu3Wq3Ha5V8fP55Zdf4uDBg7h69SrOnDmDZ599Fr169Sq3\nKTx48CA2btyIy5cvo0GDBrjlllvg4uICoGj/NJlMcHd3x/79++1++qiqGkr/v1hxxi1btmDNmjV4\n4IEHtGWLlx89ejTeffddpKSkQERw8eJFrFmzpsKzHr169cKmTZu0y1999VWl+YcPH45p06YhOzsb\nv/32Gz744AOMHDkSQNFPQ7m4uGD+/Pm4fPky5s+fD6PRiLvvvlu776JFi/Dbb78hKysLr776Kh5+\n+GHtsf39/REXF4eRI0eiSZMmuO222wAAf/zxB1auXImLFy+iXr168PDw0J7n+Ph4ZGVlYcmSJSgs\nLMTnn3+O48ePo1OnTtVeb0k///wztm/fjvz8fLi7u9u9Fq7nuF6V1157DbNmzbK7btasWVi8eDFe\nf/11/PHHHwCKRuhtNpvWE7z55pvYtGkT/vzzTxQUFOCjjz5Cbm4uYmJirulxK3tdVdUHDRo0CPPn\nz8fx48eRlZWFmTNnardVtm0BYNOmTdoHwIpUeQR59tlnMXfuXEybNg0BAQEIDQ3FO++8g379+gEA\nXn75ZbRt2xZt2rRBmzZt0LZtW7vfEKqso3/kkUfw66+/wmw2o3///mjZsiXGjx+PDh06oGHDhti3\nbx/uuusuu3WVXl9l6y+9fGXLvvPOO5g8eTK8vLzw6quv2n0SdHd3x8SJE9GpUydYLBZs377dbt2+\nvr74+uuvMWfOHPj5+WH27Nn4+uuvYbFYyn3syn4H6/7778e4ceNw9913o1mzZrjnnnvsln399dfR\ntGlTtG/fHt7e3ujevTsOHjwIAGjevDkSEhLQpEkTWCwWnDp1Ck8//TT+8Y9/oEePHvDy8kKHDh2Q\nkpICoGjUYe3atZgzZw58fX0RExOjfdIrvW1Ku5ntXpLJZML8+fMxaNAgWCwWLFu2TPuNLwC48847\nkZSUhGeeeQY+Pj6Ii4vTDrwff/wx6tWrh+bNmyMwMBDz588HADRr1gyTJ0/Gvffei9tuuw2dO3eu\n8vmvbPuHhoZW+DwBRT/hcOzYMfTr18/u9GdppR931KhRGDZsGLp06YImTZrA3d0d//rXv675Ofz9\n99/RvXt3mEwmdOzYEU888QS6du1a5eOWt+7KLj/99NNwdXW1u+65557D3LlzMWvWLDRs2BANGzbE\nmDFjMGvWLHTo0AFA0Y91F59SjYyMRHp6eqU/ZfXJJ5/gxx9/hK+vLyZNmoQHH3wQ9evXB1A0Irty\n5UpMnz5dex+aM2eO3cGhom18vfet6jV5vftZy5Yt8fbbb2Pw4MEIDg6GxWKpdFpAZft4ZfvDsmXL\nYLPZEBwcjP79++OVV17RDsgVvRdu3LgRHTt21J5noOhU4/bt22GxWPDKK69gxIgRdvVdy75dvMyJ\nEydw//33w8vLC3fccQfMZnOFv1V5+fJlvPjii/D390dQUBDOnj2LGTNmAABmz56N//znP/Dy8sJj\njz2Ghx56qMr39sr2+YYNG8JsNiM4OBjDhg3DwoUL0axZszLLxsbG4v3338eTTz4Ji8WCW2+9FUuW\nLKkw92OPPYZPPvlEu3z8+PFK80+dOhWRkZEICwtDt27d8MILL6BHjx4AgPr162PFihVYsmQJzGYz\nlixZghUrVsDV1RUAcN999+H5559Ht27dEB4ejsjISLtBBKDoA+33339vN0p49epVzJs3D40aNYKv\nry+2bNmiNdkWiwWrVq3C7Nmz4ePjg1mzZmHlypXasay66y124cIFPPbYY7BYLAgPD4efnx+ee+65\ncrflzfQEHTt2RLt27eyu69SpEzZu3IjNmzfjtttu06ZwdOvWDU899RSAohHF8ePHIygoCP7+/liw\nYAG++OILhIeHV/i4JVX2uqqqDxo9ejTuu+8+REVFoW3bthgwYIC2/sq2LVD027KPP/54hc8PABjE\nUS03UR126623YuHChdpBmG7egw8+iJYtWzrlt8zqiieeeAKtW7fGmDFjnF1KjbFarRg2bJjdKX1H\nGjJkCAYNGmT3QYLI2VavXo1PPvkEn376aaXLudZQPUTK+vLLL2EwGNgQ3qSff/4ZZrMZERER+Pbb\nb7Fq1SrUkY6fAAAgAElEQVS89NJLzi5LadHR0fjHP/7h7DKUUnKkkEgv+vTpgz59+lS5HJtCopsQ\nFxeH/fv34+OPP3Z2KbXeqVOn0L9/f5w7dw4hISF49913y534To5TchJ6XeKILyoQqYinj4mIiIio\n6i+aEBEREZH6ePpYZ6Kjo+1+7oSIiEhlUVFRdr9hSM7DkUKd2b17t/Y7TLX135QpU5xeA3Ook4E5\n9PVPhQyq5FAhg4hwIERH2BSSw5X8Kx21mQo5VMgAMIeeqJABUCOHChlIX9gUEhERERGbQnK84j97\nVNupkEOFDABz6IkKGQA1cqiQgfSFP0mjMwaDAdwkRERUV/C4px8cKSSHs1qtzi7BIVTIoUIGgDn0\nRIUMgBo5VMhA+sKmkIiIiIh4+lhvOIxORER1CY97+sEfr9Yh/l1OIiJSicnbhAvZF5xdBlWBI4U6\nYzAYgERnV3GTjgKIcHYRDqBCDhUyAMyhJypkANTIUZsyJKLC0UCOFOoH5xQSEREREZtCqga15ZNr\nVVTIoUIGgDn0RIUMgBo5VMhAusKmkIiIiIjYFFI1OOrsAhxEhRwqZACYQ09UyACokUOFDKQrbAqJ\niIiIiE0hVQNV5rmokEOFDABz6IkKGQA1cqiQgXSFTSERERERsSm8Uenp6ejWrRtatWqF22+/HfPn\nz7e7fc6cOTAajcjMzAQA2Gw2uLm5ISYmBjExMRg7dqwzyq4ZqsxzUSGHChkA5tATFTIAauRQIQPp\nCv+iyQ2qV68e5s2bh+joaOTm5iI2Nhbdu3dHixYtkJ6ejg0bNiAsLMzuPk2bNsUvv/zipIqJiIiI\nKsaRwhvUsGFDREdHAwA8PT3RokULnDhxAgDw7LPPYtasWc4sz7lUmeeiQg4VMgDMoScqZADUyKFC\nBtIVNoUOYLPZ8Msvv6Bdu3ZYuXIlGjdujDZt2pRZ7ujRo4iJiUFcXBy2bt3qhEqJiIiIysfTxzcp\nNzcXAwcOxFtvvQWj0Yjp06djw4YN2u3Ff88xODgY6enpMJvN2LlzJ+Lj45GamgqTyeSs0qtPbfp7\nnJVRIYcKGQDm0BMVMgBq5FAhA+kKm8KbkJ+fjwEDBmDo0KGIj4/H3r17YbPZEBUVBQDIyMhAbGws\nUlJSEBAQgPr16wMA7rjjDkRGRuL333/HHXfcUXbFiTUYgoiIqLoZAXd3E9auXQ0AsFqtsNlszq2J\nyjBI8VAWXRcRwYgRI+Dr64t58+aVu0xERAR27NgBi8WCs2fPwmw2w8XFBUeOHEGXLl2wb98++Pj4\n2N3HYDAA4CYhIiLVGFBey2EwlH891TzOKbxB27Ztw9KlS5GcnKz9zMy6devslilq8Ips3rwZUVFR\niImJwQMPPICFCxeWaQiJiIiInIUjhTqjxkihFUCck2twBCtqfw4ran8GgDn0xIranwFQI4cVtSsD\nRwr1jiOFRERERMSRQr1RY6SQiIioNI4U6h1HComIiIiITSFVB6uzC3AQq7MLcACrswtwEKuzC3AQ\nq7MLcACrswtwEKuzC3AAq7MLIMWwKSQiIiIizinUG84pJCIiNXFOod5xpJCIiIiI2BRSdbA6uwAH\nsTq7AAewOrsAB7E6uwAHsTq7AAewOrsAB7E6uwAHsDq7AFIMm0IiIiIigquzC6DyGKpehIiIqBYx\nmczOLoGqwKZQhzjhloiIiGoaTx+Tw1mtVmeX4BAq5FAhA8AceqJCBkCNHCpkIH1hU0hERERE/J1C\nveHvNRERUV3C455+cKSQiIiIiNgUkuOpMs9FhRwqZACYQ09UyACokUOFDKQvbAqJiIiIiHMK9YZz\nK4iIqC7hcU8/OFJIRERERGwKyfFUmeeiQg4VMgDMoScqZADUyKFCBtIXNoVERERExDmFesO5FURE\nVJfwuKcfHCkkIiIiIjaF5HiqzHNRIYcKGQDm0BMVMgBq5FAhA+kLm0IiIiIi4pxCveHcCiIiqkt4\n3NMPjhQSEREREZvCG5Weno5u3bqhVatWuP322zF//ny72+fMmQOj0YjMzEwAQEpKCmJiYhATE4M2\nbdpg+fLlzii7Rqgyz0WFHCpkAJhDT1TIAKiRQ4UMpC+uzi6gtqpXrx7mzZuH6Oho5ObmIjY2Ft27\nd0eLFi2Qnp6ODRs2ICwsTFu+devW2LFjB4xGI06dOoXbb78dAwcOhIuLixNTEBERERXhnEIHiY+P\nx1NPPYV77rkHDzzwACZNmoS+fftix44dsFgsdssePXoU9957Lw4fPlxmPZxbQUREdQmPe/rB08cO\nYLPZ8Msvv6Bdu3ZYuXIlGjdujDZt2pRZLiUlBa1atUKrVq0wd+5cJ1RKREREVD42hTcpNzcXAwcO\nxFtvvQWj0Yjp06dj6tSp2u0lP/387W9/Q2pqKnbu3Imnn34a58+fd0bJ1U6VeS4q5FAhA8AceqJC\nBkCNHCpkIH3hnMKbkJ+fjwEDBmDo0KGIj4/H3r17YbPZEBUVBQDIyMhAbGwsUlJSEBAQoN2vefPm\niIyMxKFDhxAbG1tmvSNHjkR4eDgAwMfHB9HR0YiLiwPw15uAni/v2rVLV/XU5cu7du3SVT03ermY\nXuqpy9uD+7d+LtfW11Px/202G0hfOKfwBokIRowYAV9fX8ybN6/cZSIiIrQ5hTabDY0bN4arqyvS\n0tLQuXNn7Nu3D15eXnb34dwKIiKqS3jc0w+ePr5B27Ztw9KlS5GcnKz91My6desqXH7r1q2Ijo5G\nTEwMHnjgAbz33ntlGkIiIiIiZ+FIoc6o8InJarVqpwtqMxVyqJABYA49USEDoEYOFTIAahz3VMGR\nQiIiIiLiSKHe8BMTERHVJTzu6QdHComIiIiITSE5XsmfHajNVMihQgaAOfREhQyAGjlUyED6wqaQ\niIiIiDinUG84t4KIiOoSHvf0gyOFRERERMSmkBxPlXkuKuRQIQPAHHqiQgZAjRwqZCB9YVNIRERE\nRJxTqDecW0FERHUJj3v6wZFCIiIiImJTSI6nyjwXFXKokAFgDj1RIQOgRg4VMpC+sCkkIiIiIs4p\n1BvOrSAiorqExz394EghEREREbEpJMdTZZ6LCjlUyAAwh56okAFQI4cKGUhf2BQSEREREecU6g3n\nVhARUV3C455+uDq7ACrLYDDc8H1N3iZcyL7gwGqIiIioLuBIoc4YDAYg8SZWkAinf+KyWq2Ii4tz\nag2OoEIOFTIAzKEnKmQA1MihQgaAI4V6wjmFRERERMSRQr1RYaSQiIjoWnGkUD84UkhEREREbArJ\n8VT57SwVcqiQAWAOPVEhA6BGDhUykL6wKSQiIiIizinUG84pJCKiuoRzCvWDI4VERERExKbwRqWn\np6Nbt25o1aoVbr/9dsyfP9/u9jlz5sBoNCIzMxMAsGHDBrRt2xZt2rRB27ZtkZyc7Iyya4Qq81xU\nyKFCBoA59ESFDIAaOVTIQPrCv2hyg+rVq4d58+YhOjoaubm5iI2NRffu3dGiRQukp6djw4YNCAsL\n05b39/fH119/jYYNGyI1NRX33XcfMjIynJiAiIiI6C+cU+gg8fHxeOqpp3DPPffggQcewKRJk9C3\nb1/s2LEDFovFblkRgZ+fH06dOoV69erZ3cY5hUREVJdwTqF+8PSxA9hsNvzyyy9o164dVq5cicaN\nG6NNmzYVLv/FF18gNja2TENIRERE5CxsCm9Sbm4uBg4ciLfeegtGoxHTp0/H1KlTtdtLf/pJTU3F\nhAkTsHDhwpoutcaoMs9FhRwqZACYQ09UyACokUOFDKQvnFN4E/Lz8zFgwAAMHToU8fHx2Lt3L2w2\nG6KiogAAGRkZiI2NRUpKCgICApCRkYH+/fvj448/RkRERMUrTryJogz2fyS9+E2jJi/v2rXLqY/P\ny39d3rVrl67qudHLxfRST13eHty/9XO5tr6eiv9vs9lA+sI5hTdIRDBixAj4+vpi3rx55S4TERGh\nzSnMzs5G165dMXXqVMTHx1e4XoPBAOBmNgnnZhARUe3BOYX6wdPHN2jbtm1YunQpkpOTERMTg5iY\nGKxbt67C5f/973/j8OHDmDp1qrb82bNna7BiIiIioopxpFBnVBgptJY4fV2bqZBDhQwAc+iJChkA\nNXKokAHgSKGecKSQiIiIiDhSqDcqjBQSERFdK44U6gdHComIiIiITSE5XsmfHajNVMihQgaAOfRE\nhQyAGjlUyED6wqaQiIiIiDinUG84p5CIiOoSzinUD44UEhERERGbQnI8Vea5qJBDhQwAc+iJChkA\nNXKokIH0hU0hEREREXFOod5wTiEREdUlnFOoH67OLoDKY7jhe5pMZgfWQURERHUFTx/rkIjc8L8L\nFzKdXb4y81xUyKFCBoA59ESFDIAaOVTIQPrCppCIiIiIOKdQbzi3goiI6hIe9/SDI4VERERExKaQ\nHE+VeS4q5FAhA8AceqJCBkCNHCpkIH1hU0hEREREnFOoN5xbQUREdQmPe/rBkUIiIiIi4o9X61HR\nXzUhIiJSg8nbhAvZF5xdBlWBp491xmAwAInOruImHQUQ4ewiHECFHCpkAJhDT1TIAKiRozZlSESF\np4h5+lg/ePqYHK+2vElVRYUcKmQAmENPVMgAqJFDhQykK2wKiYiIiIhNIVWDo84uwEFUyKFCBoA5\n9ESFDIAaOVTIQLrCppCIiIiI2BRSNVBlnosKOVTIADCHnqiQAVAjhwoZSFfYFBIRERERm8LqkJ2d\njYEDB6JFixZo2bIltm/fjszMTHTv3h3NmjVDjx49kJ2d7ewyq48q81xUyKFCBoA59ESFDIAaOVTI\nQLrCprAaPP300+jVqxd+++037NmzB82bN8fMmTPRvXt3HDx4EPfccw9mzpzp7DKJiIiINPzxagc7\nf/48YmJicOTIEbvrmzdvjk2bNiEwMBCnTp1CXFwc9u/fX+b+Svx4NRERUUmJ/PHq2oAjhQ529OhR\n+Pv74+GHH8Ydd9yB0aNH4+LFizh9+jQCAwMBAIGBgTh9+rSTKyUiIiL6C5tCBysoKMDOnTsxduxY\n7Ny5Ex4eHmVOFRsMBrX/vrEq81xUyKFCBoA59ESFDIAaOVTIQLri6uwCVNO4cWM0btwYd955JwBg\n4MCBmDFjBho2bIhTp06hYcOGOHnyJAICAipeSWLN1EpERFQjjIC7uwlr164GAFitVthsNufWRGVw\nTmE16NKlCz744AM0a9YMiYmJyMvLAwD4+vrihRdewMyZM5GdnV3ul02KRhC5SYiISDXlzx3knEL9\nYFNYDXbv3o1HH30UV65cQWRkJJKSklBYWIhBgwbh2LFjCA8Px3//+1/4+PiUuS+bQiIiUhObQr1j\nU6gzajSFVgBxTq7BEayo/TmsqP0ZAObQEytqfwZAjRxW1K4MbAr1jl80ISIiIiKOFOqNGiOFRERE\npXGkUO84UkhEREREbAqpOlidXYCDWJ1dgANYnV2Ag1idXYCDWJ1dgANYnV2Ag1idXYADWJ1dACmG\nTSERERERcU6h3nBOIRERqYlzCvWOI4VERERExKaQqoPV2QU4iNXZBTiA1dkFOIjV2QU4iNXZBTiA\n1dkFOIjV2QU4gNXZBZBi2BQSEREREecU6g3nFBIRkZo4p1DvXJ1dAJXH4OwCiIiIHMpkMju7BKoC\nTx/rkIjU6n/JyclOr4E51MnAHPr6p0IGVXLUtgwXLmQ6+/BKVWBTSEREREScU6g3nFtBRER1CY97\n+sGRQiIiIiJiU0iOZ7VanV2CQ6iQQ4UMAHPoiQoZADVyqJCB9IVNIRERERFxTqHecG4FERHVJTzu\n6QdHComIiIiIP16tR0V/1YSIiEgNJm8TLmRfcHYZVAWePtYZg8EAJDq7ipt0FECEs4twABVyqJAB\nYA49USEDoEaO2pQhERWeIubpY/3g6WNyvNryJlUVFXKokAFgDj1RIQOgRg4VMpCusCkkIiIiIjaF\nVA2OOrsAB1EhhwoZAObQExUyAGrkUCED6QqbQiIiIiJiU0jVQJV5LirkUCEDwBx6okIGQI0cKmQg\nXWFTSERERERsCqkaqDLPRYUcKmQAmENPVMgAqJFDhQykK2wKq8GoUaMQGBiI1q1ba9dNmjQJUVFR\niI6Oxj333IP09HQnVkhERERkjz9eXQ22bNkCT09PDB8+HHv37gUA5OTkwGQyAQD+9a9/Yffu3fjg\ngw/K3FeJH68mIiIqKZE/Xl0bcKSwGnTu3Blms9nuuuKGEAByc3Ph5+dX02URERERVYhNYQ2aOHEi\nQkND8dFHH2HChAnOLqf6qDLPRYUcKmQAmENPVMgAqJFDhQykKzx9XE1sNhv69OmjnT4uaebMmThw\n4ACSkpLK3GYwGGqiPCIioppjBNwaeGLt2tUAAKvVCpvNBgD46KOPePpYJ9gUVpPKmsJjx46hV69e\n2LdvX5nbippCbhIiIlJN+XMHOadQP3j6uIb8/vvv2v9XrlyJmJgYJ1ZDREREZI9NYTVISEhAx44d\nceDAAYSEhGDx4sV48cUX0bp1a0RHR8NqtWLOnDnOLrMaWZ1dgINYnV2AA1idXYCDWJ1dgINYnV2A\nA1idXYCDWJ1dgANYnV0AKcbV2QWoaNmyZWWuGzVqlBMqISIiIro2nFOoM5xTSEREauKcQr3j6WMi\nIiIiYlNI1cHq7AIcxOrsAhzA6uwCHMTq7AIcxOrsAhzA6uwCHMTq7AIcwOrsAkgxbAqJiIiIiHMK\n9YZzComISE2cU6h3HCkkIiIiIjaFVB2szi7AQazOLsABrM4uwEGszi7AQazOLsABrM4uwEGszi7A\nAazOLoAUw6aQiIiIiDinUG84p5CIiNTEOYV6x79ooksGZxdARETkUCaT2dklUBV4+liHRKRW/0tO\nTnZ6DcyhTgbm0Nc/FTKokqO2ZbhwIdPZh1eqAptCIiIiIuKcQr3h3AoiIqpLeNzTD44UEhERERGb\nQnI8q9Xq7BIcQoUcKmQAmENPVMgAqJFDhQykL2wKiYiIiIhzCvWGcyuIiKgu4XFPPzhSSERERERs\nCsnxVJnnokIOFTIAzKEnKmQA1MihQgbSFzaFRERERMQ5hXrDuRVERFSX8LinHxwpJCIiIiI2heR4\nqsxzUSGHChkA5tATFTIAauRQIQPpC5tCIiIiIuKcQr3h3AoiIqpLeNzTD44UEhERERGbQnI8Vea5\nqJBDhQwAc+iJChkANXKokIH0hU1hNRg1ahQCAwPRunVr7brPPvsMrVq1gouLC3bu3OnE6oiIiIjK\n4pzCarBlyxZ4enpi+PDh2Lt3LwBg//79MBqNePzxxzFnzhzccccd5d6XcyuIiKgu4XFPP1ydXYCK\nOnfuDJvNZndd8+bNnVMMERER0TXg6WNyOFXmuaiQQ4UMAHPoiQoZADVyqJCB9IVNIRERERHx9LEe\njRw5EuHh4QAAHx8fREdHIy4uDsBfnwz1frmYXuq5kctxcXG6qudGLhdfp5d66vrl4uv0Ug/3b/3U\ncyOXi6/TSz3X8/qxWq1lplmR8/GLJtXEZrOhT58+2hdNinXr1g2zZ89GbGxsuffjhFsiIqpLeNzT\nD54+rgYJCQno2LEjDhw4gJCQECxevBgrVqxASEgI/ve//+Hvf/87evbs6ewyq03p0YTaSoUcKmQA\nmENPVMgAqJFDhQykLzx9XA2WLVtW7vXx8fE1XAkRERHRteHpY53hMDoREdUlPO7pB08fExERERGb\nQnI8Vea5qJBDhQwAc+iJChkANXKokIH0hU0hEREREXFOod5wbgUREdUlPO7pB0cKiYiIiIhNITme\nKvNcVMihQgaAOfREhQyAGjlUyED6wqaQiIiIiDinUG84t4KIiOoSHvf0gyOFRERERMSmkBxPlXku\nKuRQIQPAHHqiQgZAjRwqZCB9YVNIRERERJxTqDecW0FERHUJj3v6wZFCIiIiImJTSI6nyjwXFXKo\nkAFgDj1RIQOgRg4VMpC+sCkkIiIiIs4p1BvOrSAiorqExz394EghEREREbEp1CODwXDD/7x8vJxd\nvjLzXFTIoUIGgDn0RIUMgBo5VMhA+uLq7AKoHIk3ftecxByHlUFERER1B+cU6ozBYLipphCJ4NwM\nIiKqNTinUD94+piIiIiI2BSS46kyz0WFHCpkAJhDT1TIAKiRQ4UMpC9sComIiIiIcwr1hnMKiYio\nLuGcQv3gSCERERERsSkkx1NlnosKOVTIADCHnqiQAVAjhwoZSF/YFFaDUaNGITAwEK1bt9auy8zM\nRPfu3dGsWTP06NED2dnZTqyQiIiIyB7nFFaDLVu2wNPTE8OHD8fevXsBAM8//zz8/Pzw/PPP4/XX\nX0dWVhZmzpxZ5r6cU0hERHUJ5xTqB0cKq0Hnzp1hNpvtrlu1ahVGjBgBABgxYgRWrFjhjNKIiIiI\nysWmsIacPn0agYGBAIDAwECcPn3ayRVVH1XmuaiQQ4UMAHPoiQoZADVyqJCB9IVNoRMYDIai08RE\nREREOuHq7ALqisDAQJw6dQoNGzbEyZMnERAQUPHCiTfxQIaiT49xcXEA/vokWdOXiznr8R1xOS4u\nTlf13Mjl4uv0Uk9dv1x8nV7q4f6tn3pu5HLxdXqp53peP1arFTabDaQv/KJJNbHZbOjTp4/dF018\nfX3xwgsvYObMmcjOzq74iya4mU3CCbtERFR78Ism+sHTx9UgISEBHTt2xIEDBxASEoKkpCRMmDAB\nGzZsQLNmzbBx40ZMmDDB2WVWm9KjCbWVCjlUyAAwh56okAFQI4cKGUhfePq4Gixbtqzc67/77rsa\nroSIiIjo2vD0sc7w9DEREdUlPH2sHzx9TERERERsCsnxVJnnokIOFTIAzKEnKmQA1MihQgbSFzaF\nRERERMQ5hXrDOYVERFSXcE6hfnCkkIiIiIjYFJLjqTLPRYUcKmQAmENPVMgAqJFDhQykL2wKiYiI\niIhzCvWGcwqJiKgu4ZxC/eBfNNElww3f02QyO7AOIiIiqit4+liHROSG/124kOns8pWZ56JCDhUy\nAMyhJypkANTIoUIG0hc2hURERETEOYV6w7kVRERUl/C4px8cKSQiIiIiNoXkeKrMc1EhhwoZAObQ\nExUyAGrkUCED6QubQiIiIiLinEK94dwKIiKqS3jc0w+OFBIRERERm0JyPFXmuaiQQ4UMAHPoiQoZ\nADVyqJCB9IVNIRERERFxTqHecG4FERHVJTzu6QdHComIiIiITSE5nirzXFTIoUIGgDn0RIUMgBo5\nVMhA+sKmkIiIiIg4p1BvOLeCiIjqEh739IMjhURERETEppAcT5V5LirkUCEDwBx6okIGQI0cKmQg\nfXF1dgF1TXh4OLy8vODi4oJ69eohJSXF2SURERERcU5hTYuIiMCOHTtgsVjKvZ1zK4iIqC7hcU8/\nePrYCfjiJyIiIr1hU1jDDAYD7r33XrRt2xbvv/++s8upFqrMc1EhhwoZAObQExUyAGrkUCED6Qvn\nFNawbdu2ISgoCGfOnEH37t3RvHlzdO7c2dllERERUR3HprCGBQUFAQD8/f3Rr18/pKSklGkKR44c\nifDwcACAj48PoqOjERcXB+CvT4Z6v1xML/XcyOW4uDhd1XMjl4uv00s9df1y8XV6qYf7t37quZHL\nxdfppZ7ref1YrVbYbDaQvvCLJjUoLy8PhYWFMJlMuHjxInr06IEpU6agR48e2jKccEtERHUJj3v6\nwTmFNej06dPo3LkzoqOj0a5dO/Tu3duuIVRF6dGE2kqFHCpkAJhDT1TIAKiRQ4UMpC88fVyDIiIi\nsGvXLmeXQURERFQGTx/rDIfRiYioLuFxTz94+piIiIiI2BSS46kyz0WFHCpkAJhDT1TIAKiRQ4UM\npC9sComIiIiIcwr1hnMriIioLuFxTz84UkhEREREbArJ8VSZ56JCDhUyAMyhJypkANTIoUIG0hf+\nTiERETmFxWJBVlaWs8ugGmI2m5GZmensMqgSnFOoM5xbQUR1Bd/v6paKtjdfB/rB08dERERExKaQ\nHE+VeS4q5FAhA8AceqJCBiIqH5tCIiIiIuKcQr3h3Aoiqiv4fle3cE6h/nGkkIiISHEPP/wwLBYL\n2rdv7+xSSMfYFJLDqTLnSIUcKmQAmENPqjuDl5cFBoOh2v55eVmqtf7KJCYmYtiwYTX+uFu2bMF3\n332HEydO4H//+1+NPz7VHvydQiIi0o2cnCwA1XcqMSfHUG3r1qu0tDSEh4fjlltucXYppHMcKSSH\ni4uLc3YJDqFCDhUyAMyhJypkuFbp6eno378/AgIC4Ofnh6eeegoigmnTpiE8PByBgYEYMWIELly4\nAACw2WwwGo1YsmQJwsLC4O/vj+nTpwMAvvnmG8yYMQPLly+HyWRCTEwMACApKQktW7aEl5cXIiMj\n8d5772mPb7Va0bhxY7zxxhsICAhAcHAwVqxYgbVr16JZs2bw9fXFzJkzK82waNEijB49Gj/++CNM\nJhOmTp2K7Oxs9O7dGwEBAbBYLOjTpw+OHz+u3SczMxMPP/wwGjVqBIvFgn79+gEAzp49i969e8Ns\nNsPX1xddunThXEDVCOkKNwkR1RXlvd8BEECq8d+1vccWFBRImzZt5Nlnn5W8vDy5fPmybN26VRYt\nWiRNmzaVo0ePSm5urvTv31+GDRsmIiJHjx4Vg8Egjz32mFy6dEl2794tDRo0kP3794uISGJiorZs\nsTVr1siRI0dERGTTpk3i7u4uO3fuFBGR5ORkcXV1lVdffVUKCgrk/fffF19fXxk8eLDk5uZKamqq\nuLm5ic1mqzTLhx9+KHfddZd2+dy5c/Lll1/Kn3/+KTk5OfLAAw9IfHy8dnuvXr3koYcekuzsbMnP\nz5fNmzeLiMiECRNkzJgxUlBQIAUFBbJ169Zrei6LVfTc87inH9wSOqPCzpGcnOzsEhxChRwqZBBh\nDj1xZAY9N4U//PCD+Pv7S2Fhod31d999tyxYsEC7fODAAalXr54UFhZqTeHx48e12//2t7/J8uXL\nRT+znSwAABL3SURBVERkypQpMnTo0EofNz4+Xt566y0RKXqu3dzc5OrVqyIicuHCBTEYDJKSkqIt\nHxsbKytWrKh0nUlJSXZNYWm//PKLmM1mERE5ceKEGI1Gyc7OLrPc5MmTpW/fvnLo0KFKH68ibAr1\nj6ePdeimJlH7eDm7fCKiWi89PR1hYWEwGu0PkydPnkRYWJh2OTQ0FAUFBTh9+rR2XcOGDbX/u7u7\nIzc3t8LHWbduHdq3bw9fX1+YzWasXbsW586d02739fWFwVA0D9LNzQ0AEBgYqN3u5uaGixcvXle2\nvLw8PP744wgPD4e3tze6du2K8+fPQ0SQnp4Oi8UCb2/vMvd77rnn0LRpU/To0QORkZF4/fXXr+tx\nSf/4RRM9Srzxu+Yk5jisjBulypwjFXKokAFgDj1RIcO1CAkJwbFjx1BYWAgXFxft+uDgYNhsNu3y\nsWPH4OrqisDAQBw7dqzSdRY3d8UuX76MAQMGYOnSpejbty9cXFzQr1+/ap+nN2fOHBw8eBApKSkI\nCAjArl27cMcdd0BEEBISgszMTJw/f75MY+jp6YnZs2dj9uzZSE1Nxd13340777wTd999d7XWSzWH\nI4VERESltGvXDkFBQZgwYQLy8vJw6dIlbNu2DQkJCZg3bx5sNhtyc3Px0ksv4aGHHiozoliehg0b\nwmazaU3flStXcOXKFfj5+cFoNGLdunVYv359dUdDbm4u3Nzc4O3tjczMTEydOlW7LSgoCD179sTY\nsWORnZ2N/Px8bNmyBQCwZs0aHDp0CCICLy8vuLi42DXMVPuxKSSHU+G32AA1cqiQAWAOPanuDCaT\nGYCh2v4Vrb9qRqMRq1evxqFDhxAaGoqQkBB89tlnGDVqFIYNG4YuXbqgSZMmcHd3x7/+9S/tfqVH\nA0t64IEHABSdEm7bti1MJhPmz5+PQYMGwWKxYNmyZejbt6/dfUqvr7L1V6R4elGxcePG4c8//4Sf\nnx86duyInj172t3+8ccfo169emjevDkCAwPx1ltvAQB+//13dO/eHSaTCR07dsQTTzyBrl27Xnc9\npF/8M3c6YzAYbur0MRLh9J8IsFqtSpxiUiGHChkA5tATR2bgnzerW/hn7vSPTaHOqNAUEhFdCzYD\ndQubQv3j6WMiIqJarmfPnjCZTGX+VfXj1kQlsSkkh1Nh3hSgRg4VMgDMoScqZFDRunXrkJOTU+bf\nhAkTnF0a1SJsCmtYYWEhYmJi0KdPH2eXQkRERKThnMIaNnfuXOzYsQM5OTlYtWpVmds5p5CI6grO\nJatbOKdQ/zhSWIMyMjKwdu1aPProo9wBiIiISFfYFNagZ555Bm+88cY1/chpbabKnCMVcqiQAWAO\nPVEhAxGVT+3uREe+/vprBAQEICYmhqOERERUox5++GFYLBa0b9/e2aWQjvFvH9eQH374AatWrcLa\ntWtx6dIlXLhwAcOHD8eSJUvKLpx4Ew9ksP9x2eJP9TV9uZizHt8Rl+Pi4nRVz41cLr5OL/XU9cvF\n1+mlHmfv33VNYmIiDh8+jI8//rhGH3fLli347rvvcOLECdxyyy01+tilFb8GrFar3d+QJn3gF02c\nYNOmTZg9ezZWr15d5raiPzV0M5uEE3aJqHYo7wsGXj5eyDmfU22PafI24UL2hWpbf2Wc1RQuXboU\nCxcu1P6GcXUr3qbl/Yk+ftFE33j62Elu5O9X1halRxNqKxVyqJABYA49qe4MOedzis6WVNO/62k4\n09PT0b9/fwQEBMDPzw9PPfUURATTpk1DeHg4AgMDMWLECFy4UNRk2mw2GI1GLFmyBGFhYfD398f0\n6dMBAN988w1mzJiB5cuXw2QyISYmBgCQlJSEli1bwsvLC5GRkXjvvfe0x7darWjcuDHeeOMNBAQE\nIDg4GCtWrMDatWvRrFkz+Pr6Vvnj1IsWLcLo0aPx448/wmQyYerUqQCAN954A8HBwWjcuDEWL14M\no9GII0eOAADWrl2LVq1awcvLC40bN8acOXO09a1cuRLR0dHw9vZG06ZNsX79egBFo78vv/wyOnXq\nBA8PDxw9evSan2fSD54+doKuXbvyj4gTEelYYWEhevfujXvvvReffPIJXFxc8NNPPyEpKQkfffQR\nrFYr/P39MXz4cDz55JN2U4G2bduGgwcP4sCBA/jb3/6GAQMG4P7778dLL72Ew4cP2y0bGBiINWvW\nICIiAps3b0bPnj1x5513ak3j6dOncfnyZZw8eRJJSUl49NFHcd999+GXX35BWloa2rZti4SEBISF\nhZWb45FHHoGrqys++OADbaTwm2++wZw5c7Bx40aEh4fj0UcfLXOfzz//HJ06dcL58+e1ZjElJQUj\nRozAF198gXvuuQcnTpxATs5fTfbSpUuxbt063Hbbbbh69apjNgTVKI4UksOpMl9IhRwqZACYQ09U\nyHAtUlJScPLkSbzxxhtwc3ND/fr10alTJ3zyyScYP348wsPD4eHhgRkzZuDTTz+1a4KmTJmCBg0a\noE2bNoiKisLu3bsBFJ1WLX2atFevXoiIiAAAdOnSBT169LA7zVuvXj1MnDgRLi4uePDBB5GZmYlx\n48bBw8MDLf9/e/cfE2X9wAH8fcdd605vyA83AU/lTlIY+XB1DlnlINYEWkWjGP7hJB1r9Ufp1hrT\nP2yutWq2pra13BBXYa6kQSzO/kjYmmg4S9gAKZrIyfxBwMXwFj/k8/2DcV9RufvQ4Hkennu/ttvu\n8H683z533sfP83keMjKQkZGBy5cvh+1y/2t+++232LVrFzIyMmC320OzhzMeeeQRdHR0YGRkBLGx\nsaEBalVVFXbv3o38/HwAQHJyMjZs2ABgeu9XeXk50tPTYTabYbFwzmkp4qCQiIjoPn6/H2vXrn3g\nFGI3btyYNSu3Zs0aTE5O4tatW6GfrVq1KnTdbrdjdHR0ztfx+XzYsmULEhISEBcXh8bGRgwODob+\nPCEhIbTcyGazAZieXZxhs9lw586deXW7ceMGnE7nrA73qq2tRWNjI9atW4fc3FxcuHABwPS5dt1u\n95zPe+9z0tLEQSEtOCOsmwKM0cMIHQD20BMjdJDhdDrR19eHu3fvzvp5cnLyrKNm+/r6YLFYZg3U\n5nL/WvKxsTGUlJTg3Xffxe3btzE8PIyioqJFP+giKSkJfX19odv3XgcAr9eLuro6DAwMoLi4GKWl\npQCm/056enrmfF4jr5WPFhwUEhER3Sc7OxtJSUmorKxEMBjEv//+i3PnzmH79u349NNP0dvbi9HR\nUezbtw9lZWVSv5Rg1apV6O3tDQ36xsfHMT4+jsTERJjNZvh8vtCBG4uptLQUJ06cQFdXF4LB4Kzd\nxxMTE6ipqcE///yDmJgYOBwOxMTEAJhea1hdXY2zZ89iamoK/f396O7uDj2WRxAvfRwU0oIzypoj\nI/QwQgeAPfTECB1kmM1mNDQ0oKenB2vWrIHT6cR3332HXbt2YceOHdi6dStcLhfsdjuOHj0aely4\n2bJXX30VwPQuYa/XC4fDgSNHjqC0tBTx8fH45ptv8NJLL816zMNO6zJfJpNp1uMKCgqwZ88ePPvs\ns3jsscdCawRnfP3110hNTUVsbCyOHTuGmpoaAMDmzZtRXV2NvXv3YsWKFcjNzZ01y8iZwqWP5ynU\nGZ6nkIiiRbSdp1DPzGYzenp64HK5Fu01eJ5C/eNMIS04o6w5MkIPI3QA2ENPFrvDSGAkdJTuYlw4\nICSaGweFRERES1xhYSEcDscDl0gnt57BXb8EcPex7nD3MRFFC+42jC7cfax/nCkkIiIiIg4K9cn0\nny8OR5wWgWcxwropwBg9jNABYA89MUIHIno4/h4aHeI0OhEREamNawp1hmsriCha8N+76MI1hfrH\nmUIiItJEXFwcj3qNInFx2i9vovC4ppAWnFHWHBmhhxE6AOyhJwvZYWhoaFHPSRju0tTUpNlrR2uH\noaGhBXvv0OLgoJAW3OXLl7WOsCCM0MMIHQD20BMjdACM0cMIHUhfOCikBRcIBLSOsCCM0MMIHQD2\n0BMjdACM0cMIHUhfOCgkIiIiIg4KaeH19vZqHWFBGKGHEToA7KEnRugAGKOHETqQvvCUNDqTlZWF\ntrY2rWMQERGpQlEUro/UCQ4KiYiIiIi7j4mIiIiIg0IiIiIiAgeFmjhz5gw2btyItLQ0fPTRRw+9\nz1tvvYW0tDQoioLff/9d5YRyIvW4cuUKcnJy8Oijj+KTTz7RIKGcSD1qamqgKAo2bdqEp556Cu3t\n7RqkDC9Sh/r6eiiKAo/HgyeffBJnz57VIGVkMp8NALh48SIsFgu+//57FdPJidShubkZsbGx8Hg8\n8Hg8eP/99zVIGZnMtmhubobH40FmZiZyc3PVDSgpUo9Dhw6FtsXjjz8Oi8Wiu1O9ROrw999/o6Cg\nAFlZWcjMzMSJEyfUDykhUo/h4WG8/PLLUBQF2dnZ6Ojo0CBllBOkqsnJSeF2u8XVq1fF+Pi4UBRF\ndHZ2zrrPjz/+KAoLC4UQQly4cEFkZ2drETUsmR63b98WFy9eFPv37xeHDh3SKGl4Mj1aWlpEIBAQ\nQgjh8/l0tz1kOoyOjoaut7e3C7fbrXbMiGR6zNwvLy9PPP/88+L06dMaJJ2bTIempibxwgsvaJRQ\njkyP4eFhkZGRIfx+vxBCiIGBAS2ihiX7nprR0NAg8vPzVUwYmUyHAwcOiMrKSiHE9HaIj48XExMT\nWsSdk0yPd955Rxw8eFAIIcSVK1d0ty2iAWcKVdba2or169dj3bp1sFqtKCsrQ319/az7/PDDD9i5\ncycAIDs7G4FAALdu3dIi7pxkeqxcuRJerxdWq1WjlJHJ9MjJyUFsbCyA6e1x/fp1LaLOSabDsmXL\nQtdHR0eRmJiodsyIZHoAwNGjR/HKK69g5cqVGqQMT7aD0PnxfTI9Tp48iZKSEqxevRoAlvR7asbJ\nkyexfft2FRNGJtMhKSkJIyMjAICRkREkJCTAYrFoEXdOMj26urqQl5cHANiwYQN6e3sxMDCgRdyo\nxUGhyvr7++F0OkO3V69ejf7+/oj30dtARKbHUjDfHlVVVSgqKlIjmjTZDnV1dUhPT0dhYSGOHDmi\nZkQpsp+N+vp6vPHGGwAAk8mkasZIZDqYTCa0tLRAURQUFRWhs7NT7ZgRyfT4888/MTQ0hLy8PHi9\nXnz11Vdqx4xoPp/vYDCIn376CSUlJWrFkyLToaKiAh0dHUhOToaiKDh8+LDaMSOS6aEoSmhJSGtr\nK65du6a77z6j09d/JaKA7JfY/TMJevvy01ue/2o+PZqamnD8+HGcO3duERPNn2yH4uJiFBcX45df\nfsGOHTvQ3d29yMnmR6bHnj178OGHH8JkMkEIobsZN5kOTzzxBPx+P+x2O3w+H4qLi/HHH3+okE6e\nTI+JiQn89ttv+PnnnxEMBpGTk4MtW7YgLS1NhYRy5vP5bmhowNNPP40VK1YsYqL5k+nwwQcfICsr\nC83Nzfjrr7/w3HPPoa2tDQ6HQ4WEcmR6VFZW4u233w6t7/R4PIiJiVEhHc3goFBlKSkp8Pv9odt+\nvz+0+2Wu+1y/fh0pKSmqZZQh02MpkO3R3t6OiooKnDlzBnFxcWpGjGi+2+KZZ57B5OQkBgcHkZCQ\noEZEKTI9Ll26hLKyMgDTi+t9Ph+sVitefPFFVbPORabDvV/UhYWFePPNNzE0NIT4+HjVckYi08Pp\ndCIxMRE2mw02mw1bt25FW1ubrgaF8/lsnDp1Sne7jgG5Di0tLdi/fz8AwO12IzU1Fd3d3fB6vapm\nDUf2s3H8+PHQ7dTUVLhcLtUyEnigidomJiaEy+USV69eFWNjYxEPNDl//rzuDmwQQq7HjAMHDuj2\nQBOZHteuXRNut1ucP39eo5ThyXTo6ekRU1NTQgghLl26JFwulxZRw5rPe0oIIcrLy0Vtba2KCSOT\n6XDz5s3Qtvj111/F2rVrNUgankyPrq4ukZ+fLyYnJ8WdO3dEZmam6Ojo0Cjxw8m+pwKBgIiPjxfB\nYFCDlOHJdNi7d6947733hBDT76+UlBQxODioRdw5yfQIBAJibGxMCCHEsWPHxM6dOzVIGt04U6gy\ni8WCzz77DNu2bcPdu3exe/dupKen44svvgAAvP766ygqKkJjYyPWr1+PZcuWobq6WuPUD5LpcfPm\nTWzevBkjIyMwm804fPgwOjs7sXz5co3T/59Mj4MHD2J4eDi0js1qtaK1tVXL2LPIdKitrcWXX34J\nq9WK5cuX49SpUxqnfpBMD72T6XD69Gl8/vnnsFgssNvtS3ZbbNy4EQUFBdi0aRPMZjMqKiqQkZGh\ncfLZZN9TdXV12LZtG2w2m5ZxH0qmw759+/Daa69BURRMTU3h448/1tXMMyDXo7OzE+Xl5TCZTMjM\nzERVVZXGqaMPf80dEREREfHoYyIiIiLioJCIiIiIwEEhEREREYGDQiIiIiICB4VEREREBA4KiYiI\niAgcFBIREREROCgkIiIiIgD/A6DksocUSke9AAAAAElFTkSuQmCC\n"
-      }
-     ],
-     "prompt_number": 88
-    },
-    {
-     "cell_type": "markdown",
-     "metadata": {},
-     "source": [
-      "For samples that screen against other organisms than dm3, there is no detection neither from FACS nor Fastq_screen. On the other hand, when dm3 is present, both screeners detect about the same amount.\n",
-      "\n",
-      "The fact that it is not 100% might be explained by simNGS mechanics: some reads (~5% in the graph above) might have mutated too much to be recognizable for any of the filters."
-     ]
-    },
-    {
-     "cell_type": "code",
-     "collapsed": false,
-     "input": [
-      "# Remove accuracy-only datasets so that they don't disturb in performance plots\n",
-      "# (operator ~ prepending the dataframe condition acts as \"not\" containing string)\n",
-      "\n",
-      "frame = frame[ ~frame.sample_facs.str.contains('100vs400') ]\n",
-      "frame = frame[ ~frame.sample_facs.str.contains('3000vs6000') ]"
-     ],
-     "language": "python",
-     "metadata": {},
+       "html": [
+        "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
+        "<table border=\"1\" class=\"dataframe\">\n",
+        "  <thead>\n",
+        "    <tr style=\"text-align: right;\">\n",
+        "      <th></th>\n",
+        "      <th>contam_facs</th>\n",
+        "      <th>contam_fqscr</th>\n",
+        "      <th>delta_fqscr</th>\n",
+        "      <th>delta_facs</th>\n",
+        "      <th>filter_facs</th>\n",
+        "      <th>filter_fqscr</th>\n",
+        "      <th>sample_facs</th>\n",
+        "      <th>sample_fqscr</th>\n",
+        "      <th>threads_facs</th>\n",
+        "      <th>threads_fqscr</th>\n",
+        "      <th>reads</th>\n",
+        "    </tr>\n",
+        "  </thead>\n",
+        "  <tbody>\n",
+        "    <tr>\n",
+        "      <th>19 </th>\n",
+        "      <td> 1.000000</td>\n",
+        "      <td> 1.0000</td>\n",
+        "      <td>   0.213116</td>\n",
+        "      <td>  0.038</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>      simngs_phiX_100.fastq</td>\n",
+        "      <td>      simngs_phiX_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>      100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>18 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   0.439895</td>\n",
+        "      <td>  0.013</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>      simngs_phiX_100.fastq</td>\n",
+        "      <td>      simngs_phiX_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>      100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>59 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   0.638649</td>\n",
+        "      <td>  1.017</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>      simngs_phiX_100.fastq</td>\n",
+        "      <td>      simngs_phiX_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>      100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>42 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   0.420386</td>\n",
+        "      <td>  1.017</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>      simngs_phiX_100.fastq</td>\n",
+        "      <td>      simngs_phiX_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>      100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>40 </th>\n",
+        "      <td> 1.000000</td>\n",
+        "      <td> 1.0000</td>\n",
+        "      <td>   0.431265</td>\n",
+        "      <td>  0.038</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>      simngs_phiX_100.fastq</td>\n",
+        "      <td>      simngs_phiX_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>      100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>111</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   0.211178</td>\n",
+        "      <td>  0.013</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>      simngs_phiX_100.fastq</td>\n",
+        "      <td>      simngs_phiX_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>      100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>112</th>\n",
+        "      <td> 1.000000</td>\n",
+        "      <td> 1.0000</td>\n",
+        "      <td>   0.211833</td>\n",
+        "      <td>  0.038</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>      simngs_phiX_100.fastq</td>\n",
+        "      <td>      simngs_phiX_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>      100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>39 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   0.212676</td>\n",
+        "      <td>  0.013</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>      simngs_phiX_100.fastq</td>\n",
+        "      <td>      simngs_phiX_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>      100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>17 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   0.681134</td>\n",
+        "      <td>  1.017</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>      simngs_phiX_100.fastq</td>\n",
+        "      <td>      simngs_phiX_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>      100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>72 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   0.632531</td>\n",
+        "      <td>  1.313</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>     simngs_phiX_1000.fastq</td>\n",
+        "      <td>     simngs_phiX_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>     1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>74 </th>\n",
+        "      <td> 0.998000</td>\n",
+        "      <td> 0.9990</td>\n",
+        "      <td>   0.220445</td>\n",
+        "      <td>  0.017</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>     simngs_phiX_1000.fastq</td>\n",
+        "      <td>     simngs_phiX_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>     1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>5  </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   2.863820</td>\n",
+        "      <td>  1.313</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>     simngs_phiX_1000.fastq</td>\n",
+        "      <td>     simngs_phiX_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>     1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>6  </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   0.225909</td>\n",
+        "      <td>  0.058</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>     simngs_phiX_1000.fastq</td>\n",
+        "      <td>     simngs_phiX_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>     1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>7  </th>\n",
+        "      <td> 0.998000</td>\n",
+        "      <td> 0.9990</td>\n",
+        "      <td>   0.452245</td>\n",
+        "      <td>  0.017</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>     simngs_phiX_1000.fastq</td>\n",
+        "      <td>     simngs_phiX_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>     1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>55 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   0.217786</td>\n",
+        "      <td>  0.058</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>     simngs_phiX_1000.fastq</td>\n",
+        "      <td>     simngs_phiX_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>     1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>56 </th>\n",
+        "      <td> 0.998000</td>\n",
+        "      <td> 0.9990</td>\n",
+        "      <td>   0.217264</td>\n",
+        "      <td>  0.017</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>     simngs_phiX_1000.fastq</td>\n",
+        "      <td>     simngs_phiX_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>     1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>58 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   0.854444</td>\n",
+        "      <td>  1.313</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>     simngs_phiX_1000.fastq</td>\n",
+        "      <td>     simngs_phiX_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>     1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>73 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   0.213699</td>\n",
+        "      <td>  0.058</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>     simngs_phiX_1000.fastq</td>\n",
+        "      <td>     simngs_phiX_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>     1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>66 </th>\n",
+        "      <td> 0.000066</td>\n",
+        "      <td> 0.0001</td>\n",
+        "      <td> 112.148124</td>\n",
+        "      <td>  2.012</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>  simngs_phiX_1000000.fastq</td>\n",
+        "      <td>  simngs_phiX_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>  1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>60 </th>\n",
+        "      <td> 0.995194</td>\n",
+        "      <td> 0.9958</td>\n",
+        "      <td>  69.023493</td>\n",
+        "      <td>  4.066</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>  simngs_phiX_1000000.fastq</td>\n",
+        "      <td>  simngs_phiX_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>  1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>125</th>\n",
+        "      <td> 0.000066</td>\n",
+        "      <td> 0.0001</td>\n",
+        "      <td>  14.296514</td>\n",
+        "      <td>  2.012</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>  simngs_phiX_1000000.fastq</td>\n",
+        "      <td>  simngs_phiX_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>  1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>65 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>  48.823824</td>\n",
+        "      <td>  1.846</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>  simngs_phiX_1000000.fastq</td>\n",
+        "      <td>  simngs_phiX_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>  1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>124</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   7.339768</td>\n",
+        "      <td>  1.846</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>  simngs_phiX_1000000.fastq</td>\n",
+        "      <td>  simngs_phiX_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>  1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>16 </th>\n",
+        "      <td> 0.995194</td>\n",
+        "      <td> 0.9958</td>\n",
+        "      <td>  84.579529</td>\n",
+        "      <td>  4.066</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>  simngs_phiX_1000000.fastq</td>\n",
+        "      <td>  simngs_phiX_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>41 </th>\n",
+        "      <td> 0.995194</td>\n",
+        "      <td> 0.9958</td>\n",
+        "      <td>  23.491512</td>\n",
+        "      <td>  4.066</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>  simngs_phiX_1000000.fastq</td>\n",
+        "      <td>  simngs_phiX_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>  1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>15 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   7.200159</td>\n",
+        "      <td>  1.846</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>  simngs_phiX_1000000.fastq</td>\n",
+        "      <td>  simngs_phiX_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>14 </th>\n",
+        "      <td> 0.000066</td>\n",
+        "      <td> 0.0001</td>\n",
+        "      <td>  13.093603</td>\n",
+        "      <td>  2.012</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>  simngs_phiX_1000000.fastq</td>\n",
+        "      <td>  simngs_phiX_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>50 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>  67.589326</td>\n",
+        "      <td> 13.787</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> simngs_phiX_10000000.fastq</td>\n",
+        "      <td> simngs_phiX_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>1  </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td> 480.008990</td>\n",
+        "      <td> 13.787</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> simngs_phiX_10000000.fastq</td>\n",
+        "      <td> simngs_phiX_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td> 10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>2  </th>\n",
+        "      <td> 0.995249</td>\n",
+        "      <td> 0.9958</td>\n",
+        "      <td> 710.577691</td>\n",
+        "      <td> 32.584</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td> simngs_phiX_10000000.fastq</td>\n",
+        "      <td> simngs_phiX_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td> 10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>36 </th>\n",
+        "      <td> 0.995249</td>\n",
+        "      <td> 0.9958</td>\n",
+        "      <td> 920.436917</td>\n",
+        "      <td> 32.584</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td> simngs_phiX_10000000.fastq</td>\n",
+        "      <td> simngs_phiX_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>49 </th>\n",
+        "      <td> 0.000071</td>\n",
+        "      <td> 0.0001</td>\n",
+        "      <td> 112.764168</td>\n",
+        "      <td> 10.710</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td> simngs_phiX_10000000.fastq</td>\n",
+        "      <td> simngs_phiX_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>0  </th>\n",
+        "      <td> 0.000071</td>\n",
+        "      <td> 0.0001</td>\n",
+        "      <td> 995.512687</td>\n",
+        "      <td> 10.710</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td> simngs_phiX_10000000.fastq</td>\n",
+        "      <td> simngs_phiX_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td> 10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>75 </th>\n",
+        "      <td> 0.000071</td>\n",
+        "      <td> 0.0001</td>\n",
+        "      <td> 143.908266</td>\n",
+        "      <td> 10.710</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td> simngs_phiX_10000000.fastq</td>\n",
+        "      <td> simngs_phiX_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td> 10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>76 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>  71.387078</td>\n",
+        "      <td> 13.787</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> simngs_phiX_10000000.fastq</td>\n",
+        "      <td> simngs_phiX_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td> 10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>77 </th>\n",
+        "      <td> 0.995249</td>\n",
+        "      <td> 0.9958</td>\n",
+        "      <td> 294.349582</td>\n",
+        "      <td> 32.584</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td> simngs_phiX_10000000.fastq</td>\n",
+        "      <td> simngs_phiX_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td> 10000000</td>\n",
+        "    </tr>\n",
+        "  </tbody>\n",
+        "</table>\n",
+        "<p>36 rows \u00d7 11 columns</p>\n",
+        "</div>"
+       ],
+       "metadata": {},
+       "output_type": "pyout",
+       "prompt_number": 15,
+       "text": [
+        "     contam_facs  contam_fqscr  delta_fqscr  delta_facs   filter_facs  \\\n",
+        "19      1.000000        1.0000     0.213116       0.038          phiX   \n",
+        "18      0.000000        0.0000     0.439895       0.013  eschColi_K12   \n",
+        "59      0.000000        0.0000     0.638649       1.017           dm3   \n",
+        "42      0.000000        0.0000     0.420386       1.017           dm3   \n",
+        "40      1.000000        1.0000     0.431265       0.038          phiX   \n",
+        "111     0.000000        0.0000     0.211178       0.013  eschColi_K12   \n",
+        "112     1.000000        1.0000     0.211833       0.038          phiX   \n",
+        "39      0.000000        0.0000     0.212676       0.013  eschColi_K12   \n",
+        "17      0.000000        0.0000     0.681134       1.017           dm3   \n",
+        "72      0.000000        0.0000     0.632531       1.313           dm3   \n",
+        "74      0.998000        0.9990     0.220445       0.017          phiX   \n",
+        "5       0.000000        0.0000     2.863820       1.313           dm3   \n",
+        "6       0.000000        0.0000     0.225909       0.058  eschColi_K12   \n",
+        "7       0.998000        0.9990     0.452245       0.017          phiX   \n",
+        "55      0.000000        0.0000     0.217786       0.058  eschColi_K12   \n",
+        "56      0.998000        0.9990     0.217264       0.017          phiX   \n",
+        "58      0.000000        0.0000     0.854444       1.313           dm3   \n",
+        "73      0.000000        0.0000     0.213699       0.058  eschColi_K12   \n",
+        "66      0.000066        0.0001   112.148124       2.012           dm3   \n",
+        "60      0.995194        0.9958    69.023493       4.066          phiX   \n",
+        "125     0.000066        0.0001    14.296514       2.012           dm3   \n",
+        "65      0.000000        0.0000    48.823824       1.846  eschColi_K12   \n",
+        "124     0.000000        0.0000     7.339768       1.846  eschColi_K12   \n",
+        "16      0.995194        0.9958    84.579529       4.066          phiX   \n",
+        "41      0.995194        0.9958    23.491512       4.066          phiX   \n",
+        "15      0.000000        0.0000     7.200159       1.846  eschColi_K12   \n",
+        "14      0.000066        0.0001    13.093603       2.012           dm3   \n",
+        "50      0.000000        0.0000    67.589326      13.787  eschColi_K12   \n",
+        "1       0.000000        0.0000   480.008990      13.787  eschColi_K12   \n",
+        "2       0.995249        0.9958   710.577691      32.584          phiX   \n",
+        "36      0.995249        0.9958   920.436917      32.584          phiX   \n",
+        "49      0.000071        0.0001   112.764168      10.710           dm3   \n",
+        "0       0.000071        0.0001   995.512687      10.710           dm3   \n",
+        "75      0.000071        0.0001   143.908266      10.710           dm3   \n",
+        "76      0.000000        0.0000    71.387078      13.787  eschColi_K12   \n",
+        "77      0.995249        0.9958   294.349582      32.584          phiX   \n",
+        "\n",
+        "     filter_fqscr                 sample_facs                sample_fqscr  \\\n",
+        "19           phiX       simngs_phiX_100.fastq       simngs_phiX_100.fastq   \n",
+        "18   eschColi_K12       simngs_phiX_100.fastq       simngs_phiX_100.fastq   \n",
+        "59            dm3       simngs_phiX_100.fastq       simngs_phiX_100.fastq   \n",
+        "42            dm3       simngs_phiX_100.fastq       simngs_phiX_100.fastq   \n",
+        "40           phiX       simngs_phiX_100.fastq       simngs_phiX_100.fastq   \n",
+        "111  eschColi_K12       simngs_phiX_100.fastq       simngs_phiX_100.fastq   \n",
+        "112          phiX       simngs_phiX_100.fastq       simngs_phiX_100.fastq   \n",
+        "39   eschColi_K12       simngs_phiX_100.fastq       simngs_phiX_100.fastq   \n",
+        "17            dm3       simngs_phiX_100.fastq       simngs_phiX_100.fastq   \n",
+        "72            dm3      simngs_phiX_1000.fastq      simngs_phiX_1000.fastq   \n",
+        "74           phiX      simngs_phiX_1000.fastq      simngs_phiX_1000.fastq   \n",
+        "5             dm3      simngs_phiX_1000.fastq      simngs_phiX_1000.fastq   \n",
+        "6    eschColi_K12      simngs_phiX_1000.fastq      simngs_phiX_1000.fastq   \n",
+        "7            phiX      simngs_phiX_1000.fastq      simngs_phiX_1000.fastq   \n",
+        "55   eschColi_K12      simngs_phiX_1000.fastq      simngs_phiX_1000.fastq   \n",
+        "56           phiX      simngs_phiX_1000.fastq      simngs_phiX_1000.fastq   \n",
+        "58            dm3      simngs_phiX_1000.fastq      simngs_phiX_1000.fastq   \n",
+        "73   eschColi_K12      simngs_phiX_1000.fastq      simngs_phiX_1000.fastq   \n",
+        "66            dm3   simngs_phiX_1000000.fastq   simngs_phiX_1000000.fastq   \n",
+        "60           phiX   simngs_phiX_1000000.fastq   simngs_phiX_1000000.fastq   \n",
+        "125           dm3   simngs_phiX_1000000.fastq   simngs_phiX_1000000.fastq   \n",
+        "65   eschColi_K12   simngs_phiX_1000000.fastq   simngs_phiX_1000000.fastq   \n",
+        "124  eschColi_K12   simngs_phiX_1000000.fastq   simngs_phiX_1000000.fastq   \n",
+        "16           phiX   simngs_phiX_1000000.fastq   simngs_phiX_1000000.fastq   \n",
+        "41           phiX   simngs_phiX_1000000.fastq   simngs_phiX_1000000.fastq   \n",
+        "15   eschColi_K12   simngs_phiX_1000000.fastq   simngs_phiX_1000000.fastq   \n",
+        "14            dm3   simngs_phiX_1000000.fastq   simngs_phiX_1000000.fastq   \n",
+        "50   eschColi_K12  simngs_phiX_10000000.fastq  simngs_phiX_10000000.fastq   \n",
+        "1    eschColi_K12  simngs_phiX_10000000.fastq  simngs_phiX_10000000.fastq   \n",
+        "2            phiX  simngs_phiX_10000000.fastq  simngs_phiX_10000000.fastq   \n",
+        "36           phiX  simngs_phiX_10000000.fastq  simngs_phiX_10000000.fastq   \n",
+        "49            dm3  simngs_phiX_10000000.fastq  simngs_phiX_10000000.fastq   \n",
+        "0             dm3  simngs_phiX_10000000.fastq  simngs_phiX_10000000.fastq   \n",
+        "75            dm3  simngs_phiX_10000000.fastq  simngs_phiX_10000000.fastq   \n",
+        "76   eschColi_K12  simngs_phiX_10000000.fastq  simngs_phiX_10000000.fastq   \n",
+        "77           phiX  simngs_phiX_10000000.fastq  simngs_phiX_10000000.fastq   \n",
+        "\n",
+        "     threads_facs threads_fqscr     reads  \n",
+        "19             16            16       100  \n",
+        "18             16            16       100  \n",
+        "59             16             1       100  \n",
+        "42             16             8       100  \n",
+        "40             16             8       100  \n",
+        "111            16             1       100  \n",
+        "112            16             1       100  \n",
+        "39             16             8       100  \n",
+        "17             16            16       100  \n",
+        "72             16             8      1000  \n",
+        "74             16             8      1000  \n",
+        "5              16             1      1000  \n",
+        "6              16             1      1000  \n",
+        "7              16             1      1000  \n",
+        "55             16            16      1000  \n",
+        "56             16            16      1000  \n",
+        "58             16            16      1000  \n",
+        "73             16             8      1000  \n",
+        "66             16             1   1000000  \n",
+        "60             16             1   1000000  \n",
+        "125            16             8   1000000  \n",
+        "65             16             1   1000000  \n",
+        "124            16             8   1000000  \n",
+        "16             16            16   1000000  \n",
+        "41             16             8   1000000  \n",
+        "15             16            16   1000000  \n",
+        "14             16            16   1000000  \n",
+        "50             16            16  10000000  \n",
+        "1              16             1  10000000  \n",
+        "2              16             1  10000000  \n",
+        "36             16            16  10000000  \n",
+        "49             16            16  10000000  \n",
+        "0              16             1  10000000  \n",
+        "75             16             8  10000000  \n",
+        "76             16             8  10000000  \n",
+        "77             16             8  10000000  \n",
+        "\n",
+        "[36 rows x 11 columns]"
+       ]
+      }
+     ],
+     "prompt_number": 15
+    },
+    {
+     "cell_type": "code",
+     "collapsed": false,
+     "input": [
+      "dm3.sort('reads')"
+     ],
+     "language": "python",
+     "metadata": {},
+     "outputs": [
+      {
+       "html": [
+        "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
+        "<table border=\"1\" class=\"dataframe\">\n",
+        "  <thead>\n",
+        "    <tr style=\"text-align: right;\">\n",
+        "      <th></th>\n",
+        "      <th>contam_facs</th>\n",
+        "      <th>contam_fqscr</th>\n",
+        "      <th>delta_fqscr</th>\n",
+        "      <th>delta_facs</th>\n",
+        "      <th>filter_facs</th>\n",
+        "      <th>filter_fqscr</th>\n",
+        "      <th>sample_facs</th>\n",
+        "      <th>sample_fqscr</th>\n",
+        "      <th>threads_facs</th>\n",
+        "      <th>threads_fqscr</th>\n",
+        "      <th>reads</th>\n",
+        "    </tr>\n",
+        "  </thead>\n",
+        "  <tbody>\n",
+        "    <tr>\n",
+        "      <th>44 </th>\n",
+        "      <td> 0.920000</td>\n",
+        "      <td> 0.9100</td>\n",
+        "      <td>    0.673775</td>\n",
+        "      <td>   0.774</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>108</th>\n",
+        "      <td> 0.920000</td>\n",
+        "      <td> 0.9100</td>\n",
+        "      <td>    0.628752</td>\n",
+        "      <td>   0.774</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>106</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.231580</td>\n",
+        "      <td>   0.016</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>105</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.226763</td>\n",
+        "      <td>   0.539</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>47 </th>\n",
+        "      <td> 0.920000</td>\n",
+        "      <td> 0.9100</td>\n",
+        "      <td>    0.628286</td>\n",
+        "      <td>   0.774</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>33 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.210950</td>\n",
+        "      <td>   0.539</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>34 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.227650</td>\n",
+        "      <td>   0.016</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>11 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.211287</td>\n",
+        "      <td>   0.539</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>114</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.225330</td>\n",
+        "      <td>   0.016</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>92 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.212446</td>\n",
+        "      <td>   0.027</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>91 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.210926</td>\n",
+        "      <td>   0.021</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>85 </th>\n",
+        "      <td> 0.917000</td>\n",
+        "      <td> 0.9210</td>\n",
+        "      <td>    0.658177</td>\n",
+        "      <td>   0.703</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>87 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.212351</td>\n",
+        "      <td>   0.021</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>88 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.210869</td>\n",
+        "      <td>   0.027</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>27 </th>\n",
+        "      <td> 0.917000</td>\n",
+        "      <td> 0.9210</td>\n",
+        "      <td>    0.632960</td>\n",
+        "      <td>   0.703</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>29 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.227470</td>\n",
+        "      <td>   0.021</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>30 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.215520</td>\n",
+        "      <td>   0.027</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>115</th>\n",
+        "      <td> 0.917000</td>\n",
+        "      <td> 0.9210</td>\n",
+        "      <td>    0.631765</td>\n",
+        "      <td>   0.703</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>82 </th>\n",
+        "      <td> 0.000006</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   10.207863</td>\n",
+        "      <td>   1.789</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>24 </th>\n",
+        "      <td> 0.917631</td>\n",
+        "      <td> 0.9149</td>\n",
+        "      <td>   40.650027</td>\n",
+        "      <td>   9.936</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>23 </th>\n",
+        "      <td> 0.000261</td>\n",
+        "      <td> 0.0001</td>\n",
+        "      <td>    7.338175</td>\n",
+        "      <td>   2.138</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>89 </th>\n",
+        "      <td> 0.000261</td>\n",
+        "      <td> 0.0001</td>\n",
+        "      <td>    6.463202</td>\n",
+        "      <td>   2.138</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>96 </th>\n",
+        "      <td> 0.000006</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   16.781235</td>\n",
+        "      <td>   1.789</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>94 </th>\n",
+        "      <td> 0.917631</td>\n",
+        "      <td> 0.9149</td>\n",
+        "      <td>  152.819053</td>\n",
+        "      <td>   9.936</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>93 </th>\n",
+        "      <td> 0.000261</td>\n",
+        "      <td> 0.0001</td>\n",
+        "      <td>   47.703680</td>\n",
+        "      <td>   2.138</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>90 </th>\n",
+        "      <td> 0.917631</td>\n",
+        "      <td> 0.9149</td>\n",
+        "      <td>   95.274927</td>\n",
+        "      <td>   9.936</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>26 </th>\n",
+        "      <td> 0.000006</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    6.060514</td>\n",
+        "      <td>   1.789</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>123</th>\n",
+        "      <td> 0.000240</td>\n",
+        "      <td> 0.0001</td>\n",
+        "      <td>   70.471625</td>\n",
+        "      <td>  13.373</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>8  </th>\n",
+        "      <td> 0.000240</td>\n",
+        "      <td> 0.0001</td>\n",
+        "      <td>  494.496125</td>\n",
+        "      <td>  13.373</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>9  </th>\n",
+        "      <td> 0.000004</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>  168.785631</td>\n",
+        "      <td>   9.916</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>35 </th>\n",
+        "      <td> 0.917971</td>\n",
+        "      <td> 0.9153</td>\n",
+        "      <td>  940.853700</td>\n",
+        "      <td> 101.781</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>37 </th>\n",
+        "      <td> 0.000004</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>  101.717528</td>\n",
+        "      <td>   9.916</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>38 </th>\n",
+        "      <td> 0.000240</td>\n",
+        "      <td> 0.0001</td>\n",
+        "      <td>   71.551788</td>\n",
+        "      <td>  13.373</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>78 </th>\n",
+        "      <td> 0.917971</td>\n",
+        "      <td> 0.9153</td>\n",
+        "      <td>  301.252240</td>\n",
+        "      <td> 101.781</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>122</th>\n",
+        "      <td> 0.000004</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   57.989411</td>\n",
+        "      <td>   9.916</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>3  </th>\n",
+        "      <td> 0.917971</td>\n",
+        "      <td> 0.9153</td>\n",
+        "      <td> 1747.636472</td>\n",
+        "      <td> 101.781</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>84 </th>\n",
+        "      <td> 0.613556</td>\n",
+        "      <td> 0.6113</td>\n",
+        "      <td>    1.091974</td>\n",
+        "      <td>   1.421</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  3000vs6000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>80 </th>\n",
+        "      <td> 0.613556</td>\n",
+        "      <td> 0.6113</td>\n",
+        "      <td>    1.733639</td>\n",
+        "      <td>   1.421</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>  3000vs6000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>103</th>\n",
+        "      <td> 0.613556</td>\n",
+        "      <td> 0.6113</td>\n",
+        "      <td>    0.845511</td>\n",
+        "      <td>   1.421</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>  3000vs6000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>104</th>\n",
+        "      <td> 0.333000</td>\n",
+        "      <td> 0.3325</td>\n",
+        "      <td>    0.434019</td>\n",
+        "      <td>   0.070</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>  3000vs6000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>48 </th>\n",
+        "      <td> 0.333000</td>\n",
+        "      <td> 0.3325</td>\n",
+        "      <td>    0.835371</td>\n",
+        "      <td>   0.070</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>  3000vs6000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>28 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.237581</td>\n",
+        "      <td>   0.020</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>  3000vs6000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>12 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.444665</td>\n",
+        "      <td>   0.020</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>  3000vs6000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>86 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.223083</td>\n",
+        "      <td>   0.020</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  3000vs6000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>83 </th>\n",
+        "      <td> 0.333000</td>\n",
+        "      <td> 0.3325</td>\n",
+        "      <td>    0.461494</td>\n",
+        "      <td>   0.070</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  3000vs6000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>116</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.855492</td>\n",
+        "      <td>   0.456</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td> 3000vs93000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>20 </th>\n",
+        "      <td> 0.032462</td>\n",
+        "      <td> 0.0322</td>\n",
+        "      <td>    1.096185</td>\n",
+        "      <td>   0.576</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 3000vs93000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>68 </th>\n",
+        "      <td> 0.032462</td>\n",
+        "      <td> 0.0322</td>\n",
+        "      <td>    4.827130</td>\n",
+        "      <td>   0.576</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td> 3000vs93000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>67 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    2.106148</td>\n",
+        "      <td>   0.456</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td> 3000vs93000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>61 </th>\n",
+        "      <td> 0.888462</td>\n",
+        "      <td> 0.8861</td>\n",
+        "      <td>   14.623352</td>\n",
+        "      <td>   1.809</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td> 3000vs93000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>101</th>\n",
+        "      <td> 0.888462</td>\n",
+        "      <td> 0.8861</td>\n",
+        "      <td>    9.079349</td>\n",
+        "      <td>   1.809</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 3000vs93000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>13 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    1.127904</td>\n",
+        "      <td>   0.456</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 3000vs93000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>118</th>\n",
+        "      <td> 0.888462</td>\n",
+        "      <td> 0.8861</td>\n",
+        "      <td>    3.006585</td>\n",
+        "      <td>   1.809</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td> 3000vs93000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>117</th>\n",
+        "      <td> 0.032462</td>\n",
+        "      <td> 0.0322</td>\n",
+        "      <td>    0.851774</td>\n",
+        "      <td>   0.576</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td> 3000vs93000</td>\n",
+        "    </tr>\n",
+        "  </tbody>\n",
+        "</table>\n",
+        "<p>54 rows \u00d7 11 columns</p>\n",
+        "</div>"
+       ],
+       "metadata": {},
+       "output_type": "pyout",
+       "prompt_number": 16,
+       "text": [
+        "     contam_facs  contam_fqscr  delta_fqscr  delta_facs   filter_facs  \\\n",
+        "44      0.920000        0.9100     0.673775       0.774           dm3   \n",
+        "108     0.920000        0.9100     0.628752       0.774           dm3   \n",
+        "106     0.000000        0.0000     0.231580       0.016          phiX   \n",
+        "105     0.000000        0.0000     0.226763       0.539  eschColi_K12   \n",
+        "47      0.920000        0.9100     0.628286       0.774           dm3   \n",
+        "33      0.000000        0.0000     0.210950       0.539  eschColi_K12   \n",
+        "34      0.000000        0.0000     0.227650       0.016          phiX   \n",
+        "11      0.000000        0.0000     0.211287       0.539  eschColi_K12   \n",
+        "114     0.000000        0.0000     0.225330       0.016          phiX   \n",
+        "92      0.000000        0.0000     0.212446       0.027  eschColi_K12   \n",
+        "91      0.000000        0.0000     0.210926       0.021          phiX   \n",
+        "85      0.917000        0.9210     0.658177       0.703           dm3   \n",
+        "87      0.000000        0.0000     0.212351       0.021          phiX   \n",
+        "88      0.000000        0.0000     0.210869       0.027  eschColi_K12   \n",
+        "27      0.917000        0.9210     0.632960       0.703           dm3   \n",
+        "29      0.000000        0.0000     0.227470       0.021          phiX   \n",
+        "30      0.000000        0.0000     0.215520       0.027  eschColi_K12   \n",
+        "115     0.917000        0.9210     0.631765       0.703           dm3   \n",
+        "82      0.000006        0.0000    10.207863       1.789          phiX   \n",
+        "24      0.917631        0.9149    40.650027       9.936           dm3   \n",
+        "23      0.000261        0.0001     7.338175       2.138  eschColi_K12   \n",
+        "89      0.000261        0.0001     6.463202       2.138  eschColi_K12   \n",
+        "96      0.000006        0.0000    16.781235       1.789          phiX   \n",
+        "94      0.917631        0.9149   152.819053       9.936           dm3   \n",
+        "93      0.000261        0.0001    47.703680       2.138  eschColi_K12   \n",
+        "90      0.917631        0.9149    95.274927       9.936           dm3   \n",
+        "26      0.000006        0.0000     6.060514       1.789          phiX   \n",
+        "123     0.000240        0.0001    70.471625      13.373  eschColi_K12   \n",
+        "8       0.000240        0.0001   494.496125      13.373  eschColi_K12   \n",
+        "9       0.000004        0.0000   168.785631       9.916          phiX   \n",
+        "35      0.917971        0.9153   940.853700     101.781           dm3   \n",
+        "37      0.000004        0.0000   101.717528       9.916          phiX   \n",
+        "38      0.000240        0.0001    71.551788      13.373  eschColi_K12   \n",
+        "78      0.917971        0.9153   301.252240     101.781           dm3   \n",
+        "122     0.000004        0.0000    57.989411       9.916          phiX   \n",
+        "3       0.917971        0.9153  1747.636472     101.781           dm3   \n",
+        "84      0.613556        0.6113     1.091974       1.421           dm3   \n",
+        "80      0.613556        0.6113     1.733639       1.421           dm3   \n",
+        "103     0.613556        0.6113     0.845511       1.421           dm3   \n",
+        "104     0.333000        0.3325     0.434019       0.070  eschColi_K12   \n",
+        "48      0.333000        0.3325     0.835371       0.070  eschColi_K12   \n",
+        "28      0.000000        0.0000     0.237581       0.020          phiX   \n",
+        "12      0.000000        0.0000     0.444665       0.020          phiX   \n",
+        "86      0.000000        0.0000     0.223083       0.020          phiX   \n",
+        "83      0.333000        0.3325     0.461494       0.070  eschColi_K12   \n",
+        "116     0.000000        0.0000     0.855492       0.456          phiX   \n",
+        "20      0.032462        0.0322     1.096185       0.576  eschColi_K12   \n",
+        "68      0.032462        0.0322     4.827130       0.576  eschColi_K12   \n",
+        "67      0.000000        0.0000     2.106148       0.456          phiX   \n",
+        "61      0.888462        0.8861    14.623352       1.809           dm3   \n",
+        "101     0.888462        0.8861     9.079349       1.809           dm3   \n",
+        "13      0.000000        0.0000     1.127904       0.456          phiX   \n",
+        "118     0.888462        0.8861     3.006585       1.809           dm3   \n",
+        "117     0.032462        0.0322     0.851774       0.576  eschColi_K12   \n",
+        "\n",
+        "     filter_fqscr                                      sample_facs  \\\n",
+        "44            dm3                             simngs_dm3_100.fastq   \n",
+        "108           dm3                             simngs_dm3_100.fastq   \n",
+        "106          phiX                             simngs_dm3_100.fastq   \n",
+        "105  eschColi_K12                             simngs_dm3_100.fastq   \n",
+        "47            dm3                             simngs_dm3_100.fastq   \n",
+        "33   eschColi_K12                             simngs_dm3_100.fastq   \n",
+        "34           phiX                             simngs_dm3_100.fastq   \n",
+        "11   eschColi_K12                             simngs_dm3_100.fastq   \n",
+        "114          phiX                             simngs_dm3_100.fastq   \n",
+        "92   eschColi_K12                            simngs_dm3_1000.fastq   \n",
+        "91           phiX                            simngs_dm3_1000.fastq   \n",
+        "85            dm3                            simngs_dm3_1000.fastq   \n",
+        "87           phiX                            simngs_dm3_1000.fastq   \n",
+        "88   eschColi_K12                            simngs_dm3_1000.fastq   \n",
+        "27            dm3                            simngs_dm3_1000.fastq   \n",
+        "29           phiX                            simngs_dm3_1000.fastq   \n",
+        "30   eschColi_K12                            simngs_dm3_1000.fastq   \n",
+        "115           dm3                            simngs_dm3_1000.fastq   \n",
+        "82           phiX                         simngs_dm3_1000000.fastq   \n",
+        "24            dm3                         simngs_dm3_1000000.fastq   \n",
+        "23   eschColi_K12                         simngs_dm3_1000000.fastq   \n",
+        "89   eschColi_K12                         simngs_dm3_1000000.fastq   \n",
+        "96           phiX                         simngs_dm3_1000000.fastq   \n",
+        "94            dm3                         simngs_dm3_1000000.fastq   \n",
+        "93   eschColi_K12                         simngs_dm3_1000000.fastq   \n",
+        "90            dm3                         simngs_dm3_1000000.fastq   \n",
+        "26           phiX                         simngs_dm3_1000000.fastq   \n",
+        "123  eschColi_K12                        simngs_dm3_10000000.fastq   \n",
+        "8    eschColi_K12                        simngs_dm3_10000000.fastq   \n",
+        "9            phiX                        simngs_dm3_10000000.fastq   \n",
+        "35            dm3                        simngs_dm3_10000000.fastq   \n",
+        "37           phiX                        simngs_dm3_10000000.fastq   \n",
+        "38   eschColi_K12                        simngs_dm3_10000000.fastq   \n",
+        "78            dm3                        simngs_dm3_10000000.fastq   \n",
+        "122          phiX                        simngs_dm3_10000000.fastq   \n",
+        "3             dm3                        simngs_dm3_10000000.fastq   \n",
+        "84            dm3   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
+        "80            dm3   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
+        "103           dm3   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
+        "104  eschColi_K12   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
+        "48   eschColi_K12   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
+        "28           phiX   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
+        "12           phiX   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
+        "86           phiX   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
+        "83   eschColi_K12   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
+        "116          phiX  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq   \n",
+        "20   eschColi_K12  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq   \n",
+        "68   eschColi_K12  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq   \n",
+        "67           phiX  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq   \n",
+        "61            dm3  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq   \n",
+        "101           dm3  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq   \n",
+        "13           phiX  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq   \n",
+        "118           dm3  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq   \n",
+        "117  eschColi_K12  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq   \n",
+        "\n",
+        "                                        sample_fqscr  threads_facs  \\\n",
+        "44                              simngs_dm3_100.fastq            16   \n",
+        "108                             simngs_dm3_100.fastq            16   \n",
+        "106                             simngs_dm3_100.fastq            16   \n",
+        "105                             simngs_dm3_100.fastq            16   \n",
+        "47                              simngs_dm3_100.fastq            16   \n",
+        "33                              simngs_dm3_100.fastq            16   \n",
+        "34                              simngs_dm3_100.fastq            16   \n",
+        "11                              simngs_dm3_100.fastq            16   \n",
+        "114                             simngs_dm3_100.fastq            16   \n",
+        "92                             simngs_dm3_1000.fastq            16   \n",
+        "91                             simngs_dm3_1000.fastq            16   \n",
+        "85                             simngs_dm3_1000.fastq            16   \n",
+        "87                             simngs_dm3_1000.fastq            16   \n",
+        "88                             simngs_dm3_1000.fastq            16   \n",
+        "27                             simngs_dm3_1000.fastq            16   \n",
+        "29                             simngs_dm3_1000.fastq            16   \n",
+        "30                             simngs_dm3_1000.fastq            16   \n",
+        "115                            simngs_dm3_1000.fastq            16   \n",
+        "82                          simngs_dm3_1000000.fastq            16   \n",
+        "24                          simngs_dm3_1000000.fastq            16   \n",
+        "23                          simngs_dm3_1000000.fastq            16   \n",
+        "89                          simngs_dm3_1000000.fastq            16   \n",
+        "96                          simngs_dm3_1000000.fastq            16   \n",
+        "94                          simngs_dm3_1000000.fastq            16   \n",
+        "93                          simngs_dm3_1000000.fastq            16   \n",
+        "90                          simngs_dm3_1000000.fastq            16   \n",
+        "26                          simngs_dm3_1000000.fastq            16   \n",
+        "123                        simngs_dm3_10000000.fastq            16   \n",
+        "8                          simngs_dm3_10000000.fastq            16   \n",
+        "9                          simngs_dm3_10000000.fastq            16   \n",
+        "35                         simngs_dm3_10000000.fastq            16   \n",
+        "37                         simngs_dm3_10000000.fastq            16   \n",
+        "38                         simngs_dm3_10000000.fastq            16   \n",
+        "78                         simngs_dm3_10000000.fastq            16   \n",
+        "122                        simngs_dm3_10000000.fastq            16   \n",
+        "3                          simngs_dm3_10000000.fastq            16   \n",
+        "84    simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
+        "80    simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
+        "103   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
+        "104   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
+        "48    simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
+        "28    simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
+        "12    simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
+        "86    simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
+        "83    simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
+        "116  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq            16   \n",
+        "20   simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq            16   \n",
+        "68   simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq            16   \n",
+        "67   simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq            16   \n",
+        "61   simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq            16   \n",
+        "101  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq            16   \n",
+        "13   simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq            16   \n",
+        "118  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq            16   \n",
+        "117  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq            16   \n",
+        "\n",
+        "    threads_fqscr        reads  \n",
+        "44             16          100  \n",
+        "108             8          100  \n",
+        "106             8          100  \n",
+        "105             8          100  \n",
+        "47              1          100  \n",
+        "33             16          100  \n",
+        "34             16          100  \n",
+        "11              1          100  \n",
+        "114             1          100  \n",
+        "92              1         1000  \n",
+        "91              1         1000  \n",
+        "85             16         1000  \n",
+        "87             16         1000  \n",
+        "88             16         1000  \n",
+        "27              8         1000  \n",
+        "29              8         1000  \n",
+        "30              8         1000  \n",
+        "115             1         1000  \n",
+        "82             16      1000000  \n",
+        "24              8      1000000  \n",
+        "23              8      1000000  \n",
+        "89             16      1000000  \n",
+        "96              1      1000000  \n",
+        "94              1      1000000  \n",
+        "93              1      1000000  \n",
+        "90             16      1000000  \n",
+        "26              8      1000000  \n",
+        "123             8     10000000  \n",
+        "8               1     10000000  \n",
+        "9               1     10000000  \n",
+        "35             16     10000000  \n",
+        "37             16     10000000  \n",
+        "38             16     10000000  \n",
+        "78              8     10000000  \n",
+        "122             8     10000000  \n",
+        "3               1     10000000  \n",
+        "84             16   3000vs6000  \n",
+        "80              1   3000vs6000  \n",
+        "103             8   3000vs6000  \n",
+        "104             8   3000vs6000  \n",
+        "48              1   3000vs6000  \n",
+        "28              8   3000vs6000  \n",
+        "12              1   3000vs6000  \n",
+        "86             16   3000vs6000  \n",
+        "83             16   3000vs6000  \n",
+        "116             8  3000vs93000  \n",
+        "20             16  3000vs93000  \n",
+        "68              1  3000vs93000  \n",
+        "67              1  3000vs93000  \n",
+        "61              1  3000vs93000  \n",
+        "101            16  3000vs93000  \n",
+        "13             16  3000vs93000  \n",
+        "118             8  3000vs93000  \n",
+        "117             8  3000vs93000  \n",
+        "\n",
+        "[54 rows x 11 columns]"
+       ]
+      }
+     ],
+     "prompt_number": 16
+    },
+    {
+     "cell_type": "code",
+     "collapsed": false,
+     "input": [
+      "runtimes_dm3 = dm3.loc[:,['reads', 'delta_fqscr', 'delta_facs']]"
+     ],
+     "language": "python",
+     "metadata": {},
      "outputs": [],
-     "prompt_number": 89
+     "prompt_number": 17
+    },
+    {
+     "cell_type": "code",
+     "collapsed": false,
+     "input": [
+      "runtimes_dm3.sort('reads')"
+     ],
+     "language": "python",
+     "metadata": {},
+     "outputs": [
+      {
+       "html": [
+        "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
+        "<table border=\"1\" class=\"dataframe\">\n",
+        "  <thead>\n",
+        "    <tr style=\"text-align: right;\">\n",
+        "      <th></th>\n",
+        "      <th>reads</th>\n",
+        "      <th>delta_fqscr</th>\n",
+        "      <th>delta_facs</th>\n",
+        "    </tr>\n",
+        "  </thead>\n",
+        "  <tbody>\n",
+        "    <tr>\n",
+        "      <th>44 </th>\n",
+        "      <td>         100</td>\n",
+        "      <td>    0.673775</td>\n",
+        "      <td>   0.774</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>108</th>\n",
+        "      <td>         100</td>\n",
+        "      <td>    0.628752</td>\n",
+        "      <td>   0.774</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>106</th>\n",
+        "      <td>         100</td>\n",
+        "      <td>    0.231580</td>\n",
+        "      <td>   0.016</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>105</th>\n",
+        "      <td>         100</td>\n",
+        "      <td>    0.226763</td>\n",
+        "      <td>   0.539</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>47 </th>\n",
+        "      <td>         100</td>\n",
+        "      <td>    0.628286</td>\n",
+        "      <td>   0.774</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>33 </th>\n",
+        "      <td>         100</td>\n",
+        "      <td>    0.210950</td>\n",
+        "      <td>   0.539</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>34 </th>\n",
+        "      <td>         100</td>\n",
+        "      <td>    0.227650</td>\n",
+        "      <td>   0.016</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>11 </th>\n",
+        "      <td>         100</td>\n",
+        "      <td>    0.211287</td>\n",
+        "      <td>   0.539</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>114</th>\n",
+        "      <td>         100</td>\n",
+        "      <td>    0.225330</td>\n",
+        "      <td>   0.016</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>92 </th>\n",
+        "      <td>        1000</td>\n",
+        "      <td>    0.212446</td>\n",
+        "      <td>   0.027</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>91 </th>\n",
+        "      <td>        1000</td>\n",
+        "      <td>    0.210926</td>\n",
+        "      <td>   0.021</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>85 </th>\n",
+        "      <td>        1000</td>\n",
+        "      <td>    0.658177</td>\n",
+        "      <td>   0.703</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>87 </th>\n",
+        "      <td>        1000</td>\n",
+        "      <td>    0.212351</td>\n",
+        "      <td>   0.021</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>88 </th>\n",
+        "      <td>        1000</td>\n",
+        "      <td>    0.210869</td>\n",
+        "      <td>   0.027</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>27 </th>\n",
+        "      <td>        1000</td>\n",
+        "      <td>    0.632960</td>\n",
+        "      <td>   0.703</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>29 </th>\n",
+        "      <td>        1000</td>\n",
+        "      <td>    0.227470</td>\n",
+        "      <td>   0.021</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>30 </th>\n",
+        "      <td>        1000</td>\n",
+        "      <td>    0.215520</td>\n",
+        "      <td>   0.027</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>115</th>\n",
+        "      <td>        1000</td>\n",
+        "      <td>    0.631765</td>\n",
+        "      <td>   0.703</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>82 </th>\n",
+        "      <td>     1000000</td>\n",
+        "      <td>   10.207863</td>\n",
+        "      <td>   1.789</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>24 </th>\n",
+        "      <td>     1000000</td>\n",
+        "      <td>   40.650027</td>\n",
+        "      <td>   9.936</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>23 </th>\n",
+        "      <td>     1000000</td>\n",
+        "      <td>    7.338175</td>\n",
+        "      <td>   2.138</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>89 </th>\n",
+        "      <td>     1000000</td>\n",
+        "      <td>    6.463202</td>\n",
+        "      <td>   2.138</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>96 </th>\n",
+        "      <td>     1000000</td>\n",
+        "      <td>   16.781235</td>\n",
+        "      <td>   1.789</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>94 </th>\n",
+        "      <td>     1000000</td>\n",
+        "      <td>  152.819053</td>\n",
+        "      <td>   9.936</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>93 </th>\n",
+        "      <td>     1000000</td>\n",
+        "      <td>   47.703680</td>\n",
+        "      <td>   2.138</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>90 </th>\n",
+        "      <td>     1000000</td>\n",
+        "      <td>   95.274927</td>\n",
+        "      <td>   9.936</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>26 </th>\n",
+        "      <td>     1000000</td>\n",
+        "      <td>    6.060514</td>\n",
+        "      <td>   1.789</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>123</th>\n",
+        "      <td>    10000000</td>\n",
+        "      <td>   70.471625</td>\n",
+        "      <td>  13.373</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>8  </th>\n",
+        "      <td>    10000000</td>\n",
+        "      <td>  494.496125</td>\n",
+        "      <td>  13.373</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>9  </th>\n",
+        "      <td>    10000000</td>\n",
+        "      <td>  168.785631</td>\n",
+        "      <td>   9.916</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>35 </th>\n",
+        "      <td>    10000000</td>\n",
+        "      <td>  940.853700</td>\n",
+        "      <td> 101.781</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>37 </th>\n",
+        "      <td>    10000000</td>\n",
+        "      <td>  101.717528</td>\n",
+        "      <td>   9.916</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>38 </th>\n",
+        "      <td>    10000000</td>\n",
+        "      <td>   71.551788</td>\n",
+        "      <td>  13.373</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>78 </th>\n",
+        "      <td>    10000000</td>\n",
+        "      <td>  301.252240</td>\n",
+        "      <td> 101.781</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>122</th>\n",
+        "      <td>    10000000</td>\n",
+        "      <td>   57.989411</td>\n",
+        "      <td>   9.916</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>3  </th>\n",
+        "      <td>    10000000</td>\n",
+        "      <td> 1747.636472</td>\n",
+        "      <td> 101.781</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>84 </th>\n",
+        "      <td>  3000vs6000</td>\n",
+        "      <td>    1.091974</td>\n",
+        "      <td>   1.421</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>80 </th>\n",
+        "      <td>  3000vs6000</td>\n",
+        "      <td>    1.733639</td>\n",
+        "      <td>   1.421</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>103</th>\n",
+        "      <td>  3000vs6000</td>\n",
+        "      <td>    0.845511</td>\n",
+        "      <td>   1.421</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>104</th>\n",
+        "      <td>  3000vs6000</td>\n",
+        "      <td>    0.434019</td>\n",
+        "      <td>   0.070</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>48 </th>\n",
+        "      <td>  3000vs6000</td>\n",
+        "      <td>    0.835371</td>\n",
+        "      <td>   0.070</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>28 </th>\n",
+        "      <td>  3000vs6000</td>\n",
+        "      <td>    0.237581</td>\n",
+        "      <td>   0.020</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>12 </th>\n",
+        "      <td>  3000vs6000</td>\n",
+        "      <td>    0.444665</td>\n",
+        "      <td>   0.020</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>86 </th>\n",
+        "      <td>  3000vs6000</td>\n",
+        "      <td>    0.223083</td>\n",
+        "      <td>   0.020</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>83 </th>\n",
+        "      <td>  3000vs6000</td>\n",
+        "      <td>    0.461494</td>\n",
+        "      <td>   0.070</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>116</th>\n",
+        "      <td> 3000vs93000</td>\n",
+        "      <td>    0.855492</td>\n",
+        "      <td>   0.456</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>20 </th>\n",
+        "      <td> 3000vs93000</td>\n",
+        "      <td>    1.096185</td>\n",
+        "      <td>   0.576</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>68 </th>\n",
+        "      <td> 3000vs93000</td>\n",
+        "      <td>    4.827130</td>\n",
+        "      <td>   0.576</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>67 </th>\n",
+        "      <td> 3000vs93000</td>\n",
+        "      <td>    2.106148</td>\n",
+        "      <td>   0.456</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>61 </th>\n",
+        "      <td> 3000vs93000</td>\n",
+        "      <td>   14.623352</td>\n",
+        "      <td>   1.809</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>101</th>\n",
+        "      <td> 3000vs93000</td>\n",
+        "      <td>    9.079349</td>\n",
+        "      <td>   1.809</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>13 </th>\n",
+        "      <td> 3000vs93000</td>\n",
+        "      <td>    1.127904</td>\n",
+        "      <td>   0.456</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>118</th>\n",
+        "      <td> 3000vs93000</td>\n",
+        "      <td>    3.006585</td>\n",
+        "      <td>   1.809</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>117</th>\n",
+        "      <td> 3000vs93000</td>\n",
+        "      <td>    0.851774</td>\n",
+        "      <td>   0.576</td>\n",
+        "    </tr>\n",
+        "  </tbody>\n",
+        "</table>\n",
+        "<p>54 rows \u00d7 3 columns</p>\n",
+        "</div>"
+       ],
+       "metadata": {},
+       "output_type": "pyout",
+       "prompt_number": 18,
+       "text": [
+        "           reads  delta_fqscr  delta_facs\n",
+        "44           100     0.673775       0.774\n",
+        "108          100     0.628752       0.774\n",
+        "106          100     0.231580       0.016\n",
+        "105          100     0.226763       0.539\n",
+        "47           100     0.628286       0.774\n",
+        "33           100     0.210950       0.539\n",
+        "34           100     0.227650       0.016\n",
+        "11           100     0.211287       0.539\n",
+        "114          100     0.225330       0.016\n",
+        "92          1000     0.212446       0.027\n",
+        "91          1000     0.210926       0.021\n",
+        "85          1000     0.658177       0.703\n",
+        "87          1000     0.212351       0.021\n",
+        "88          1000     0.210869       0.027\n",
+        "27          1000     0.632960       0.703\n",
+        "29          1000     0.227470       0.021\n",
+        "30          1000     0.215520       0.027\n",
+        "115         1000     0.631765       0.703\n",
+        "82       1000000    10.207863       1.789\n",
+        "24       1000000    40.650027       9.936\n",
+        "23       1000000     7.338175       2.138\n",
+        "89       1000000     6.463202       2.138\n",
+        "96       1000000    16.781235       1.789\n",
+        "94       1000000   152.819053       9.936\n",
+        "93       1000000    47.703680       2.138\n",
+        "90       1000000    95.274927       9.936\n",
+        "26       1000000     6.060514       1.789\n",
+        "123     10000000    70.471625      13.373\n",
+        "8       10000000   494.496125      13.373\n",
+        "9       10000000   168.785631       9.916\n",
+        "35      10000000   940.853700     101.781\n",
+        "37      10000000   101.717528       9.916\n",
+        "38      10000000    71.551788      13.373\n",
+        "78      10000000   301.252240     101.781\n",
+        "122     10000000    57.989411       9.916\n",
+        "3       10000000  1747.636472     101.781\n",
+        "84    3000vs6000     1.091974       1.421\n",
+        "80    3000vs6000     1.733639       1.421\n",
+        "103   3000vs6000     0.845511       1.421\n",
+        "104   3000vs6000     0.434019       0.070\n",
+        "48    3000vs6000     0.835371       0.070\n",
+        "28    3000vs6000     0.237581       0.020\n",
+        "12    3000vs6000     0.444665       0.020\n",
+        "86    3000vs6000     0.223083       0.020\n",
+        "83    3000vs6000     0.461494       0.070\n",
+        "116  3000vs93000     0.855492       0.456\n",
+        "20   3000vs93000     1.096185       0.576\n",
+        "68   3000vs93000     4.827130       0.576\n",
+        "67   3000vs93000     2.106148       0.456\n",
+        "61   3000vs93000    14.623352       1.809\n",
+        "101  3000vs93000     9.079349       1.809\n",
+        "13   3000vs93000     1.127904       0.456\n",
+        "118  3000vs93000     3.006585       1.809\n",
+        "117  3000vs93000     0.851774       0.576\n",
+        "\n",
+        "[54 rows x 3 columns]"
+       ]
+      }
+     ],
+     "prompt_number": 18
+    },
+    {
+     "cell_type": "code",
+     "collapsed": false,
+     "input": [
+      "runtimes_dm3.pivot_table(values=['delta_fqscr', 'delta_facs'], rows=['reads']).plot(title='eschColi_K12 FACS vs Fastq_screen runtimes (log scale)', kind='barh', logy=True, logx=True)"
+     ],
+     "language": "python",
+     "metadata": {},
+     "outputs": [
+      {
+       "metadata": {},
+       "output_type": "pyout",
+       "prompt_number": 19,
+       "text": [
+        "<matplotlib.axes.AxesSubplot at 0x10b791a10>"
+       ]
+      },
+      {
+       "metadata": {},
+       "output_type": "display_data",
+       "png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAEKCAYAAABpI+C3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX6B/DPsJgLO+qALI7sIgikgVYkhqBpmuUGKqLe\nynLJrLyaZpGl4HYrupVXL4raNbdKzAVNg7TrFVIUU+wCCiSLpOyoMCzP7w8u5ycywMEBzlGe9+s1\nLz3nzJzzme/M8Mz5fs+ZoyAiAmOMMfaI05E6AGOMMdYRuOAxxhjrFLjgMcYY6xS44DHGGOsUuOAx\nxhjrFLjgMcYY6xS44D0iZs6ciRUrVrTLuqOjo+Hr6ytMGxoaIjMzs122xdjD4NSpU3BxcZE6BlJS\nUvDEE08I0yqVCidOnJAwkTj3/01pzjvvvIONGze2yXa54D0iFAoFFApFk8uJCJGRkXB3d4eBgQFs\nbGwwefJkXLp0qdXbKisrg0qlavY+9xfgy5cvw9LSEn/7298AAH//+98xePBgdO3aFbNmzWrw2DNn\nziAgIADm5ubo3bs3Jk+ejBs3bjS5LT8/P3Tr1g2GhobCLSEhAQBQXl4OAwMDjB49utHj1Go1wsLC\n4OTkBAMDA/Tr1w9/+ctfkJWVJWQODAyEubk5TE1NMXjwYBw5ckRUGz0oHR0dGBgYCM/DzMzsgdcV\nFhaGkJCQNkzXeeno6ODatWvCtK+vL37//XcJE9VZsWIFFi9eLEy39HfgYfTOO+9g9erVqKqq0npd\nXPA6iYULFyIyMhKff/45ioqKkJqaivHjx+PQoUPtsr17P3jnz5/Hs88+i/fffx9vvfUWAMDKygor\nVqzA7NmzGz22uLgYr732GrKyspCVlQVDQ8NGRfH+bX3xxRcoKysTbj4+PgCAb7/9Fra2toiPj0d+\nfn6Dx02cOBEHDx7EN998g9LSUiQnJ2Pw4MH46aefAABjx47FyJEjkZ+fjz///BORkZEwMjJqk/Zp\nzsWLF4XnUVhY2O7b6wjV1dUP/bbl9hsdeXl5iI+Px/jx46WO0q4sLCzg4uKCAwcOaL8yYpLIycmh\nl156iXr16kX9+vWjyMhIYVlCQgINGjSIjIyMSKlU0ltvvSUsO3XqFA0dOpRMTEzIxsaGtm3bRkRE\nM2fOpHnz5tGYMWPI0NCQfHx86OrVq0RElJqaSrq6uvTrr782mae4uJhCQkKoV69e1LdvX/r444+p\ntraWiIi2bt1KTz/9tHBfhUIhrLspM2fOpPfee48SEhKoZ8+eFBUVpfF+7733Hs2cObPZdZ07d44M\nDQ2bXO7n59fk+ocPH04bNmygESNG0Pr164X5P/74I3Xr1o2ys7M1Pu7mzZukUCiopKSk2WxERBUV\nFWRsbEyXLl0S5v3555/UrVs3unnzJt28eZPGjBlDJiYmZGZmRr6+vkLb3k9T26anp9Pw4cPJ3Nyc\nevbsSdOmTaPi4mJheUREBFlZWZGhoSE5OzvTiRMn6MiRI9SlSxfS19cnAwMD8vT0JCKia9eu0TPP\nPEOGhoYUEBBA8+bNo+nTpzf7/O7evUvTpk0jc3NzMjExoSeeeILy8/OJiKigoIBmzpxJffr0IVNT\nUxo/fjwREcXFxZGVlRWtWbOGLCwsaMaMGVRbW0vh4eFkb29P5ubmNHnyZCosLBS285///Ed4b3t4\neFB8fLywbNiwYbRixQp66qmnyNDQkAIDA+nWrVsa896/7ZCQEIqOjm7wHr6/rUNDQ2nu3LkaPz++\nvr6kUCioR48eZGBgQHv27KG4uDiytrYW1tW3b19at24dubu7k4GBAc2ePZtu3LhBo0aNIiMjIxox\nYgQVFRWJeq5bt24lOzs7MjQ0pH79+tG//vUvjc9z27ZtFBAQ0GCeSqWiEydOEFHd+3LhwoXUp08f\n6tOnD7355ptUWVkp3HfNmjVkaWlJVlZWtHnz5mY/181l2rRpE/Xv358MDQ3J1dWVkpKSiIiE17p+\n/vfff99gffe+HleuXKERI0aQmZkZOTs70549expsf9WqVTRr1iyN2VqDC54Eampq6PHHH6ePPvqI\nqqqq6Nq1a2RnZ0dHjx4lIqIhQ4bQ119/TUREt2/fpjNnzhARUWZmJhkaGtKuXbuourqaCgoK6MKF\nC0RU94E1NzenX3/9laqrq2natGkUFBRERERfffUVqVSqZjOFhITQ+PHjqby8nDIzM8nJyUkoIg9a\n8AICAsjMzEx4LposX768xYL3ySef0NChQ5tc7ufnR//85z8bzc/MzCRdXV26fv06bdq0iQYOHCgs\nW7JkCfn5+TW5ztraWnJ0dKTnn3+e9u/fTzdu3Gg24+zZs2n58uXC9N///nd67rnniIho6dKl9Npr\nr1F1dTVVV1fTL7/80uR6FAoFpaenN5iXnp5Ox48fJ7VaTTdv3qRnnnmG3nzzTSIi+v3338nGxoby\n8vKIiCgrK0t4bcLCwigkJKTBuoYMGUJvv/02qdVqOnnyJBkaGja6z/02btxIY8eOpbt371JtbS0l\nJSVRaWkpERGNHj2agoKCqLi4mKqqqujkyZNEVFd09PT0aOnSpaRWq+nu3bv06aef0tChQyknJ4fU\najXNmTOHgoODiYgoOzubzM3N6ciRI0RU94XE3NxcKGrDhg0jBwcHSktLo7t375Kfnx8tXbpUY15N\n277/PVzf1vcWvKY+P/fft34b9xY8lUpFQ4cOpT///JNycnKod+/e5OXlRRcuXKCKigp69tln6cMP\nP2zxuZaXl5ORkRGlpqYSEdGNGzfo8uXLGp/nO++8Q/Pnz28w796Ct2LFCho6dKjwpevJJ5+kFStW\nEBHRkSNHyMLCglJSUujOnTs0bdo00tHR0fi5bi7Tnj17yMrKis6ePUtEde/VrKwsIiLau3ev8L7c\nvXs39ejRQ/gc3ft6lJeXk7W1NUVHR1NNTQ2dP3+eevbsSSkpKUKGb7/9lh5//HGN7dAaXPAkcObM\nGbK1tW0wb/Xq1cI3mGeeeYY++OADunnzZqP7vPTSSxrXOXPmTHrllVeE6cOHD5OLiwsREX388cc0\nZMiQJvNUV1dTly5d6MqVK8K8f/zjH0JBeJCCFxoaSkZGRmRnZ9fkN3GilvfwkpOTyczMrNkiMWzY\nMOrevTuZmJiQiYkJDRo0iIiIPvroI6FQ3rp1i/T09IQvCC+//HKDP2iaZGdn0/z588ne3p50dHTo\nmWeeobS0NI33PX78ONnb2wvTTz75JO3YsYOIiN5//3164YUXGhUyTRQKBRkZGQnPZeHChY3u8/33\n35OXlxcREaWlpVHv3r2FgnivDz74oMHeW1ZWFunp6dGdO3eEeVOnTm1xD2/Lli305JNP0sWLFxvM\nz83NJR0dnQZ7m/Xi4uKoS5cuDfYo+vfvL/wxrn+8vr4+VVdXU0RERKPCO3LkSKEHw8/Pj1atWiUs\n+/LLL2nUqFEa82radksFr7nPz/33rd/G/QVv586dwvSECRNo7ty5wvTnn38u7P0291xv375NJiYm\n9O233zZ4nTR55ZVXGhX9ewuevb29UFSJiI4ePSp88Z01axYtW7ZMWJaent7k57q8vLzJTIGBgQ16\np5rj6elJMTExRNTw9di1axf5+vo2uO+rr74qfEEgIjp27BjZ2dmJ2k5zeAxPAllZWcjNzYWpqalw\nCw8Px59//gkAiIqKQmpqKvr37w9vb29hnC07Oxt2dnZNrlepVAr/79atG8rLywEA5ubmyMvLa/Jx\nt27dQlVVFfr27SvMs7W1RU5OzgM/R4VCgXnz5mHQoEEICAhAcXGxxvtRM+Mi6enpGD16NCIjI/HU\nU081u636scmioiKcPXsWALB9+3ZMmjQJQF0b+Pn5ITo6GgDQs2fPZtsEqBtn/Pzzz5Geno6srCz0\n6NEDM2bM0HhfPz8/3LlzB4mJicjMzERycjJefPFFAMDixYvh4OCAwMBA2NvbY82aNc1u9/z588Jz\n+fTTT5Gfn4+goCBYW1vD2NgYISEhKCgoAAA4ODjg008/RVhYGJRKJYKDg5t8XvXvuW7dugnz7n3N\nmxISEoKRI0ciKCgIVlZWWLJkCaqrq3H9+nWYmZnB2NhY4+N69eqFLl26CNOZmZl48cUXhfe8q6sr\n9PT0kJ+fj6ysLOzdu7fBZ+Lf//53g4OVLCwshP/f+/4Ws20xmvr8POjj753u2rWrsL7mnmv37t2x\ne/dubNy4EX369MHzzz+P//73vxq3Z2pqirKysibz5ObmNvpM5+bmAqgb/7OxsRGWWVtbN7meHj16\nNJkpOzsb9vb2Gh+3fft2eHl5Cc/x0qVLwvv2XllZWUhISGjQHjt37mww5l5WVgYTE5MmM4rFBU8C\ntra26Nevn/BHraioCKWlpTh48CCAuj9iO3fuxM2bN7FkyRJMnDgRd+7cgY2NDa5evdrq7fn7+yM7\nOxvnzp3TuLxnz57Q19dvcKrBH3/80eyHQAw9PT3s3LkTtra2GDlypMYPZ1NHlGVlZSEgIADvv/8+\npk2b1uptnz59Gunp6fj4449haWkJS0tL/Oc//8HOnTtRU1MDf39/JCYmii7q1tbWmDt3bpNHterq\n6mLy5Mn45ptv8M0332Ds2LHo0aMHAMDAwADr16/H1atXceDAAfztb38TDowRY9myZdDV1cWlS5dQ\nUlKCHTt2oLa2VlgeHByMU6dOISsrCwqFAkuWLAHQuG0tLS1RVFSEO3fuCPPqj0htjp6eHt5//31c\nvnwZp0+fxsGDB7F9+3bY2tqisLAQJSUlGh93//ZtbW0RGxvb4H1/584d9OnTB7a2tggJCWmwrKys\nDH/9619Ft1Nz2+7Ro0eD593cUb9tpakvcy0918DAQBw7dgw3btyAi4sLXnnlFY3rGThwIFJTU5vc\nfp8+fRp9pq2srADUvReuX78uLLv3/5o0lcnGxgbp6emN7p+VlYVXX30VX3zxBQoLC1FUVAQ3NzeN\nbWJra4thw4Y1ao8vvvhCuM+VK1fg6enZbEYxuOBJwNvbG4aGhli7di3u3r2LmpoaXLp0Sdgz+frr\nr3Hz5k0AgLGxMRQKBXR1dTF16lQcP34ce/fuRXV1NQoKCpCcnAyg+T0lR0dHzJ07F8HBwfj555+h\nVqtRUVGBXbt2Yc2aNcIf6+XLl6O8vBxZWVn45JNPMH369Ad+jlTXXQ49PT3s3bsXPXv2xOjRo4U/\nOjU1NaioqEB1dTVqampQWVmJmpoaAEBOTg6effZZzJ8/H6+++qro7d1r27ZtCAwMxJUrV5CcnIzk\n5GRcunQJd+/exZEjRzBixAgEBATgxRdfRFJSEqqrq1FWVoaNGzdi69atKC4uxgcffICrV6+itrYW\nt27dwpYtWzB06NAmM0ydOhW7du3Czp07MXXqVGH+oUOHkJ6eDiKCkZERdHV1oaurK7oty8vL0aNH\nDxgZGSEnJwfr1q0TlqWmpuKnn35CZWUlHnvsMXTt2lVYt4WFBTIzM4W26du3LwYPHowPPvgAVVVV\n+OWXX3Dw4MEWD2OPj4/Hb7/9hpqaGhgaGkJfXx+6urqwsLDAc889h7lz56K4uBhVVVU4efJkk+t5\n7bXXsGzZMvzxxx8AgJs3bwpH3k2fPh0//PADjh07Jrw34uPjG3whae493hIPDw9cvnwZycnJqKio\nQFhYWIPlLa1bqVQ+0JdNTZp7rn/++SdiYmJw+/Zt6Ovro0ePHk2+V0aMGIGkpCSo1WqNy4ODg/Hx\nxx/j1q1buHXrFlauXCl8pidPnoytW7fi999/x507d/DRRx81mbe5TC+//DLWr1+PpKQkEBHS09Px\nxx9/4Pbt21AoFOjZsydqa2uxdevWJr8sjhkzBqmpqfj6669RVVWFqqoq/Prrrw1O+/j555/x3HPP\niWrf5nDBk4COjg4OHjyICxcuwM7ODr169cKrr76K0tJSAMDRo0fh5uYGQ0NDLFq0CLt27cJjjz0G\nW1tbHD58GBs2bIC5uTm8vLxw8eJFAJrPv7l3OjIyEvPnz8e8efNgamoKBwcHxMTEYNy4cQCAzz//\nHD169ICdnR18fX0xbdo04VSA+9ct5jyfex+jr6+P7777Dl27dsW4ceNQUVGBjz76CN27d8eaNWvw\n9ddfo1u3bli1ahUA4J///CcyMjIQFhYmnI/W0ukA92aqqKjA3r17sWDBAvTu3Vu4qVQqhISEYPv2\n7QCAffv2YfTo0ZgyZQpMTEzg7u6OpKQkBAQEoEuXLsjKysKIESNgbGwMd3d3dOvWTegS1cTb2xsG\nBgbIy8tr8OFMS0tDQEAADA0N8eSTT2LevHkYNmxYi8+j3gcffICkpCQYGxtj7NixmDBhgnC/yspK\nvPvuu+jVqxcsLS1x69YthIeHA0CD7tzBgwcDAHbu3ImEhASYmZlh5cqVmDFjRot/7G/cuIFJkybB\n2NgYrq6u8PPzE87v27FjB/T19eHi4gKlUonIyMgmn8vChQsxbtw4BAYGwsjICEOHDkViYiKAuj3o\nmJgYrF69Gr1794atrS02bNjQINv978Hm3of3L3NycsL777+PESNGwNnZGb6+vi2u797psLAwhIaG\nwtTUFPv27RN1vltT62/uudbW1uKTTz6BlZUVzM3NcerUKXz11Vca169UKvHss89i//79Gpe/9957\nGDx4MAYOHIiBAwdi8ODBeO+99wAAo0aNwhtvvIHhw4fDyclJ+CL32GOPNVpPc5kmTpyI5cuXY+rU\nqTAyMsJLL72EoqIiuLq64u2338bQoUNhYWGBS5cu4emnn9bYHoaGhjh27Bh27doFKysrWFpa4t13\n3xUKeV5eHq5cudImp18oSJuvTYyxh9qHH36I9PR07NixQ+oo7AFcuXIFoaGhwhcHbdbj7u4OtVoN\nHR157Qe98847cHBwwGuvvab1uvTaIA9j7CHF33cfbv3793/gYvf9998LwwxLlizBuHHjZFfsAGD9\n+vVtti75PTv20BgwYECDn/Oqv33zzTdSR2Mi1Xct7dy5U+Nr6e7uLnVE1k42bdoEpVIJBwcH6Ovr\nN9l1+ijhLk3GGGOdAu/hMcYY6xR4DE8Cnp6ewukEjDHGxPHw8MCFCxce+PG8hyeB5ORk4Tw1udw+\n+OADyTM8LLk4E2fqDLnkmEnbHQUueAwAZHtBVznm4kzicCbx5JhLjpm0xQWPMcZYp8AFjwGou0K5\nHMkxF2cShzOJJ8dccsykLT4tQQIKhQLc7Iwx1jra/u3kPTwGoO4HguVIjrk4kzhyyWRmZiacYM+3\nh+NmZmbWLu8FPi2BMfZIKyoq4h6Vh0xLP8z9wOvlLs2Ox12ajHUc/rw9fJp6zbhL8yFVv+tuZNL8\nZW8YY4y1DS54Ugmru5WVNL4KuBTkMt5yPznm4kziyDET69y44DHGGOsUuOAxAICfn5/UETSSYy7O\nJI4cM9UzMmrfIzeNjB7sKMOZM2dixYoVLd5PpVLhxIkTD7SN5nz11VdQKpUwMjJCUVFRm69falzw\nGGOdTllZEQBqt1vd+luvvmC25n5hYWEICQl5oO3dq6qqCm+//TZOnDiB0tJSmJqaar1OueGCxwDI\nd7xFjrk4kzhyzPQwkOqI0hs3bqCiogL9+/eXZPsdgQseY4xJ5Pz583j88cdhZGSEoKAgVFRUCMsO\nHjwIT09PmJqa4qmnnsJvv/3W6PGxsbEIDw/H7t27YWhoCC8vLwDA1q1b4erqCiMjI9jb22PTpk3N\n5khNTRUKnYmJCUaMGAEAWLhwIWxtbWFsbIzBgwfjl19+ER5TW1uL1atXw8HBAUZGRhg8eDCys7MB\nAIsWLYJSqYSxsTEGDhyIy5cva9dQbYVYhwNACPvfjV8CxtqVps8YAAKoHW8tf64rKyvJ1taWPv30\nU6qurqZ9+/aRvr4+rVixgpKSkqh3796UmJhItbW1tG3bNlKpVKRWq4mISKVS0YkTJ4iIKCwsjEJC\nQhqs+9ChQ3Tt2jUiIvr555+pe/fulJSU1GyezMxMUigUVFNTI8z7+uuvqbCwkGpqamjDhg1kYWFB\nlZWVRES0du1acnd3p9TUVCIiunjxIhUUFFBsbCwNGjSISkpKiIjo999/p7y8vBbb415NtZ+2fy95\nD48xxiRw5swZVFdXY+HChdDV1cWECRPwxBNPgIiwefNmzJkzB0888QQUCgVmzJiBxx57DGfOnGm0\nHvrfteLuNXr0aPTr1w8A8MwzzyAwMBCnTp1qNs/96wCAadOmwdTUFDo6OnjrrbdQWVmJ//73vwCA\nf/7zn1i1ahUcHR0BAO7u7jAzM0OXLl1QVlaGK1euoLa2Fs7OzrCwsHigNmpr7VbwKioq4OPjA09P\nT7i6uuLdd98FABQWFiIgIABOTk4IDAxEcXGx8Jjw8HA4OjrCxcUFx44dE+afO3cO7u7ucHR0xMKF\nCx8oT1FREV588UV4eHjAx8dH2MVuKqeUWaUg1/EWOebiTOLIMZOc5ObmwsrKqsG8vn37AgCysrKw\nYcMGmJqaCrfs7Gzk5uaKWveRI0cwZMgQmJubw9TUFIcPH0ZBQUGrM65fvx6urq4wMTGBqakpSkpK\ncOvWLQBAdnY27O3tGz1m+PDhmD9/PubNmwelUok5c+agrEwe5xu3W8Hr2rUr4uLicOHCBVy8eBFx\ncXH45ZdfEBERgYCAAKSmpsLf3x8REREAgJSUFOzevRspKSmIjY3F3LlzhW8cr7/+OqKiopCWloa0\ntDTExsa2Os/q1avx+OOPIzk5Gdu3bxeKkaac//73vwFAsqyMsUefpaUlcnJyGszLysoCANjY2GD5\n8uUoKioSbuXl5ZgyZUqj9dx/VGdlZSUmTJiAv/71r/jzzz9RVFSE0aNHt/pgmFOnTmHdunXYu3cv\niouLUVRUBGNjY2E9NjY2SE9P1/jYBQsW4OzZs0hJSUFqairWrVvXqm23l3bt0uzevTsAQK1Wo6am\nBqampjhw4ABCQ0MBAKGhodi/fz8AICYmBsHBwdDX14dKpYKDgwMSEhKQl5eHsrIyeHt7AwBmzJiB\n/fv3o7S0FCqVStjW7du3YWtri+rqakRGRmLAgAHw8PDA1KlTAQBXrlzB8OHDAQDOzs7IzMzEzZs3\nm8wJoM2yPgzkes6UHHNxJnHkmKmeoaEpAEW73erW37wnn3wSenp6iIyMRFVVFb777jv8+uuvUCgU\neOWVV7Bx40YkJiaCiHD79m0cOnQI5eXljdZjYWGBzMxMoRCp1Wqo1Wr07NkTOjo6OHLkSINeKLHK\nysqgp6eHnj17Qq1WY+XKlSgtLRWWv/zyy1ixYgXS09NBRLh48SIKCwtx9uxZJCQkoKqqCt27d0fX\nrl2hq6vb6u23h3YteLW1tfD09IRSqcTw4cMxYMAA5OfnQ6lUAgCUSiXy8/MB1O3eW1tbC4+1trZG\nTk5Oo/lWVlbIycmBkZERPD09hW6TgwcPYtSoUdDT08OaNWtw4cIFJCcnY+PGjQAADw8PfPfddwCA\nxMREZGVlCUcU1dTUNMjp6uoKAG2WlTEmL6WlhcLYV3vcSksLW8ygr6+P7777DtHR0TA3N8eePXsw\nYcIEAMCgQYOwefNmzJ8/H2ZmZnB0dMT27ds1nqM3adIkAIC5uTkGDx4MQ0NDREZGYvLkyTAzM8M3\n33yDF154QVS73Lv+UaNGYdSoUXBycoJKpUK3bt1ga2srLH/rrbcwefJkBAYGwtjYGK+88gru3r2L\n0tJSvPrqqzAzM4NKpULPnj2xePFiUdtvb+16eSAdHR1cuHABJSUlGDlyJOLi4hosF3uSZVOmTJmC\n3bt3w8/PD7t27cL8+fMBAAMHDsTUqVMxfvx4jB8/HgCwdOlSLFy4EF5eXnB3d4eXl5fwrUNXV7dB\nzvj4+EbfTrXN2khY3T9dHuuCTz/9FJ6ensI264t4R05fuHABb775pmTbb2r63nEgOeQBIIvX6/5p\nOb5+9fOkziNngwYNQlJSksZlI0eOxMiRIzUuy8jIEP5vZmbW6ICUuXPnYu7cua3KolKpUFNTI0zr\n6OggKioKUVFRwrx7C5eOjg6WL1+O5cuXN1iPlZUVkpOTW7XtpsTHxyM6OlrIpzWtjvFshZUrV9K6\ndevI2dlZOEQ1NzeXnJ2diYgoPDycwsPDhfuPHDmSzpw5Q3l5eeTi4iLM37lzJ82ZM4eIiMrKykil\nUlFhYSHZ2tpSbW0tERHV1NRQXFwcvfXWW9S/f3+qrq5ulEelUlFZWZnGnOvXryciatOs9wLkdzpC\nXFyc1BE0kmMuziSOXDLJ7bPGWtbUa6bta9luXZq3bt0Sjmq8e/cufvzxR3h5eWHcuHHYtm0bAGDb\ntm3CHti4ceOwa9cuqNVqZGRkIC0tDd7e3rCwsICRkRESEhJARNixY4fwGAMDAzzxxBN44403MHbs\nWOFaSX/88Qf8/PwQERGBkpIS3L59GyUlJVCr1QCAzZs3Y9iwYTAwMNCY09PTU8jUVlnlTq7fhuWY\nizOJI8dMnd3q1athaGjY6DZmzBipo3UMrcplMy5evEheXl7k4eFB7u7utHbtWiIiKigoIH9/f3J0\ndKSAgAAqKioSHrNq1Sqyt7cnZ2dnio2NFeafPXuW3NzcyN7enhYsWNBgO/v27SMdHR06efIkERGp\n1Wp6+umnyd3dndzc3GjNmjVERHT69GlycnIiZ2dnmjBhAhUXFzebsz2y1oMM9/AYe1TxZ+3h09Rr\npu1ryVc8l0D9WKCcml7TuKUcyDEXZxJHLpn4iucPH77iOWOMMaYF3sOTgBz38Bh7VPEe3sOH9/AY\nY4wxLXDBYwDk+7uHcszFmcSRYya54yuety8ueIyxTsfIxEj4MYn2uBmZGD1QLr7ieftq119aYQ8P\nORxNp4kcc3EmceSYqV5ZSZnwa0ftsv6wB786gFTjjVJc8bympqZDf2eT9/AYY0wicr/i+Y8//ggX\nFxeYmJhgwYIFGDZsmPBTY+np6Rg2bBhMTEzQq1cvBAUFCeu7fPkyAgICYG5uDgsLC4SHhwOo2xud\nOHEiQkJCYGxsLPywR0fhgscAyHe8RY65OJM4cswkJ2q1GuPHj0doaCiKioowadIkfPvtt1AoFDh/\n/jz+8pe1p1p0AAAgAElEQVS/YPPmzSgsLMScOXMwbtw4VFVVNVjHqFGjsGzZMgQFBaGsrAznz58H\nUPdj94cOHUJpaSm2bt2KRYsWCcs0cXJyEq4RWlJSguPHj+PWrVuYMGECVq9ejYKCAtjb2+P06dNC\nV+qKFSswatQoFBcXIycnB2+88QaAuqssjBgxAqNHj0ZeXh7S09Ph7+8vbOvAgQOYNGkSSkpKhKvZ\ndBQueBIRc/kQxtijS+5XPD98+DDc3Nzw0ksvQVdXF2+++WaDK5d36dIFmZmZyMnJQZcuXfDkk08C\nqNsz7dOnDxYtWoQuXbrAwMBAuGQaUHdZpHHjxgGoux5pR+KCJxExlw/pSHIdb5FjLs4kjhwzyYnc\nr3h+/+XOgLqLvtZbu3YtiAje3t5wc3PD1q1bAQDXr1+HnZ1dk+u9f50diQseY4xJQO5XPO/Tpw+u\nX78uTBNRg2mlUolNmzYhJycH//jHPzB37lxcvXoVtra2uHbtmsZ1tvll1lqJCx4DIN/xFjnm4kzi\nyDGTnMj9iudjxozB5cuX8f3336O6uhqRkZG4ceOGsHzv3r3CRbRNTEygUCigq6uL559/Hnl5efjs\ns89QWVmJsrIyJCYmApD+16X4tATGWKdjaGyo1akDYtbfkvornr/yyit47733MHr0aI1XPE9LS0O3\nbt3g6+ursZt40qRJ+Prrr2Fubg47OzucPXtWuOJ5ZWUlxo4d+0BXPDc3N8fevXvxxhtvYNasWQgJ\nCcFTTz0lLD979iwWLVqEkpISKJVKREZGChdp/fHHH7Fw4UJ8+OGHeOyxx7Bo0SJ4e3tLvofHv6Up\nAf5tP8Y6Dn/e2s7w4cMREhKC2bNnt+t2+Lc0GWOMSe5h/vLABY8BkO94ixxzcSZx5Jips2uLK55L\n2SWpLR7DY4yxTmLZsmVYtmzZAz8+Li6uDdN0PB7Dk4BCoYChsSFKi0uljsLYI4/H8B4+7TWGxwVP\nAnwBWMY6Dhe8hw8ftMLalVzHW+SYizOJI8dMrHPjMTzG2CPN1NT0oT7QojNqr2vxcZemBLhLkzHG\nWo+7NBljjDERuOAxAPIdb5FjLs4kDmcST4655JhJW1zwGGOMdQo8hicBHsNjjLHWeyjH8CoqKuDj\n4wNPT0+4urri3XffBQAUFhYiICAATk5OCAwMRHFxsfCY8PBwODo6wsXFpcGlLs6dOwd3d3c4Ojpi\n4cKFD5wpPj4eXl5ecHNza/CL5LGxsXBxcYGjoyPWrFkjzH+QrIwxxiREErl9+zYREVVVVZGPjw+d\nOnWKFi9eTGvWrCEiooiICFqyZAkREV2+fJk8PDxIrVZTRkYG2dvbU21tLRERPfHEE5SQkEBERM89\n9xwdOXKk1VmKiorI1dWVrl+/TkREN2/eJCKi6upqsre3p4yMDFKr1eTh4UEpKSlERK3KWlNT02B7\nAEjCptcoLi5O6ggayTEXZxKHM4knx1xyzKTt303JxvC6d+8OoO5ihTU1NTA1NcWBAwcQGhoKAAgN\nDcX+/fsBADExMQgODoa+vj5UKhUcHByQkJCAvLw8lJWVwdvbGwAwY8YM7N+/H6WlpcJ1mQDg9u3b\nsLW1FS5iOGDAAHh4eGDq1KkAgJ07d2LChAnCped79uwJAEhMTISDgwNUKhX09fURFBSEmJgYAGhV\n1vqLHzLGGJOOZAWvtrYWnp6eUCqVGD58OAYMGID8/HwolUoAdZePz8/PBwDk5uYKxQgArK2tkZOT\n02i+lZUVcnJyYGRkBE9PT+Eoo4MHD2LUqFHQ09PDmjVrcOHCBSQnJ2Pjxo0AgLS0NBQWFmL48OEY\nPHgwduzYAQDIycmBjY1No+0CaHVWudN0YUk5kGMuziQOZxJPjrnkmElbkhU8HR0dXLhwAdnZ2Th5\n8mSjX+HW9sq4U6ZMwe7duwEAu3btwpQpUwAAAwcOxNSpU/Gvf/0Lurq6AICqqiokJSXh8OHDOHr0\nKD766COkpaU12j4RaczUUlb+lQfGGJOe5D8tZmxsjDFjxuDcuXNQKpW4ceMGLCwskJeXh969ewOo\n23O7fv268Jjs7GxYW1vDysoK2dnZDeZbWVkBAMaOHYtly5ahqKgISUlJePbZZwEAhw4dwsmTJ/HD\nDz9g1apV+O2332BjY4OePXuiW7du6NatG5555hkkJyfD2tq60Xbr19+arPWPuV9YWBgAwMTEBJ6e\nnsI3qvo9046cvnDhAt58803Jtt/U9L3nAskhDwB8+umnkr9e90/L8fWrnyeXPHJ9P/Hr1/R0fHw8\noqOjAaDBMNUDa5uhxNa5efMmFRUVERHRnTt3yNfXl44fP06LFy+miIgIIiIKDw9vdCBIZWUlXbt2\njezs7ISDVry9venMmTNUW1vb6KCVSZMm0fTp02nevHlERFRbW0sZGRlERKRWq6lPnz5UUlJCV65c\nIX9/f6qurqbbt2+Tm5sbXb58maqqqsjOzo4yMjKosrKy0UErrc1aD3zQimhyzMWZxOFM4skxlxwz\naft3U5K/uhcvXiQvLy/y8PAgd3d3Wrt2LRERFRQUkL+/Pzk6OlJAQIBQFImIVq1aRfb29uTs7Eyx\nsbHC/LNnz5KbmxvZ29vTggULGmxn3759pKOjQydPniSiuiL39NNPk7u7O7m5uQlHWRIRrVu3jlxd\nXcnNzY0+++wzYf7hw4fJycmJ7O3tafXq1cL8B8laT44FjzHG5E7bv5t84rkE+MRzxhhrvYfyxHMm\nP/f228uJHHNxJnE4k3hyzCXHTNrigscYY6xT4C5NCXCXJmOMtR53aTLGGGMicMFjAOTbXy/HXJxJ\nHM4knhxzyTGTtrjgMcYY6xR4DE8CPIbHGGOtx2N4jDHGmAhc8BgA+fbXyzEXZxKHM4knx1xyzKQt\nLngSMTQ0lToCY4x1KjyGJwFt+6EZY6wz4jE8xhhjTAQueAyAfPvr5ZiLM4nDmcSTYy45ZtIWFzzG\nGGOdAo/hSYDH8BhjrPV4DI8xxhgTgQseAyDf/no55uJM4nAm8eSYS46ZtMUFjzHGWKegJ3WAzqr+\n9zQZY4zVMTQ2RGlxabutnw9akYBCoQDCpE7BGGMyE9b8j+rzQSusbWRIHaAJcszFmcThTOLJMZcc\nM2mJCx5jjLFOgQseq9NP6gBNkGMuziQOZxJPjrnkmElLXPAYY4x1ClzwWB259tfLMRdnEocziSfH\nXHLMpCUueIwxxjoFLnisjlz76+WYizOJw5nEk2MuOWbSkuwL3uzZs6FUKuHu7i7MKywsREBAAJyc\nnBAYGIji4mJhWXh4OBwdHeHi4oJjx44J88+dOwd3d3c4Ojpi4cKFwvzKykpMmTIFjo6OGDJkCLKy\nsoRl27Ztg5OTE5ycnLB9+3ZhfkZGBnx8fODo6IigoCBUVVUJy9544w04OjrCw8MD58+fb/P2YIwx\n9mBkX/BmzZqF2NjYBvMiIiIQEBCA1NRU+Pv7IyIiAgCQkpKC3bt3IyUlBbGxsZg7d65wkuLrr7+O\nqKgopKWlIS0tTVhnVFQUzM3NkZaWhkWLFmHJkiUA6orqypUrkZiYiMTERHz44YcoKSkBACxZsgRv\nv/020tLSYGpqiqioKADA4cOHkZ6ejrS0NGzatAmvv/56h7RRm5Brf70cc3EmcTiTeHLMJcdMWpJ9\nwfP19YWpqWmDeQcOHEBoaCgAIDQ0FPv37wcAxMTEIDg4GPr6+lCpVHBwcEBCQgLy8vJQVlYGb29v\nAMCMGTOEx9y7rgkTJuDEiRMAgKNHjyIwMBAmJiYwMTFBQEAAjhw5AiJCXFwcJk6cqHH79evy8fFB\ncXEx8vPz27N5GGOMiST7gqdJfn4+lEolAECpVApFJTc3F9bW1sL9rK2tkZOT02i+lZUVcnJyAAA5\nOTmwsbEBAOjp6cHY2BgFBQVNrquwsBAmJibQ0dFptK7c3FxhXfWPyc7Obo8maHty7a+XYy7OJA5n\nEk+OueSYSUsP/Y9HKxSKDvshZjHbuf933pp8TFgbBGKMsUeIobGhcFkiPz8/xMfHIzo6GgCgUqm0\nXv9DuYenVCpx48YNAEBeXh569+4NoG5v6/r168L9srOzYW1tDSsrqwZ7WvXz6x/zxx9/AACqq6tR\nUlICc3PzRuu6fv06rKysYGZmhuLiYtTW1grrsrKyanL79csaI4ludUX5/ltcXJzG+VLf5JiLM3Gm\nzpBLikylxaXw8/ODn58fgLqiFx0djejoaISFhTVdFER6KAveuHHjsG3bNgB1R1KOHz9emL9r1y6o\n1WpkZGQgLS0N3t7esLCwgJGRERISEkBE2LFjB1544YVG69q3bx/8/f0BAIGBgTh27BiKi4tRVFSE\nH3/8ESNHjoRCocDw4cOxd+9ejduvP5rzzJkzMDExEbpeGWOMSYxkLigoiCwtLUlfX5+sra1py5Yt\nVFBQQP7+/uTo6EgBAQFUVFQk3H/VqlVkb29Pzs7OFBsbK8w/e/Ysubm5kb29PS1YsECYX1FRQZMm\nTSIHBwfy8fGhjIwMYdmWLVvIwcGBHBwcKDo6Wph/7do18vb2JgcHB5o8eTKp1Wph2bx588je3p4G\nDhxI586d0/icABBAEt1k/5IzxphG2v794uvhSaBuXE+qZtfuelKMMSYVvh4eaxP1A8VyI8dcnEkc\nziSeHHPJMZO2WlXwCgsLcfHixfbKwhhjjLWbFrs0hw0bhh9++AHV1dUYNGgQevXqhaeeegqffPJJ\nR2V85HCXJmOMtV67d2mWlJTAyMgI3333HWbMmIHExEQcP378gTfIGGOMSaHFgldTU4O8vDzs2bMH\nY8aMASDuBGz2cJFrf70cc3EmcTiTeHLMJcdM2mqx4L3//vsYOXIk7O3t4e3tjatXr8LR0bEjsjHG\nGGNthk9LkACP4THGWOtpO4bX5G9pLliwQONG6rszIyMjH3ijjDHGWEdrsktz0KBBGDRoECorK5GU\nlAQnJyc4Ojri/PnzUKvVHZmRdQC59tfLMRdnEocziSfHXHLMpK0m9/BmzpwJAPjqq6/wyy+/QF9f\nH0DdhVSffvrpDgn3aJPmwB9DQ9OW78QYY4+gFsfwnJ2dcfr0aZibmwOoO/l86NCh+O9//9shAR9F\n2vZDM8ZYZ9RuY3j1li5discff1y4XMPPP//cJpdpYIwxxjpSi6clzJo1C2fOnMGLL76Il156CWfO\nnBG6O9mjQ6799XLMxZnE4UziyTGXHDNpS9RvaXbt2hWWlpYwMTFBamoqTp482d65GGOMsTbV4hje\n5s2bERkZiezsbHh6euLMmTMYOnQofvrpp47K+MjhMTzGGGu9dv8tzc8++wyJiYno27cv4uLicP78\neRgbGz/wBhljjDEptFjwunbtim7dugEAKioq4OLiwkdoPoLk2l8vx1ycSRzOJJ4cc8kxk7ZaPErT\nxsYGRUVFGD9+PAICAmBqagqVStUB0RhjjLG206rf0oyPj0dpaSlGjRqFLl26tGeuR5rUV5swNDZE\naXGppBkYY6y1tB3DE1XwTp06hfT0dMyaNQs3b95EeXk5+vXr98Ab7ewUCgUQJmGAMPBBM4yxh067\nH7QSFhaGtWvXIjw8HACgVqsxffr0B94gkye59tfLMRdnEocziSfHXHLMpK0WC97333+PmJgY9OjR\nAwBgZWWFsrKydg/GGGOMtaUWuzS9vb2RmJgILy8vnD9/Hrdv38bQoUNx8eLFjsr4yOEuTcYYa712\n7dIkIjz//POYM2cOiouLsWnTJvj7++Pll19+4A0yxhhjUmixS3PPnj2YOHEiJkyYgNTUVHz00Ud4\n4403OiIb60By7a+XYy7OJA5nEk+OueSYSVvNnoenUCgwaNAgGBsbY/369R2ViTHGGGtzoq6Hl56e\njr59+woHrigUCh7D0wKP4THGWOu1+2kJR48exdWrV/HTTz/hhx9+wA8//IADBw488AbbyuzZs6FU\nKuHu7i7MKywsREBAAJycnBAYGIji4mJhWXh4OBwdHeHi4oJjx44J88+dOwd3d3c4Ojpi4cKFwvzK\nykpMmTIFjo6OGDJkCLKysoRl27Ztg5OTE5ycnLB9+3ZhfkZGBnx8fODo6IigoCBUVVW119NnjDHW\nSi0WPJVKpfEmtVmzZiE2NrbBvIiICAQEBCA1NRX+/v6IiIgAAKSkpGD37t1ISUlBbGws5s6dK3xL\neP311xEVFYW0tDSkpaUJ64yKioK5uTnS0tKwaNEiLFmyBEBdUV25ciUSExORmJiIDz/8ECUlJQCA\nJUuW4O2330ZaWhpMTU0RFRXVUc2hNbn218sxF2cShzOJJ8dccsykLVHXw5MjX19fmJqaNph34MAB\nhIaGAgBCQ0Oxf/9+AEBMTAyCg4Ohr68PlUoFBwcHJCQkIC8vD2VlZfD29gYAzJgxQ3jMveuaMGEC\nTpw4AaBujzcwMBAmJiYwMTFBQEAAjhw5AiJCXFwcJk6c2Gj7jDHGpPfQFjxN8vPzoVQqAQBKpRL5\n+fkAgNzcXFhbWwv3s7a2Rk5OTqP5VlZWyMnJAQDk5OTAxsYGAKCnpwdjY2MUFBQ0ua7CwkKYmJhA\nR0en0boeBn5+flJH0EiOuTiTOJxJPDnmkmMmbbV4tYSHlUKh6LAfaX6g7YS1eQzRuvXohvj4eOEN\nXd91wdM8zdM8Lafp+Ph4REdHA0DbDKXRQywjI4Pc3NyEaWdnZ8rLyyMiotzcXHJ2diYiovDwcAoP\nDxfuN3LkSDpz5gzl5eWRi4uLMH/nzp302muvCff5z3/+Q0REVVVV1LNnTyIi+uabb2jOnDnCY159\n9VXatWsX1dbWUs+ePammpoaIiE6fPk0jR47UmBsAAXTPTfqXIS4uTuoIGskxF2cShzOJJ8dccsyk\n7d/KR6pLc9y4cdi2bRuAuiMpx48fL8zftWsX1Go1MjIykJaWBm9vb1hYWMDIyAgJCQkgIuzYsQMv\nvPBCo3Xt27cP/v7+AIDAwEAcO3YMxcXFKCoqwo8//oiRI0dCoVBg+PDh2Lt3b6PtM8YYk4G2qbsd\nLygoiCwtLUlfX5+sra1py5YtVFBQQP7+/uTo6EgBAQFUVFQk3H/VqlVkb29Pzs7OFBsbK8w/e/Ys\nubm5kb29PS1YsECYX1FRQZMmTSIHBwfy8fGhjIwMYdmWLVvIwcGBHBwcKDo6Wph/7do18vb2JgcH\nB5o8eTKp1WqN2SHDPTzGGJM7bf9WtuoCsKxt1I353dvs2p1MyRhjnUG7n3jOOof6gWK5kWMuziQO\nZxJPjrnkmElbXPAYY4x1CtylKQHu0mSMsdbjLk3GGGNMBC54DIB8++vlmIszicOZxJNjLjlm0hYX\nPMYYY50Cj+FJgMfwGGOs9XgMjzHGGBOBC55kFMLN0NC0pTu3O7n218sxF2cShzOJJ8dccsykrUf2\naglyx12YjDHWsXgMTwLa9kMzxlhnxGN4jDHGmAhc8BgA+fbXyzEXZxKHM4knx1xyzKQtLniMMcY6\nBR7DkwCP4THGWOvxGB5jjDEmAhc8BkC+/fVyzMWZxOFM4skxlxwzaYsLHmOMsU6Bx/AkwGN4jDHW\nejyGxxhjjInABY8BkG9/vRxzcSZxOJN4cswlx0za4oLHGGOsU+AxPAnwGB5jjLUej+ExxhhjInDB\nYwDk218vx1ycSRzOJJ4cc8kxk7a44DHGGOsUeAzvf2bPno1Dhw6hd+/e+O233wAAhYWFmDJlCrKy\nsqBSqbBnzx6YmJgAAMLDw7Flyxbo6uoiMjISgYGBAIBz585h5syZqKiowOjRo/HZZ5812haP4THG\nWOvxGF4bmTVrFmJjYxvMi4iIQEBAAFJTU+Hv74+IiAgAQEpKCnbv3o2UlBTExsZi7ty5wovw+uuv\nIyoqCmlpaUhLS2u0TsYYY9Lggvc/vr6+MDU1bTDvwIEDCA0NBQCEhoZi//79AICYmBgEBwdDX18f\nKpUKDg4OSEhIQF5eHsrKyuDt7Q0AmDFjhvAYuZNrf70cc3EmcTiTeHLMJcdM2uKC14z8/HwolUoA\ngFKpRH5+PgAgNzcX1tbWwv2sra2Rk5PTaL6VlRVycnI6NjRjjDGNuOCJpFAooFAopI7Rbvz8/KSO\noJEcc3EmcTiTeHLMJcdM2tKTOoCcKZVK3LhxAxYWFsjLy0Pv3r0B1O25Xb9+XbhfdnY2rK2tYWVl\nhezs7AbzraysNK575syZUKlUAAATExN4enoKb7D6rgSe5mme5unOPB0fH4/o6GgAEP5eaoWYICMj\ng9zc3ITpxYsXU0REBBERhYeH05IlS4iI6PLly+Th4UGVlZV07do1srOzo9raWiIi8vb2pjNnzlBt\nbS0999xzdOTIkUbbkWOzx8XFSR1BIznm4kzicCbx5JhLjpm0/dvJe3j/ExwcjJ9//hm3bt2CjY0N\nVq5ciaVLl2Ly5MmIiooSTksAAFdXV0yePBmurq7Q09PDl19+KXR3fvnll5g5cybu3r2L0aNHY9So\nUVI+LcYYY//D5+FJgM/DY4yx1uPz8BhjjDERuOAxAPI950aOuTiTOJxJPDnmkmMmbXHBY4wx1inw\nGJ4EeAyPMcZaj8fwGGOMMRG44DEA8u2vl2MuziQOZxJPjrnkmElbXPAYY4x1CjyGJwEew2OMsdbj\nMTzGGGNMBC54DIB8++vlmIszicOZxJNjLjlm0hYXPMYYY50Cj+FJgMfwGGOs9XgMjzHGGBOBCx4D\nIN/+ejnm4kzicCbx5JhLjpm0xQWPMcZYp8BjeBLgMTzGGGs9HsNjjDHGROCCxwDIt79ejrk4kzic\nSTw55pJjJm1xwWOMMdYp8BieBHgMjzHGWo/H8BhjjDERuOAxAPLtr5djLs4kDmcST4655JhJW1zw\nGGOMdQo8hicBHsNjjLHW4zE8xhhjTAQueAyAfPvr5ZiLM4nDmcSTYy45ZtIWFzzGGGOdAo/htWD2\n7Nk4dOgQevfujd9++w0AUFhYiClTpiArKwsqlQp79uyBiYkJACA8PBxbtmyBrq4uIiMjERgY2Gid\nPIbHGGOtx2N47WzWrFmIjY1tMC8iIgIBAQFITU2Fv78/IiIiAAApKSnYvXs3UlJSEBsbi7lz56K2\ntlaK2Iwxxu7DBa8Fvr6+MDU1bTDvwIEDCA0NBQCEhoZi//79AICYmBgEBwdDX18fKpUKDg4OSExM\n7PDMD0Ku/fVyzMWZxOFM4skxlxwzaYsL3gPIz8+HUqkEACiVSuTn5wMAcnNzYW1tLdzP2toaOTk5\nkmRkjDHWkJ7UAR52CoUCCoWi2eWa6Ot3wfLlywAAJiYm8PT0hJ+fH4D//2bV0dP1pNq+pmk/Pz9Z\n5akXHx8vmzxyfv3kNi3H9xO/fk1Px8fHIzo6GgCgUqmgLT5oRYTMzEyMHTtWOGjFxcUF8fHxsLCw\nQF5eHoYPH47ff/9dGMtbunQpAGDUqFH48MMP4ePj02B99UWQm54xxsTjg1YkMG7cOGzbtg0AsG3b\nNowfP16Yv2vXLqjVamRkZCAtLQ3e3t5SRhXt/m+ZciHHXJxJHM4knhxzyTGTtrhLswXBwcH4+eef\ncevWLdjY2GDlypVYunQpJk+ejKioKOG0BABwdXXF5MmT4erqCj09PXz55ZfNdncyxhjrONylKQHu\n0mSMsdbjLk3GGGNMBC54DIB8++vlmIszicOZxJNjLjlm0hYXPMYYY50Cj+FJgMfwGGOs9XgMjzHG\nGBOBCx4DIN/+ejnm4kzicCbx5JhLjpm0xQWPMcZYp8BjeBLgMTzGGGs9HsNjjDHGROCCJxFDQ9OW\n79SB5NpfL8dcnEkcziSeHHPJMZO2uOBJpLS0UOoIjDHWqfAYngS07YdmjLHOiMfwGGOMMRG44DEA\n8u2vl2MuziQOZxJPjrnkmElbXPAYAODChQtSR9BIjrk4kzicSTw55pJjJm1xwWMAgOLiYqkjaCTH\nXJxJHM4knhxzyTGTtrjgMcYY6xS44DEAQGZmptQRNJJjLs4kDmcST4655JhJW3xaggQ8PT2RnJws\ndQzGGHuoeHh4aDW2yAWPMcZYp8BdmowxxjoFLniMMcY6BS54HSw2NhYuLi5wdHTEmjVrJMuhUqkw\ncOBAeHl5wdvbGwBQWFiIgIAAODk5ITAwsN0PS549ezaUSiXc3d2Fec1lCA8Ph6OjI1xcXHDs2LEO\nyxQWFgZra2t4eXnBy8sLR44c6dBM169fx/DhwzFgwAC4ubkhMjISgLRt1VQmqduqoqICPj4+8PT0\nhKurK959910A0rZVU5mkbisAqKmpgZeXF8aOHQtA+s+fpkxt2k7EOkx1dTXZ29tTRkYGqdVq8vDw\noJSUFEmyqFQqKigoaDBv8eLFtGbNGiIiioiIoCVLlrRrhpMnT1JSUhK5ubm1mOHy5cvk4eFBarWa\nMjIyyN7enmpqajokU1hYGG3YsKHRfTsqU15eHp0/f56IiMrKysjJyYlSUlIkbaumMkndVkREt2/f\nJiKiqqoq8vHxoVOnTkn+vtKUSQ5ttWHDBpo6dSqNHTuWiKT//GnK1JbtxHt4HSgxMREODg5QqVTQ\n19dHUFAQYmJiJMtD9x2vdODAAYSGhgIAQkNDsX///nbdvq+vL0xNG14mqakMMTExCA4Ohr6+PlQq\nFRwcHJCYmNghmQDNF+vtqEwWFhbw9PQEABgYGKB///7IycmRtK2aygRI21YA0L17dwCAWq1GTU0N\nTE1NJX9facoESNtW2dnZOHz4MF5++WUhh9TtpCkTEbVZO3HB60A5OTmwsbERpq2trYU/Eh1NoVBg\nxIgRGDx4MDZv3gwAyM/Ph1KpBAAolUrk5+d3eK6mMuTm5sLa2lq4X0e33eeffw4PDw/85S9/Ebp5\npMiUmZmJ8+fPw8fHRzZtVZ9pyJAhAKRvq9raWnh6ekKpVArdrlK3laZMgLRttWjRIqxbtw46Ov9f\nBqRuJ02ZFApFm7UTF7wOpFAopI4g+Pe//43z58/jyJEj+OKLL3Dq1KkGyxUKheR5W8rQUflef/11\nZPSHBzIAAALRSURBVGRk4MKFC7C0tMTbb78tSaby8nJMmDABn332GQwNDRttV4q2Ki8vx8SJE/HZ\nZ5/BwMBAFm2lo6ODCxcuIDs7GydPnkRcXFyj7XZ0W92fKT4+XtK2OnjwIHr37g0vL68mL7fT0e3U\nVKa2bCcueB3IysoK169fF6avX7/e4BtKR7K0tAQA9OrVCy+++CISExOhVCpx48YNAEBeXh569+7d\n4bmaynB/22VnZ8PKyqpDMvXu3Vv48L/88stCt0lHZqqqqsKECRMQEhKC8ePHA5C+reozTZ8+Xcgk\nh7aqZ2xsjDFjxuDcuXOSt9X9mc6ePStpW50+fRoHDhxAv379EBwcjJ9++gkhISGStpOmTDNmzGjb\ndmrDsUbWgqqqKrKzs6OMjAyqrKyU7KCV27dvU2lpKRERlZeX05NPPklHjx6lxYsXU0REBBERhYeH\nt/tBK0REGRkZjQ5a0ZShfoC6srKSrl27RnZ2dlRbW9shmXJzc4X//+1vf6Pg4OAOzVRbW0shISH0\n5ptvNpgvZVs1lUnqtrp58yYVFRUREdGdO3fI19eXjh8/LmlbNZUpLy9PuI8UbVUvPj6enn/+eSKS\nx+fv/kxt+Z7igtfBDh8+TE5OTmRvb0+rV6+WJMO1a9fIw8ODPDw8aMCAAUKOgoIC8vf3J0dHRwoI\nCBA+pO0lKCiILC0tSV9fn6ytrWnLli3NZli1ahXZ29uTs7MzxcbGdkimqKgoCgkJIXd3dxo4cCC9\n8MILdOPGjQ7NdOrUKVIoFOTh4UGenp7k6elJR44ckbStNGU6fPiw5G118eJF8vLyIg8PD3J3d6e1\na9cSUfPv7fbO1VQmqduqXnx8vHBEpNSfv3pxcXFCpunTp7dZO/FPizHGGOsUeAyPMcZYp8AFjzHG\nWKfABY8xxlinwAWPMcZYp8AFjzHGWKfABY8xxlinwAWPMcZYp8AFjzHGWKfwfyd1B1ilG5FQAAAA\nAElFTkSuQmCC\n",
+       "text": [
+        "<matplotlib.figure.Figure at 0x10b791fd0>"
+       ]
+      }
+     ],
+     "prompt_number": 19
+    },
+    {
+     "cell_type": "code",
+     "collapsed": false,
+     "input": [
+      "runtimes_eschColi = eschColi.loc[:,['reads', 'delta_fqscr', 'delta_facs']]\n",
+      "runtimes_eschColi.pivot_table(values=['delta_fqscr', 'delta_facs'], rows=['reads']).plot(title='eschColi_K12 FACS vs Fastq_screen runtimes (log scale)', kind='barh', logy=True, logx=True)\n",
+      "\n",
+      "runtimes_phiX = phiX.loc[:,['reads', 'delta_fqscr', 'delta_facs']]\n",
+      "runtimes_phiX.pivot_table(values=['delta_fqscr', 'delta_facs'], rows=['reads']).plot(title ='phiX FACS vs Fastq_screen runtimes (log scale)', kind='barh', logy=True, logx=True)"
+     ],
+     "language": "python",
+     "metadata": {},
+     "outputs": [
+      {
+       "metadata": {},
+       "output_type": "pyout",
+       "prompt_number": 20,
+       "text": [
+        "<matplotlib.axes.AxesSubplot at 0x10b79db10>"
+       ]
+      },
+      {
+       "metadata": {},
+       "output_type": "display_data",
+       "png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAEKCAYAAABpI+C3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcFfX6B/DPYTEXdtADsnhkF0EgDdQiMQRN0yxXVES9\nleWSWXk1zUJLwe1WdCuvXly75lapuaBpkHa9Qopgil1AgWSRlB0VDsvz+4PL/EQOMHiAGeV5v168\ndGbOmfmc71meM9/vzBkFEREYY4yxx5yO1AEYY4yx9sAFjzHGWIfABY8xxliHwAWPMcZYh8AFjzHG\nWIfABY8xxliHwAXvMTFjxgwsX768Tda9bds2+Pn5CdOGhobIyMhok20x9ig4c+YMXF1dpY6B5ORk\nPPXUU8K0SqXCqVOnJEwkzoOfKU159913sXHjxlbZLhe8x4RCoYBCoWh0OREhMjISHh4eMDAwgK2t\nLSZOnIjLly+3eFulpaVQqVRN3ubBAnzlyhVYWVnhb3/7GwDg73//OwYMGIDOnTtj5syZ9e577tw5\nBAYGwtzcHD169MDEiRNx8+bNRrfl7++PLl26wNDQUPiLi4sDAJSVlcHAwAAjR45scD+1Wo2wsDA4\nOzvDwMAAvXv3xl/+8hdkZmYKmYOCgmBubg5TU1MMGDAAx44dE9VGD0tHRwcGBgbC4zAzM3vodYWF\nhSEkJKQV03VcOjo6uH79ujDt5+eH33//XcJEtZYvX45FixYJ0819DjyK3n33XaxevRqVlZVar4sL\nXgexYMECREZG4vPPP0dhYSFSUlIwduxYHDlypE22d/8b7+LFi3juuefwwQcf4O233wYAWFtbY/ny\n5Zg1a1aD+xYVFeH1119HZmYmMjMzYWho2KAoPritL774AqWlpcKfr68vAODbb7+FnZ0dYmNjkZeX\nV+9+48ePx+HDh/HNN9+gpKQESUlJGDBgAH766ScAwOjRozF8+HDk5eXhzz//RGRkJIyMjFqlfZpy\n6dIl4XEUFBS0+fbaQ1VV1SO/bbn9Rkdubi5iY2MxduxYqaO0KUtLS7i6uuLQoUPar4yYJLKzs+nl\nl1+m7t27U+/evSkyMlJYFhcXR/379ycjIyNSKpX09ttvC8vOnDlDgwYNIhMTE7K1taXt27cTEdGM\nGTNo7ty5NGrUKDI0NCRfX1+6du0aERGlpKSQrq4u/frrr43mKSoqopCQEOrevTv16tWLPv74Y6qp\nqSEioq1bt9Izzzwj3FahUAjrbsyMGTPo/fffp7i4OLKwsKCoqCiNt3v//fdpxowZTa7rwoULZGho\n2Ohyf3//Rtc/dOhQ2rBhAw0bNozWr18vzP/xxx+pS5culJWVpfF+t27dIoVCQcXFxU1mIyIqLy8n\nY2Njunz5sjDvzz//pC5dutCtW7fo1q1bNGrUKDIxMSEzMzPy8/MT2vZBmto2LS2Nhg4dSubm5mRh\nYUFTp06loqIiYXlERARZW1uToaEhubi40KlTp+jYsWPUqVMn0tfXJwMDA/Ly8iIiouvXr9Ozzz5L\nhoaGFBgYSHPnzqVp06Y1+fju3btHU6dOJXNzczIxMaGnnnqK8vLyiIgoPz+fZsyYQT179iRTU1Ma\nO3YsERHFxMSQtbU1rVmzhiwtLWn69OlUU1ND4eHh5ODgQObm5jRx4kQqKCgQtvOf//xHeG17enpS\nbGyssGzIkCG0fPlyevrpp8nQ0JCCgoLo9u3bGvM+uO2QkBDatm1bvdfwg20dGhpKc+bM0fj+8fPz\nI4VCQd26dSMDAwPau3cvxcTEkI2NjbCuXr160bp168jDw4MMDAxo1qxZdPPmTRoxYgQZGRnRsGHD\nqLCwUNRj3bp1K9nb25OhoSH17t2b/vWvf2l8nNu3b6fAwMB681QqFZ06dYqIal+XCxYsoJ49e1LP\nnj3prbfeooqKCuG2a9asISsrK7K2tqbNmzc3+b5uKtOmTZuoT58+ZGhoSG5ubpSQkEBEJDzXdfO/\n//77euu7//m4evUqDRs2jMzMzMjFxYX27t1bb/urVq2imTNnaszWElzwJFBdXU1PPvkkffTRR1RZ\nWUnXr18ne3t7On78OBERDRw4kL7++msiIrpz5w6dO3eOiIgyMjLI0NCQdu/eTVVVVZSfn0+JiYlE\nVPuGNTc3p19//ZWqqqpo6tSpNHnyZCIi+uqrr0ilUjWZKSQkhMaOHUtlZWWUkZFBzs7OQhF52IIX\nGBhIZmZmwmPRZNmyZc0WvE8++YQGDRrU6HJ/f3/65z//2WB+RkYG6erq0o0bN2jTpk3Ur18/Ydni\nxYvJ39+/0XXW1NSQk5MTvfDCC3TgwAG6efNmkxlnzZpFy5YtE6b//ve/0/PPP09EREuWLKHXX3+d\nqqqqqKqqin755ZdG16NQKCgtLa3evLS0NDp58iSp1Wq6desWPfvss/TWW28REdHvv/9Otra2lJub\nS0REmZmZwnMTFhZGISEh9dY1cOBAeuedd0itVtPp06fJ0NCwwW0etHHjRho9ejTdu3ePampqKCEh\ngUpKSoiIaOTIkTR58mQqKiqiyspKOn36NBHVFh09PT1asmQJqdVqunfvHn366ac0aNAgys7OJrVa\nTbNnz6bg4GAiIsrKyiJzc3M6duwYEdV+ITE3NxeK2pAhQ8jR0ZFSU1Pp3r175O/vT0uWLNGYV9O2\nH3wN17X1/QWvsffPg7et28b9BU+lUtGgQYPozz//pOzsbOrRowd5e3tTYmIilZeX03PPPUcrVqxo\n9rGWlZWRkZERpaSkEBHRzZs36cqVKxof57vvvkvz5s2rN+/+grd8+XIaNGiQ8KVr8ODBtHz5ciIi\nOnbsGFlaWlJycjLdvXuXpk6dSjo6Ohrf101l2rt3L1lbW9P58+eJqPa1mpmZSURE+/btE16Xe/bs\noW7dugnvo/ufj7KyMrKxsaFt27ZRdXU1Xbx4kSwsLCg5OVnI8O2339KTTz6psR1aggueBM6dO0d2\ndnb15q1evVr4BvPss8/Shx9+SLdu3Wpwm5dfflnjOmfMmEGvvvqqMH306FFydXUlIqKPP/6YBg4c\n2Gieqqoq6tSpE129elWY949//EMoCA9T8EJDQ8nIyIjs7e0b/SZO1PweXlJSEpmZmTVZJIYMGUJd\nu3YlExMTMjExof79+xMR0UcffSQUytu3b5Oenp7wBeGVV16p94GmSVZWFs2bN48cHBxIR0eHnn32\nWUpNTdV425MnT5KDg4MwPXjwYNq5cycREX3wwQf04osvNihkmigUCjIyMhIey4IFCxrc5vvvvydv\nb28iIkpNTaUePXoIBfF+H374Yb29t8zMTNLT06O7d+8K86ZMmdLsHt6WLVto8ODBdOnSpXrzc3Jy\nSEdHp97eZp2YmBjq1KlTvT2KPn36CB/GdffX19enqqoqioiIaFB4hw8fLvRg+Pv706pVq4RlX375\nJY0YMUJjXk3bbq7gNfX+efC2ddt4sODt2rVLmB43bhzNmTNHmP7888+Fvd+mHuudO3fIxMSEvv32\n23rPkyavvvpqg6J/f8FzcHAQiioR0fHjx4UvvjNnzqSlS5cKy9LS0hp9X5eVlTWaKSgoqF7vVFO8\nvLzo4MGDRFT/+di9ezf5+fnVu+1rr70mfEEgIjpx4gTZ29uL2k5TeAxPApmZmcjJyYGpqanwFx4e\njj///BMAEBUVhZSUFPTp0wc+Pj7COFtWVhbs7e0bXa9SqRT+36VLF5SVlQEAzM3NkZub2+j9bt++\njcrKSvTq1UuYZ2dnh+zs7Id+jAqFAnPnzkX//v0RGBiIoqIijbejJsZF0tLSMHLkSERGRuLpp59u\nclt1Y5OFhYU4f/48AGDHjh2YMGECgNo28Pf3x7Zt2wAAFhYWTbYJUDvO+PnnnyMtLQ2ZmZno1q0b\npk+frvG2/v7+uHv3LuLj45GRkYGkpCS89NJLAIBFixbB0dERQUFBcHBwwJo1a5rc7sWLF4XH8umn\nnyIvLw+TJ0+GjY0NjI2NERISgvz8fACAo6MjPv30U4SFhUGpVCI4OLjRx1X3muvSpYsw7/7nvDEh\nISEYPnw4Jk+eDGtrayxevBhVVVW4ceMGzMzMYGxsrPF+3bt3R6dOnYTpjIwMvPTSS8Jr3s3NDXp6\nesjLy0NmZib27dtX7z3x73//u97BSpaWlsL/7399i9m2GI29fx72/vdPd+7cWVhfU4+1a9eu2LNn\nDzZu3IiePXvihRdewH//+1+N2zM1NUVpaWmjeXJychq8p3NycgDUjv/Z2toKy2xsbBpdT7du3RrN\nlJWVBQcHB43327FjB7y9vYXHePnyZeF1e7/MzEzExcXVa49du3bVG3MvLS2FiYlJoxnF4oInATs7\nO/Tu3Vv4UCssLERJSQkOHz4MoPZDbNeuXbh16xYWL16M8ePH4+7du7C1tcW1a9davL2AgABkZWXh\nwoULGpdbWFhAX1+/3qkGf/zxR5NvAjH09PSwa9cu2NnZYfjw4RrfnI0dUZaZmYnAwEB88MEHmDp1\naou3ffbsWaSlpeHjjz+GlZUVrKys8J///Ae7du1CdXU1AgICEB8fL7qo29jYYM6cOY0e1aqrq4uJ\nEyfim2++wTfffIPRo0ejW7duAAADAwOsX78e165dw6FDh/C3v/1NODBGjKVLl0JXVxeXL19GcXEx\ndu7ciZqaGmF5cHAwzpw5g8zMTCgUCixevBhAw7a1srJCYWEh7t69K8yrOyK1KXp6evjggw9w5coV\nnD17FocPH8aOHTtgZ2eHgoICFBcXa7zfg9u3s7NDdHR0vdf93bt30bNnT9jZ2SEkJKTestLSUvz1\nr38V3U5Nbbtbt271HndTR/22lsa+zDX3WIOCgnDixAncvHkTrq6uePXVVzWup1+/fkhJSWl0+z17\n9mzwnra2tgZQ+1q4ceOGsOz+/2vSWCZbW1ukpaU1uH1mZiZee+01fPHFFygoKEBhYSHc3d01tomd\nnR2GDBnSoD2++OIL4TZXr16Fl5dXkxnF4IInAR8fHxgaGmLt2rW4d+8eqqurcfnyZWHP5Ouvv8at\nW7cAAMbGxlAoFNDV1cWUKVNw8uRJ7Nu3D1VVVcjPz0dSUhKApveUnJycMGfOHAQHB+Pnn3+GWq1G\neXk5du/ejTVr1ggf1suWLUNZWRkyMzPxySefYNq0aQ/9GKm2uxx6enrYt28fLCwsMHLkSOFDp7q6\nGuXl5aiqqkJ1dTUqKipQXV0NAMjOzsZzzz2HefPm4bXXXhO9vftt374dQUFBuHr1KpKSkpCUlITL\nly/j3r17OHbsGIYNG4bAwEC89NJLSEhIQFVVFUpLS7Fx40Zs3boVRUVF+PDDD3Ht2jXU1NTg9u3b\n2LJlCwYNGtRohilTpmD37t3YtWsXpkyZIsw/cuQI0tLSQEQwMjKCrq4udHV1RbdlWVkZunXrBiMj\nI2RnZ2PdunXCspSUFPz000+oqKjAE088gc6dOwvrtrS0REZGhtA2vXr1woABA/Dhhx+isrISv/zy\nCw4fPtzsYeyxsbH47bffUF1dDUNDQ+jr60NXVxeWlpZ4/vnnMWfOHBQVFaGyshKnT59udD2vv/46\nli5dij/++AMAcOvWLeHIu2nTpuGHH37AiRMnhNdGbGxsvS8kTb3Gm+Pp6YkrV64gKSkJ5eXlCAsL\nq7e8uXUrlcqH+rKpSVOP9c8//8TBgwdx584d6Ovro1u3bo2+VoYNG4aEhASo1WqNy4ODg/Hxxx/j\n9u3buH37NlauXCm8pydOnIitW7fi999/x927d/HRRx81mrepTK+88grWr1+PhIQEEBHS0tLwxx9/\n4M6dO1AoFLCwsEBNTQ22bt3a6JfFUaNGISUlBV9//TUqKytRWVmJX3/9td5pHz///DOef/55Ue3b\nFC54EtDR0cHhw4eRmJgIe3t7dO/eHa+99hpKSkoAAMePH4e7uzsMDQ2xcOFC7N69G0888QTs7Oxw\n9OhRbNiwAebm5vD29salS5cAaD7/5v7pyMhIzJs3D3PnzoWpqSkcHR1x8OBBjBkzBgDw+eefo1u3\nbrC3t4efnx+mTp0qnArw4LrFnOdz/3309fXx3XffoXPnzhgzZgzKy8vx0UcfoWvXrlizZg2+/vpr\ndOnSBatWrQIA/POf/0R6ejrCwsKE89GaOx3g/kzl5eXYt28f5s+fjx49egh/KpUKISEh2LFjBwBg\n//79GDlyJCZNmgQTExN4eHggISEBgYGB6NSpEzIzMzFs2DAYGxvDw8MDXbp0EbpENfHx8YGBgQFy\nc3PrvTlTU1MRGBgIQ0NDDB48GHPnzsWQIUOafRx1PvzwQyQkJMDY2BijR4/GuHHjhNtVVFTgvffe\nQ/fu3WFlZYXbt28jPDwcAOp15w4YMAAAsGvXLsTFxcHMzAwrV67E9OnTm/2wv3nzJiZMmABjY2O4\nubnB399fOL9v586d0NfXh6urK5RKJSIjIxt9LAsWLMCYMWMQFBQEIyMjDBo0CPHx8QBq96APHjyI\n1atXo0ePHrCzs8OGDRvqZXvwNdjU6/DBZc7Ozvjggw8wbNgwuLi4wM/Pr9n13T8dFhaG0NBQmJqa\nYv/+/aLOd2ts/U091pqaGnzyySewtraGubk5zpw5g6+++krj+pVKJZ577jkcOHBA4/L3338fAwYM\nQL9+/dCvXz8MGDAA77//PgBgxIgRePPNNzF06FA4OzsLX+SeeOKJButpKtP48eOxbNkyTJkyBUZG\nRnj55ZdRWFgINzc3vPPOOxg0aBAsLS1x+fJlPPPMMxrbw9DQECdOnMDu3bthbW0NKysrvPfee0Ih\nz83NxdWrV1vl9AsFafO1iTH2SFuxYgXS0tKwc+dOqaOwh3D16lWEhoYKXxy0WY+HhwfUajV0dOS1\nH/Tuu+/C0dERr7/+utbr0muFPIyxRxR/33209enT56GL3ffffy8MMyxevBhjxoyRXbEDgPXr17fa\nuuT36Ngjo2/fvvV+zqvu75tvvpE6GhOprmtp165dGp9LDw8PqSOyNrJp0yYolUo4OjpCX1+/0a7T\nxwl3aTLGGOsQeA+PMcZYh8BjeBLw8vISTidgjDEmjqenJxITEx/6/ryHJ4GkpCThPDW5/H344YeS\nZ3hUcnEmztQRcskxk7Y7ClzwGADI9oKucszFmcThTOLJMZccM2mLCx5jjLEOgQseA1B7hXI5kmMu\nziQOZxJPjrnkmElbfFqCBBQKBbjZGWOsZbT97OQ9PAag9geC5UiOuTiTOHLJZGZmJpxgz3+Pxp+Z\nmVmbvBb4tATG2GOtsLCQe1QeMc39MPdDr5e7NNsfd2ky1n74/fboaew54y7NR1TdrruRSdOXvWGM\nMdY6uOBJJaz2r7S44VXApSCX8ZYHyTEXZxJHjplYx8YFjzHGWIfABY8BAPz9/aWOoJEcc3EmceSY\nqY6RUdseuWlk9HBHGc6YMQPLly9v9nYqlQqnTp16qG005auvvoJSqYSRkREKCwtbff1S44LHGOtw\nSksLAVCb/dWuv+XqCmZLbhcWFoaQkJCH2t79Kisr8c477+DUqVMoKSmBqamp1uuUGy54DIB8x1vk\nmIsziSPHTI8CqY4ovXnzJsrLy9GnTx9Jtt8euOAxxphELl68iCeffBJGRkaYPHkyysvLhWWHDx+G\nl5cXTE1N8fTTT+O3335rcP/o6GiEh4djz549MDQ0hLe3NwBg69atcHNzg5GRERwcHLBp06Ymc6Sk\npAiFzsTEBMOGDQMALFiwAHZ2djA2NsaAAQPwyy+/CPepqanB6tWr4ejoCCMjIwwYMABZWVkAgIUL\nF0KpVMLY2Bj9+vXDlStXtGuo1kKs3QEghP3vj58CxtqUpvcYAAKoDf+af19XVFSQnZ0dffrpp1RV\nVUX79+8nfX19Wr58OSUkJFCPHj0oPj6eampqaPv27aRSqUitVhMRkUqlolOnThERUVhYGIWEhNRb\n95EjR+j69etERPTzzz9T165dKSEhock8GRkZpFAoqLq6Wpj39ddfU0FBAVVXV9OGDRvI0tKSKioq\niIho7dq15OHhQSkpKUREdOnSJcrPz6fo6Gjq378/FRcXExHR77//Trm5uc22x/0aaz9tPy95D48x\nxiRw7tw5VFVVYcGCBdDV1cW4cePw1FNPgYiwefNmzJ49G0899RQUCgWmT5+OJ554AufOnWuwHvrf\nteLuN3LkSPTu3RsA8OyzzyIoKAhnzpxpMs+D6wCAqVOnwtTUFDo6Onj77bdRUVGB//73vwCAf/7z\nn1i1ahWcnJwAAB4eHjAzM0OnTp1QWlqKq1evoqamBi4uLrC0tHyoNmptbVbwysvL4evrCy8vL7i5\nueG9994DABQUFCAwMBDOzs4ICgpCUVGRcJ/w8HA4OTnB1dUVJ06cEOZfuHABHh4ecHJywoIFCx4q\nT2FhIV566SV4enrC19dX2MVuLKeUWaUg1/EWOebiTOLIMZOc5OTkwNraut68Xr16AQAyMzOxYcMG\nmJqaCn9ZWVnIyckRte5jx45h4MCBMDc3h6mpKY4ePYr8/PwWZ1y/fj3c3NxgYmICU1NTFBcX4/bt\n2wCArKwsODg4NLjP0KFDMW/ePMydOxdKpRKzZ89Gaak8zjdus4LXuXNnxMTEIDExEZcuXUJMTAx+\n+eUXREREIDAwECkpKQgICEBERAQAIDk5GXv27EFycjKio6MxZ84c4RvHG2+8gaioKKSmpiI1NRXR\n0dEtzrN69Wo8+eSTSEpKwo4dO4RipCnnv//9bwCQLCtj7PFnZWWF7OzsevMyMzMBALa2tli2bBkK\nCwuFv7KyMkyaNKnBeh48qrOiogLjxo3DX//6V/z5558oLCzEyJEjW3wwzJkzZ7Bu3Trs27cPRUVF\nKCwshLGxsbAeW1tbpKWlabzv/Pnzcf78eSQnJyMlJQXr1q1r0bbbSpt2aXbt2hUAoFarUV1dDVNT\nUxw6dAihoaEAgNDQUBw4cAAAcPDgQQQHB0NfXx8qlQqOjo6Ii4tDbm4uSktL4ePjAwCYPn06Dhw4\ngJKSEqhUKmFbd+7cgZ2dHaqqqhAZGYm+ffvC09MTU6ZMAQBcvXoVQ4cOBQC4uLggIyMDt27dajQn\ngFbL+iiQ6zlTcszFmcSRY6Y6hoamABRt9le7/qYNHjwYenp6iIyMRGVlJb777jv8+uuvUCgUePXV\nV7Fx40bEx8eDiHDnzh0cOXIEZWVlDdZjaWmJjIwMoRCp1Wqo1WpYWFhAR0cHx44dq9cLJVZpaSn0\n9PRgYWEBtVqNlStXoqSkRFj+yiuvYPny5UhLSwMR4dKlSygoKMD58+cRFxeHyspKdO3aFZ07d4au\nrm6Lt98W2rTg1dTUwMvLC0qlEkOHDkXfvn2Rl5cHpVIJAFAqlcjLywNQu3tvY2Mj3NfGxgbZ2dkN\n5ltbWyM7OxtGRkbw8vISuk0OHz6MESNGQE9PD2vWrEFiYiKSkpKwceNGAICnpye+++47AEB8fDwy\nMzOFI4qqq6vr5XRzcwOAVsvKGJOXkpICYeyrLf5KSgqazaCvr4/vvvsO27Ztg7m5Ofbu3Ytx48YB\nAPr374/Nmzdj3rx5MDMzg5OTE3bs2KHxHL0JEyYAAMzNzTFgwAAYGhoiMjISEydOhJmZGb755hu8\n+OKLotrl/vWPGDECI0aMgLOzM1QqFbp06QI7Ozth+dtvv42JEyciKCgIxsbGePXVV3Hv3j2UlJTg\ntddeg5mZGVQqFSwsLLBo0SJR229rbXp5IB0dHSQmJqK4uBjDhw9HTExMveViT7JszKRJk7Bnzx74\n+/tj9+7dmDdvHgCgX79+mDJlCsaOHYuxY8cCAJYsWYIFCxbA29sbHh4e8Pb2Fr516Orq1ssZGxvb\n4NuptlkbCKv9p9MTnfDpp5/Cy8tL2GZdEW/P6cTERLz11luSbb+x6fvHgeSQB4Asnq8Hp+X4/NXN\nkzqPnPXv3x8JCQkalw0fPhzDhw/XuCw9PV34v5mZWYMDUubMmYM5c+a0KItKpUJ1dbUwraOjg6io\nKERFRQnz7i9cOjo6WLZsGZYtW1ZvPdbW1khKSmrRthsTGxuLbdu2Cfm0ptUxni2wcuVKWrduHbm4\nuAiHqObk5JCLiwsREYWHh1N4eLhw++HDh9O5c+coNzeXXF1dhfm7du2i2bNnExFRaWkpqVQqKigo\nIDs7O6qpqSEiourqaoqJiaG3336b+vTpQ1VVVQ3yqFQqKi0t1Zhz/fr1REStmvV+gPxOR4iJiZE6\ngkZyzMWZxJFLJrm911jzGnvOtH0u26xL8/bt28JRjffu3cOPP/4Ib29vjBkzBtu3bwcAbN++XdgD\nGzNmDHbv3g21Wo309HSkpqbCx8cHlpaWMDIyQlxcHIgIO3fuFO5jYGCAp556Cm+++SZGjx4tXCvp\njz/+gL+/PyIiIlBcXIw7d+6guLgYarUaALB582YMGTIEBgYGGnN6eXkJmVorq9zJ9duwHHNxJnHk\nmKmjW716NQwNDRv8jRo1Supo7UOrctmES5cukbe3N3l6epKHhwetXbuWiIjy8/MpICCAnJycKDAw\nkAoLC4X7rFq1ihwcHMjFxYWio6OF+efPnyd3d3dycHCg+fPn19vO/v37SUdHh06fPk1ERGq1mp55\n5hny8PAgd3d3WrNmDRERnT17lpydncnFxYXGjRtHRUVFTeZsi6x1IMM9PMYeV/xee/Q09pxp+1zy\nFc8lUDcWKKem1zRuKQdyzMWZxJFLJr7i+aOHr3jOGGOMaYH38CQgxz08xh5XvIf36OE9PMYYY0wL\nXPAYAPn+7qEcc3EmceSYSe74iudtiwseY6zDMTIxEn5Moi3+jEyMHioXX/G8bbXpL62wR4ccjqbT\nRI65OJM4csxUp7S4VPi1ozZZf9jDXx1AqvFGKa54Xl1d3a6/s8l7eIwxJhG5X/H8xx9/hKurK0xM\nTDB//nwMGTJE+KmxtLQ0DBkyBCYmJujevTsmT54srO/KlSsIDAyEubk5LC0tER4eDqB2b3T8+PEI\nCQmBsbGx8MMe7YULHgMg3/EWOebiTOLIMZOcqNVqjB07FqGhoSgsLMSECRPw7bffQqFQ4OLFi/jL\nX/6CzZtGhXlnAAAgAElEQVQ3o6CgALNnz8aYMWNQWVlZbx0jRozA0qVLMXnyZJSWluLixYsAan/s\n/siRIygpKcHWrVuxcOFCYZkmzs7OwjVCi4uLcfLkSdy+fRvjxo3D6tWrkZ+fDwcHB5w9e1boSl2+\nfDlGjBiBoqIiZGdn48033wRQe5WFYcOGYeTIkcjNzUVaWhoCAgKEbR06dAgTJkxAcXGxcDWb9sIF\nTyJiLh/CGHt8yf2K50ePHoW7uztefvll6Orq4q233qp35fJOnTohIyMD2dnZ6NSpEwYPHgygds+0\nZ8+eWLhwITp16gQDAwPhkmlA7WWRxowZA6D2eqTtiQueRMRcPqQ9yXW8RY65OJM4cswkJ3K/4vmD\nlzsDai/6Wmft2rUgIvj4+MDd3R1bt24FANy4cQP29vaNrvfBdbYnLniMMSYBuV/xvGfPnrhx44Yw\nTUT1ppVKJTZt2oTs7Gz84x//wJw5c3Dt2jXY2dnh+vXrGtfZ6pdZayEueAyAfMdb5JiLM4kjx0xy\nIvcrno8aNQpXrlzB999/j6qqKkRGRuLmzZvC8n379gkX0TYxMYFCoYCuri5eeOEF5Obm4rPPPkNF\nRQVKS0sRHx8PQPpfl+LTEhhjHY6hsaFWpw6IWX9z6q54/uqrr+L999/HyJEjNV7xPDU1FV26dIGf\nn5/GbuIJEybg66+/hrm5Oezt7XH+/HnhiucVFRUYPXr0Q13x3NzcHPv27cObb76JmTNnIiQkBE8/\n/bSw/Pz581i4cCGKi4uhVCoRGRkpXKT1xx9/xIIFC7BixQo88cQTWLhwIXx8fCTfw+Pf0pQA/7Yf\nY+2H32+tZ+jQoQgJCcGsWbPadDv8W5qMMcYk9yh/eeCCxwDId7xFjrk4kzhyzNTRtcYVz6XsktQW\nj+ExxlgHsXTpUixduvSh7x8TE9OKadofj+FJQKFQwNDYECVFJVJHYeyxx2N4j562GsPjgicBvgAs\nY+2HC96jhw9aYW1KruMtcszFmcSRYybWsfEYHmPssWZqavpIH2jREbXVtfi4S1MC3KXJGGMtx12a\njDHGmAhc8BgA+Y63yDEXZxKHM4knx1xyzKQtLniMMcY6BB7DkwCP4THGWMs9kmN45eXl8PX1hZeX\nF9zc3PDee+8BAAoKChAYGAhnZ2cEBQWhqKhIuE94eDicnJzg6upa71IXFy5cgIeHB5ycnLBgwYKH\nzhQbGwtvb2+4u7vX+0Xy6OhouLq6wsnJCWvWrBHmP0xWxhhjEiKJ3Llzh4iIKisrydfXl86cOUOL\nFi2iNWvWEBFRREQELV68mIiIrly5Qp6enqRWqyk9PZ0cHByopqaGiIieeuopiouLIyKi559/no4d\nO9biLIWFheTm5kY3btwgIqJbt24REVFVVRU5ODhQeno6qdVq8vT0pOTkZCKiFmWtrq6utz0AJGHT\naxQTEyN1BI3kmIszicOZxJNjLjlm0vZzU7IxvK5duwKovVhhdXU1TE1NcejQIYSGhgIAQkNDceDA\nAQDAwYMHERwcDH19fahUKjg6OiIuLg65ubkoLS2Fj48PAGD69Ok4cOAASkpKhOsyAcCdO3dgZ2cn\nXMSwb9++8PT0xJQpUwAAu3btwrhx44RLz1tYWAAA4uPj4ejoCJVKBX19fUyePBkHDx4EgBZlrbv4\nIWOMMelIVvBqamrg5eUFpVKJoUOHom/fvsjLy4NSqQRQe/n4vLw8AEBOTo5QjADAxsYG2dnZDeZb\nW1sjOzsbRkZG8PLyEo4yOnz4MEaMGAE9PT2sWbMGiYmJSEpKwsaNGwEAqampKCgowNChQzFgwADs\n3LkTAJCdnQ1bW9sG2wXQ4qxyp+nCknIgx1ycSRzOJJ4cc8kxk7YkK3g6OjpITExEVlYWTp8+3eBX\nuLW9Mu6kSZOwZ88eAMDu3bsxadIkAEC/fv0wZcoU/Otf/4Kuri4AoLKyEgkJCTh69CiOHz+Ojz76\nCKmpqQ22T0QaMzWXlX/lgTHGpCf5T4sZGxtj1KhRuHDhApRKJW7evAlLS0vk5uaiR48eAGr33G7c\nuCHcJysrCzY2NrC2tkZWVla9+dbW1gCA0aNHY+nSpSgsLERCQgKee+45AMCRI0dw+vRp/PDDD1i1\nahV+++032NrawsLCAl26dEGXLl3w7LPPIikpCTY2Ng22W7f+lmStu8+DwsLCAAAmJibw8vISvlHV\n7Zm253RiYiLeeustybbf2PT95wLJIQ8AfPrpp5I/Xw9Oy/H5q5snlzxyfT3x89f4dGxsLLZt2wYA\n9YapHlrrDCW2zK1bt6iwsJCIiO7evUt+fn508uRJWrRoEUVERBARUXh4eIMDQSoqKuj69etkb28v\nHLTi4+ND586do5qamgYHrUyYMIGmTZtGc+fOJSKimpoaSk9PJyIitVpNPXv2pOLiYrp69SoFBARQ\nVVUV3blzh9zd3enKlStUWVlJ9vb2lJ6eThUVFQ0OWmlp1jrgg1ZEk2MuziQOZxJPjrnkmEnbz01J\nPnUvXbpE3t7e5OnpSR4eHrR27VoiIsrPz6eAgABycnKiwMBAoSgSEa1atYocHBzIxcWFoqOjhfnn\nz58nd3d3cnBwoPnz59fbzv79+0lHR4dOnz5NRLVF7plnniEPDw9yd3cXjrIkIlq3bh25ubmRu7s7\nffbZZ8L8o0ePkrOzMzk4ONDq1auF+Q+TtY4cCx5jjMmdtp+bfOK5BPjEc8YYa7lH8sRzJj/399vL\niRxzcSZxOJN4cswlx0za4oLHGGOsQ+AuTQlwlyZjjLUcd2kyxhhjInDBYwDk218vx1ycSRzOJJ4c\nc8kxk7a44DHGGOsQeAxPAjyGxxhjLcdjeIwxxpgIXPAYAPn218sxF2cShzOJJ8dccsykLS54EjE0\nNJU6AmOMdSg8hicBbfuhGWOsI+IxPMYYY0wELngMgHz76+WYizOJw5nEk2MuOWbSFhc8xhhjHQKP\n4UmAx/AYY6zleAyPMcYYE4ELHgMg3/56OebiTOJwJvHkmEuOmbTFBY8xxliHoCd1gI6q7vc0GWPs\nUWZobIiSohKpY4jCB61IQKFQAGFSp2CMsVYQ1n4/hM8HrbDWkS51gEbIMRdnEocziSfHXHLMpCUu\neIwxxjoELnisVm+pAzRCjrk4kzicSTw55pJjJi1xwWOMMdYhcMFjteTaXy/HXJxJHM4knhxzyTGT\nlrjgMcYY6xC44LFacu2vl2MuziQOZxJPjrnkmElLsi94s2bNglKphIeHhzCvoKAAgYGBcHZ2RlBQ\nEIqKioRl4eHhcHJygqurK06cOCHMv3DhAjw8PODk5IQFCxYI8ysqKjBp0iQ4OTlh4MCByMzMFJZt\n374dzs7OcHZ2xo4dO4T56enp8PX1hZOTEyZPnozKykph2ZtvvgknJyd4enri4sWLrd4ejDHGHo7s\nC97MmTMRHR1db15ERAQCAwORkpKCgIAAREREAACSk5OxZ88eJCcnIzo6GnPmzBFOUnzjjTcQFRWF\n1NRUpKamCuuMioqCubk5UlNTsXDhQixevBhAbVFduXIl4uPjER8fjxUrVqC4uBgAsHjxYrzzzjtI\nTU2FqakpoqKiAABHjx5FWloaUlNTsWnTJrzxxhvt0katQq799XLMxZnE4UziyTGXHDNpSfYFz8/P\nD6ampvXmHTp0CKGhoQCA0NBQHDhwAABw8OBBBAcHQ19fHyqVCo6OjoiLi0Nubi5KS0vh4+MDAJg+\nfbpwn/vXNW7cOJw6dQoAcPz4cQQFBcHExAQmJiYIDAzEsWPHQESIiYnB+PHjNW6/bl2+vr4oKipC\nXl5eWzYPY4wxkWRf8DTJy8uDUqkEACiVSqGo5OTkwMbGRridjY0NsrOzG8y3trZGdnY2ACA7Oxu2\ntrYAAD09PRgbGyM/P7/RdRUUFMDExAQ6OjoN1pWTkyOsq+4+WVlZbdEErU+u/fVyzMWZxOFM4skx\nlxwzaemR//FohULRbj/ELGY7D/7OW6P3CWuFQIwxJrEu3bogNjYW/v7+AP7/skKtMR0bG4tt27YB\nAFQqldZZH8mCp1QqcfPmTVhaWiI3Nxc9evQAULu3dePGDeF2WVlZsLGxgbW1db09rbr5dff5448/\n0LNnT1RVVaG4uBjm5uawtraudz2oGzdu4LnnnoOZmRmKiopQU1MDHR0dZGVlwdrautHt1y1rSJsf\nW239K6bf/4KVEznm4kzicCbx5JjrYTM9eB9tpv39/etNr1ixosV57vdIdmmOGTMG27dvB1B7JOXY\nsWOF+bt374ZarUZ6ejpSU1Ph4+MDS0tLGBkZIS4uDkSEnTt34sUXX2ywrv379yMgIAAAEBQUhBMn\nTqCoqAiFhYX48ccfMXz4cCgUCgwdOhT79u3TuP26oznPnTsHExMToeuVMcaYxEjmJk+eTFZWVqSv\nr082Nja0ZcsWys/Pp4CAAHJycqLAwEAqLCwUbr9q1SpycHAgFxcXio6OFuafP3+e3N3dycHBgebP\nny/MLy8vpwkTJpCjoyP5+vpSenq6sGzLli3k6OhIjo6OtG3bNmH+9evXycfHhxwdHWnixImkVquF\nZXPnziUHBwfq168fXbhwQeNjAkAAafEn+6eNMcZanbaffXw9PAnUjuvJq0uTMcbkjq+Hx1rF/eOV\nciLHXJxJHM4knhxzyTGTtlpU8AoKCnDp0qW2ysIYY4y1mWa7NIcMGYIffvgBVVVV6N+/P7p3746n\nn34an3zySXtlfOxwlyZjjLVcm3dpFhcXw8jICN999x2mT5+O+Ph4nDx58qE3yBhjjEmh2YJXXV2N\n3Nxc7N27F6NGjQIg7gRs9miRa3+9HHNxJnE4k3hyzCXHTNpqtuB98MEHGD58OBwcHODj44Nr167B\nycmpPbIxxhhjrYZPS5AAj+ExxljLaTuG1+hPi82fP1/jRuq6MyMjIx96o4wxxlh7a7RLs3///ujf\nvz8qKiqQkJAAZ2dnODk54eLFi1Cr1e2ZkbUDufbXyzEXZxKHM4knx1xyzKStRvfwZsyYAQD46quv\n8Msvv0BfXx9A7YVUn3nmmXYJ93h7+AN/DA1Nm78RY4yxepodw3NxccHZs2dhbm4OoPbk80GDBuG/\n//1vuwR8HGnbD80YYx1Rm43h1VmyZAmefPJJ4RINP//8M8LCwh56g4wxxpgUmj0tYebMmTh37hxe\neuklvPzyyzh37pzQ3ckeH3Ltr5djLs4kDmcST4655JhJW6J+S7Nz586wsrKCiYkJUlJScPr06bbO\nxRhjjLWqZsfwNm/ejMjISGRlZcHLywvnzp3DoEGD8NNPP7VXxscOj+ExxljLtflvaX722WeIj49H\nr169EBMTg4sXL8LY2PihN8gYY4xJodmC17lzZ3Tp0gUAUF5eDldXVz5C8zEk1/56OebiTOJwJvHk\nmEuOmbTV7FGatra2KCwsxNixYxEYGAhTU1OoVKp2iMYYY4y1nhb9lmZsbCxKSkowYsQIdOrUqS1z\nPdakvNqEobEhSopKJNs+Y4w9LG3H8EQVvDNnziAtLQ0zZ87ErVu3UFZWht69ez/0Rjs6hUIBhEm0\n8TDwATOMsUdSmx+0EhYWhrVr1yI8PBwAoFarMW3atIfeIJMnufbXyzEXZxKHM4knx1xyzKStZgve\n999/j4MHD6Jbt24AAGtra5SWlrZ5MMYYY6w1Ndul6ePjg/j4eHh7e+PixYu4c+cOBg0ahEuXLrVX\nxscOd2kyxljLtWmXJhHhhRdewOzZs1FUVIRNmzYhICAAr7zyykNvkDHGGJNCs12ae/fuxfjx4zFu\n3DikpKTgo48+wptvvtke2Vg7kmt/vRxzcSZxOJN4cswlx0zaavI8PIVCgf79+8PY2Bjr169vr0yM\nMcZYqxN1Pby0tDT06tVLOHBFoVDwGJ4WeAyPMcZars1PSzh+/DiuXbuGn376CT/88AN++OEHHDp0\n6KE32FpmzZoFpVIJDw8PYV5BQQECAwPh7OyMoKAgFBUVCcvCw8Ph5OQEV1dXnDhxQph/4cIFeHh4\nwMnJCQsWLBDmV1RUYNKkSXBycsLAgQORmZkpLNu+fTucnZ3h7OyMHTt2CPPT09Ph6+sLJycnTJ48\nGZWVlW318BljjLVQswVPpVJp/JPazJkzER0dXW9eREQEAgMDkZKSgoCAAERERAAAkpOTsWfPHiQn\nJyM6Ohpz5swRviW88cYbiIqKQmpqKlJTU4V1RkVFwdzcHKmpqVi4cCEWL14MoLaorly5EvHx8YiP\nj8eKFStQXFwMAFi8eDHeeecdpKamwtTUFFFRUe3VHFqTa3+9HHNxJnE4k3hyzCXHTNoSdT08OfLz\n84OpqWm9eYcOHUJoaCgAIDQ0FAcOHAAAHDx4EMHBwdDX14dKpYKjoyPi4uKQm5uL0tJS+Pj4AACm\nT58u3Of+dY0bNw6nTp0CULvHGxQUBBMTE5iYmCAwMBDHjh0DESEmJgbjx49vsH3GGGPSe2QLniZ5\neXlQKpUAAKVSiby8PABATk4ObGxshNvZ2NggOzu7wXxra2tkZ2cDALKzs2FrawsA0NPTg7GxMfLz\n8xtdV0FBAUxMTKCjo9NgXY8Cf39/qSNoJMdcnEkcziSeHHPJMZO2mr1awqNKoVC02480P9R2wlo9\nhiiGxoZCV0XdC5qneZqneVqO07Gxsdi2bRsAtM5QGj3C0tPTyd3dXZh2cXGh3NxcIiLKyckhFxcX\nIiIKDw+n8PBw4XbDhw+nc+fOUW5uLrm6ugrzd+3aRa+//rpwm//85z9ERFRZWUkWFhZERPTNN9/Q\n7Nmzhfu89tprtHv3bqqpqSELCwuqrq4mIqKzZ8/S8OHDNeYGQAD9708eT0FMTIzUETSSYy7OJA5n\nEk+OueSYSdvPy8eqS3PMmDHYvn07gNojKceOHSvM3717N9RqNdLT05GamgofHx9YWlrCyMgIcXFx\nICLs3LkTL774YoN17d+/HwEBAQCAoKAgnDhxAkVFRSgsLMSPP/6I4cOHQ6FQYOjQodi3b1+D7TPG\nGJOB1qm77W/y5MlkZWVF+vr6ZGNjQ1u2bKH8/HwKCAggJycnCgwMpMLCQuH2q1atIgcHB3JxcaHo\n6Ghh/vnz58nd3Z0cHBxo/vz5wvzy8nKaMGECOTo6kq+vL6WnpwvLtmzZQo6OjuTo6Ejbtm0T5l+/\nfp18fHzI0dGRJk6cSGq1WmN2yHAPjzHG5E7bz8sWXQCWtY7aMb+6ZtfuRErGGOso2vzEc9Yx1A0U\ny40cc3EmcTiTeHLMJcdM2uKCxxhjrEPgLk0JcJcmY4y1HHdpMsYYYyJwwWMA5NtfL8dcnEkcziSe\nHHPJMZO2uOAxxhjrEHgMTwI8hscYYy3HY3iMMcaYCFzwJKMAoIChoWmzt2wPcu2vl2MuziQOZxJP\njrnkmElbj+3VEuSOuzEZY6x98RieBLTth2aMsY6Ix/AYY4wxEbjgMQDy7a+XYy7OJA5nEk+OueSY\nSVtc8BhjjHUIPIYnAR7DY4yxluMxPMYYY0wELngMgHz76+WYizOJw5nEk2MuOWbSFhc8iRiZGEkd\ngTHGOhQew5NA7W9p8snnjDHWEjyGxxhjjInABY8BkG9/vRxzcSZxOJN4cswlx0za4oLHGGOsQ+Ax\nPAnwGB5jjLUcj+ExxhhjInDBYwDk218vx1ycSRzOJJ4cc8kxk7a44DHGGOsQeAzvf2bNmoUjR46g\nR48e+O233wAABQUFmDRpEjIzM6FSqbB3716YmJgAAMLDw7Flyxbo6uoiMjISQUFBAIALFy5gxowZ\nKC8vx8iRI/HZZ5812BaP4THGWMvxGF4rmTlzJqKjo+vNi4iIQGBgIFJSUhAQEICIiAgAQHJyMvbs\n2YPk5GRER0djzpw5wpPwxhtvICoqCqmpqUhNTW2wTsYYY9Lggvc/fn5+MDU1rTfv0KFDCA0NBQCE\nhobiwIEDAICDBw8iODgY+vr6UKlUcHR0RFxcHHJzc1FaWgofHx8AwPTp04X7yJ1c++vlmIszicOZ\nxJNjLjlm0hYXvCbk5eVBqVQCAJRKJfLy8gAAOTk5sLGxEW5nY2OD7OzsBvOtra2RnZ3dvqEZY4xp\nxAVPJIVCIYy9PY78/f2ljqCRHHNxJnE4k3hyzCXHTNrSkzqAnCmVSty8eROWlpbIzc1Fjx49ANTu\nud24cUO4XVZWFmxsbGBtbY2srKx6862trRtdf1hYGADAxMQEXl5ewgusriuBp3map3m6I0/HxsZi\n27ZtAACVSgWtEROkp6eTu7u7ML1o0SKKiIggIqLw8HBavHgxERFduXKFPD09qaKigq5fv0729vZU\nU1NDREQ+Pj507tw5qqmpoeeff56OHTvWYDsASG5NHxMTI3UEjeSYizOJw5nEk2MuOWbS9nOT9/D+\nJzg4GD///DNu374NW1tbrFy5EkuWLMHEiRMRFRUlnJYAAG5ubpg4cSLc3Nygp6eHL7/8Uuju/PLL\nLzFjxgzcu3cPI0eOxIgRI6R8WIwxxv6Hz8OTAJ+HxxhjLcfn4THGGGMicMFjAOR7zo0cc3EmcTiT\neHLMJcdM2uKCxxhjrEPgMTwJ8BgeY4y1HI/hMcYYYyJwwWMA5NtfL8dcnEkcziSeHHPJMZO2uOAx\nxhjrEHgMTwI8hscYYy3HY3iMMcaYCFzwJGJoaNr8jdqRXPvr5ZiLM4nDmcSTYy45ZtIWFzyJlJQU\nSB2BMcY6FB7Dk4C2/dCMMdYR8RgeY4wxJgIXPAZAvv31cszFmcThTOLJMZccM2mLCx5jjLEOgcfw\nJMBjeIwx1nI8hscYY4yJwAWPAZBvf70cc3EmcTiTeHLMJcdM2uKCxxhjrEPgMTwJ8BgeY4y1HI/h\nMcYYYyJwwWMA5NtfL8dcnEkcziSeHHPJMZO2uOAxxhjrEHgMTwI8hscYYy3HY3iMMcaYCFzwGAD5\n9tfLMRdnEocziSfHXHLMpC0ueIwxxjoEHsNrxqxZs3DkyBH06NEDv/32GwCgoKAAkyZNQmZmJlQq\nFfbu3QsTExMAQHh4OLZs2QJdXV1ERkYiKCiowTp5DI8xxlqOx/Da2MyZMxEdHV1vXkREBAIDA5GS\nkoKAgABEREQAAJKTk7Fnzx4kJycjOjoac+bMQU1NjRSxGWOMPYALXjP8/Pxgampab96hQ4cQGhoK\nAAgNDcWBAwcAAAcPHkRwcDD09fWhUqng6OiI+Pj4ds/8MOTaXy/HXJxJHM4knhxzyTGTtrjgPYS8\nvDwolUoAgFKpRF5eHgAgJycHNjY2wu1sbGyQnZ0tSUbGGGP16Ukd4FGnUCigUCiaXK7JjBkzoFKp\nAAAmJibw8vKCv78/gP//ZtXe03Wk2r6maX9/f1nlqRMbGyubPHJ+/uQ2LcfXEz9/jU/HxsZi27Zt\nACB8XmqDD1oRISMjA6NHjxYOWnF1dUVsbCwsLS2Rm5uLoUOH4vfffxfG8pYsWQIAGDFiBFasWAFf\nX9966+ODVhhjrOX4oBUJjBkzBtu3bwcAbN++HWPHjhXm7969G2q1Gunp6UhNTYWPj4+UUUV78Fum\nXMgxF2cShzOJJ8dccsykLe7SbEZwcDB+/vln3L59G7a2tli5ciWWLFmCiRMnIioqSjgtAQDc3Nww\nceJEuLm5QU9PD19++WWT3Z2MMcbaD3dpSoC7NBljrOW4S5MxxhgTgQseAyDf/no55uJM4nAm8eSY\nS46ZtMUFjzHGWIfAY3gS4DE8xhhrOR7DY4wxxkTggscAyLe/Xo65OJM4nEk8OeaSYyZtccFjjDHW\nIfAYngR4DI8xxlqOx/AYY4wxEbjgMQDy7a+XYy7OJA5nEk+OueSYSVtc8BhjjHUIPIYnAR7DY4yx\nluMxPMYYY0wELngMgHz76+WYizOJw5nEk2MuOWbSFhc8BgBITEyUOoJGcszFmcThTOLJMZccM2mL\nCx4DABQVFUkdQSM55uJM4nAm8eSYS46ZtMUFjzHGWIfABY8BADIyMqSOoJEcc3EmcTiTeHLMJcdM\n2uLTEiTg5eWFpKQkqWMwxtgjxdPTU6uxRS54jDHGOgTu0mSMMdYhcMFjjDHWIXDBa2fR0dFwdXWF\nk5MT1qxZI1kOlUqFfv36wdvbGz4+PgCAgoICBAYGwtnZGUFBQW1+WPKsWbOgVCrh4eEhzGsqQ3h4\nOJycnODq6ooTJ060W6awsDDY2NjA29sb3t7eOHbsWLtmunHjBoYOHYq+ffvC3d0dkZGRAKRtq8Yy\nSd1W5eXl8PX1hZeXF9zc3PDee+8BkLatGsskdVsBQHV1Nby9vTF69GgA0r//NGVq1XYi1m6qqqrI\nwcGB0tPTSa1Wk6enJyUnJ0uSRaVSUX5+fr15ixYtojVr1hARUUREBC1evLhNM5w+fZoSEhLI3d29\n2QxXrlwhT09PUqvVlJ6eTg4ODlRdXd0umcLCwmjDhg0NbttemXJzc+nixYtERFRaWkrOzs6UnJws\naVs1lknqtiIiunPnDhERVVZWkq+vL505c0by15WmTHJoqw0bNtCUKVNo9OjRRCT9+09TptZsJ97D\na0fx8fFwdHSESqWCvr4+Jk+ejIMHD0qWhx44XunQoUMIDQ0FAISGhuLAgQNtun0/Pz+YmpqKynDw\n4EEEBwdDX18fKpUKjo6OiI+Pb5dMQMO2as9MlpaW8PLyAgAYGBigT58+yM7OlrStGssESNtWANC1\na1cAgFqtRnV1NUxNTSV/XWnKBEjbVllZWTh69CheeeUVIYfU7aQpExG1WjtxwWtH2dnZsLW1FaZt\nbGyED4n2plAoMGzYMAwYMACbN28GAOTl5UGpVAIAlEol8vLy2j1XYxlycnJgY2Mj3K692+7zzz+H\np6cn/vKXvwjdPFJkysjIwMWLF+Hr6yubtqrLNHDgQADSt1VNTQ28vLygVCqFblep20pTJkDatlq4\ncCHWrVsHHZ3/LwNSt5OmTAqFotXaiQteO1IoFFJHEPz73//GxYsXcezYMXzxxRc4c+ZMveUKhULy\nvCFwty0AAALbSURBVM1laK98b7zxBtLT05GYmAgrKyu88847kmQqKyvDuHHj8Nlnn8HQ0LDBdqVo\nq7KyMowfPx6fffYZDAwMZNFWOjo6SExMRFZWFk6fPo2YmJgG223vtnowU2xsrKRtdfjwYfTo0QPe\n3t6NXm6nvdupsUyt2U5c8NqRtbU1bty4IUzfuHGj3jeU9mRlZQUA6N69O1566SXEx8dDqVTi5s2b\nAIDc3Fz06NGj3XM1luHBtsvKyoK1tXW7ZOrRo4fw5n/llVeEbpP2zFRZWYlx48YhJCQEY8eOBSB9\nW9VlmjZtmpBJDm1Vx9jYGKNGjcKFCxckb6sHM50/f17Stjp79iwOHTqE3r17Izg4GD/99BNCQkIk\nbSdNmaZPn9667dSKY42sGZWVlWRvb0/p6elUUVEh2UErd+7coZKSEiIiKisro8GDB9Px48dp0aJF\nFBERQURE4eHhbX7QChFRenp6g4NWNGWoG6CuqKig69evk729PdXU1LRLppycHOH/f/vb3yg4OLhd\nM9XU1FBISAi99dZb9eZL2VaNZZK6rW7dukWFhYVERHT37l3y8/OjkydPStpWjWXKzc0VbiNFW9WJ\njY2lF154gYjk8f57MFNrvqa44LWzo0ePkrOzMzk4ONDq1aslyXD9+nXy9PQkT09P6tu3r5AjPz+f\nAgICyMnJiQIDA4U3aVuZPHkyWVlZkb6+PtnY2NCWLVuazLBq1SpycHAgFxcXio6ObpdMUVFRFBIS\nQh4eHtSvXz968cUX6ebNm+2a6cyZM6RQKMjT05O8vLzIy8uLjh07Jmlbacp09OhRydvq0qVL5O3t\nTZ6enuTh4UFr164loqZf222dq7FMUrdVndjYWOGISKnff3ViYmKETNOmTWu1duKfFmOMMdYh8Bge\nY4yxDoELHmOMsQ6BCx5jjLEOgQseY4yxDoELHmOMsQ6BCx5jjLEOgQseY4yxDoELHmOMsQ7h/wBm\nysTRJ3pDMgAAAABJRU5ErkJggg==\n",
+       "text": [
+        "<matplotlib.figure.Figure at 0x10b5f8410>"
+       ]
+      },
+      {
+       "metadata": {},
+       "output_type": "display_data",
+       "png": "iVBORw0KGgoAAAANSUhEUgAAAaoAAAEKCAYAAABDkxEYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX+P/DXILjlwIwoAwKKsqgkgam45dVCtNxzC0xE\nbTFtMeum3cpCSyHLSu+3TUMly1xa1BTRNDHLq6SidaUCE0wWTdndWN+/P/xxrgjoGZWZ4/h6Ph48\n9Jwzc85rPrO853w+58zRiYiAiIhIo+ysHYCIiOhqWKiIiEjTWKiIiEjTWKiIiEjTWKiIiEjTWKiI\niEjTWKhuQYmJifD09Kxz+dSpU/HGG29YMBHRjdHKa/Zf//oXFi1aBODa7zMt6devH2JjY695u5KS\nEnTs2BFnzpyxQKqbh4XKBn344Yd45ZVXAADffvst3NzckJ+fryzfsGEDPDw8UFxcXOO+GRkZsLOz\ng16vV/46d+6sLF+xYgXs7Oywdu3aGvdNTU3FmDFj0LJlSxgMBgQGBuLdd99FZWUlACA2NhYdO3aE\no6MjXF1dMXjwYJw9e/ZmP/xqWRs0aFDtsTzzzDPXvT4vLy98//33NzHh7WnFihXo06dPtXmXv2at\n5fTp01i5ciWeeOIJq+a4HjqdDjqd7pq3a9SoESZPnoyYmBgLpLp5WKhs3NChQ3HfffdhxowZAICC\nggJMmzYNH330EfR6fZ33KywsRHFxMYqLi5GcnKzMj4uLQ0BAAD799NNqt//zzz/RvXt3tGnTBv/9\n739RUFCAdevW4cCBAyguLsauXbvw8ssvY/Xq1SgqKsJvv/2GsLCw+nnQl+ndu7fyOIqLi7F48eLr\nXpdOp4NWzo+vKv6327br04oVKzB48GA0atTI2lHqVXh4OOLi4lBWVmbtKOoJaVKbNm0kOjpa/P39\nxWg0yqRJk+TixYsiIrJz507x8PCQhQsXiouLi7i5ucny5cuV+0ZGRsorr7yiTJ85c0ZcXFxk69at\nMnHiRBk3blyd201PTxedTicVFRU1lmVkZIiDg4McOHBAGjZsKCdPnlSWPfzwwzJkyJA61/vWW2/J\niBEjVD321atXS9euXavNe+edd2TYsGEiIrJ582bx9/cXvV4v7u7u8vbbb9e6nuXLl8s999xTY/6y\nZcukY8eOotfrpV27dvLxxx8ry06fPi2DBw8Wg8EgzZs3lz59+khlZaWMHz9e7OzspEmTJtKsWTN5\n6623RETk008/ldatW4uzs7PMmzdP2rRpI9u3b7/q49u3b5906dJFHB0dxWQyyXPPPacs2717t/Ts\n2VMMBoN4enpKXFyciFx6Tp944gl54IEH5I477pAdO3ZIVlaWjBw5Ulq2bClt27aVxYsXK+uprKyU\n6Oho8fb2FmdnZxk7dqzk5eWJyP+e47i4OGndurW0aNFC5s2bV2feK7e9fft26du3r3zyySd1trVO\np5OPPvpIfH19xWAwyJNPPikiIikpKdK4cWNp0KCBNGvWTIxGo7KNqtfszp07xd3dXRYsWCAtW7YU\nNzc3+eabb2Tz5s3i6+srzZs3l+joaFWP9cKFC/Lwww+Ls7OzGAwG6datm5w6darWx3nffffJ559/\nrkxXvc+qpKSkSN++fcVgMMidd94pGzduVJadOXNGhgwZIo6OjtKtWzd5+eWXa33tXStTbm6uTJw4\nUVq1aiVGo1F5z+Tl5cngwYOlZcuWYjQaZciQIZKZmamss1+/fhIbG6tMx8bGSseOHcVoNMrAgQPl\n+PHj1TL4+vrKrl27as2nRSxUGtWmTRsJCAiQzMxMycvLk969e1d7I9vb28trr70m5eXlEh8fL02b\nNpWCggIREZk4caLMnj272vq++OILcXZ2FhcXFzlz5kyd2636ECsvL6+xbO7cudK/f38REenVq5cs\nXLhQWebq6iorVqyoc727d++WJk2ayGuvvSY//vijUnRrc/78edHr9ZKWlqbM69q1q6xZs0bZ1o8/\n/igiIgUFBXLw4MFa11NXodq8ebMcO3ZMRER27dolTZs2leTkZBERefHFF+WJJ56Q8vJyKS8vV7Yj\nIuLl5SU7duxQpo8cOSLNmjWT3bt3S0lJiTz33HNib29f7Ta16dGjh3z22WciInLu3DnZu3eviFz6\nIqDX62X16tVSXl4uubm5cujQIRG59EHu5OQke/bsUdro7rvvltdff13Kysrk2LFj0q5dO9m6dauI\niLz33nvSs2dPycrKktLSUpkyZYqEh4eLyP+e48cff1wuXrwohw8flkaNGslvv/1Wa94rt33x4sUa\nH4y1FaqhQ4dKYWGh/PXXX9KyZUtJSEgQEZEVK1bUeF4uf81Wvb5ff/11KS8vl6VLl4qzs7OMGzdO\nzp49K0eOHJEmTZpIRkbGNR/rRx99JEOHDpULFy5IZWWlHDx4UIqKimp9nC1btpT9+/cr05cXqtLS\nUvH29pbo6GgpKyuT77//XvR6vfzxxx8iIvLQQw9JeHi4XLhwQVJSUsTT01P69OlT63aulmnQoEES\nFhYmBQUFUlZWJj/88IOIXCpgX3/9tVy4cEGKi4tlzJgx1b74Xf58rF+/Xnx8fOT333+XiooKeeON\nN6RXr17VMgwbNqzaFxutY6HSKC8vr2rf9OPj48Xb21tELr2BmjRpUm2vx8XFRfbt2ycil970l+9R\niYgcO3ZMHBwcZPz48VfdbtWHmMFgUP6qCpKPj4+S6d1335XAwEDlfg4ODsqHZF22bNkiQ4cOFYPB\nIM2aNZPnnnuu1j03EZHx48fL3LlzRUQkNTVV9Hq9XLhwQUREWrduLR9//LEUFhZedXvLly8Xe3v7\nao+lqo0uN2LECFm0aJGIiLz66qsyfPhwOXr0aI3bXVmo5syZo3wgilwqOg0bNrxmofrHP/4hr732\nmpw+fbra/Pnz58vIkSNrvc/EiRMlMjJSmd67d6+0bt26xv0nTZokIiIdOnSoliM7O1scHBykoqJC\neY6zsrKU5cHBwbJ69WpV2xap+Q2+tkL1008/KdNjx46VmJiYWm9btY3Lv4g1adJEKisrRUSkqKhI\ndDqdJCUlKbfv0qWLbNiw4aqPtby8XJYtWya9evWSX375pdbHdjkHBwel8FTlqCpUP/zwg7i6ula7\nfXh4uERFRUl5ebk4ODhIamqqsuyVV16pc4+qrkzZ2dliZ2enfOG8muTkZGVvVKT683H//fdXe24q\nKiqkadOm8tdffynzHn74YeX9dSvgGJWGXX7EUevWrZGdna1MOzs7w87uf09f06ZNr3pgwuOPP44J\nEyZg8+bN2Lt37zW3nZubi/z8fOTn5+O5557DTz/9hIyMDIwcORIAMHr0aPz666/45ZdflDyX56vN\n/fffj40bNyI/Px8bNmzAihUr8Mknn9R623HjxuGLL74AAKxatQoPPvggGjduDAD46quvEB8fDy8v\nL/Tr1++qj6dHjx7K48jPz0dwcDC2bNmCHj16wNnZGUajEfHx8cjNzQUAvPDCC/Dx8cGAAQPg7e2N\nN998s8515+TkwMPDQ5lu2rQpnJ2dr9oGwKWDSlJTU9GxY0cEBwdj8+bNAIDMzEy0a9euzvtdvq3j\nx48jOzsbRqNR+YuOjsbff/+tLH/wwQeVZf7+/rC3t8epU6eUdbi6ulbLfu7cuTq3fT1Hv5mz/is5\nOzsrBwc0adIEAGAymZTlTZo0UV7vdT3Wv//+GxERERg4cCDCwsLg7u6OWbNmoby8vNZtGo3GWg8w\nAoDs7OwabdCmTRtkZ2fjzJkzKC8vr7b88ufqSnVlOnHiBJo3bw4nJ6ca9zl//jymTJkCLy8vODk5\noW/fvigsLKx1zPT48eOYPn260h5Vr8msrCzlNsXFxTAajXVm1BoWKg3766+/qv2/VatW17We2NhY\nZGVl4cMPP8T8+fPx6KOPmj2QGhcXBxFBQEAA3Nzc0K1bNwCXBqABoH///vjqq69Ur+++++7Dfffd\nhyNHjtS6vH///jh9+jQOHz6M1atXY9y4ccqyrl27Yv369Th9+jRGjBiBsWPHqt5uSUkJRo0ahZkz\nZ+Lvv/9Gfn4+Bg0apLzhmzVrhrfffht//vknNm7ciHfeeQc7d+4EgBpHVbm5ueHEiRPK9Pnz55WC\ndzU+Pj5YtWoVTp8+jVmzZmH06NE4f/48PD098eeff9Z5v8u337p1a7Rt27ZaES4qKsKmTZuU5QkJ\nCdWWnz9/Hm5ubqrb6mruuOOOaoXn5MmTqu9b19Fpao5aq83VHqu9vT1effVVHDlyBHv27MGmTZtq\nHAhU5a677sIff/xR67JWrVrhxIkT1QrD8ePH4e7ujpYtW8Le3r7aa+Hy/1+prkytW7dGXl4eCgsL\na9xn4cKFSE1NRVJSEgoLC7Fr1y7IpR6xWttjyZIl1drj3Llz6NGjh3Kb3377DYGBgXVm1BoWKo0S\nEXzwwQfIyspCXl4e5s2bp/oouctfvNnZ2Zg5cyaWLl0KBwcHPPHEE3B2dsa8efNUZ7l48SLWrl2L\npUuX4vDhw8rfv//9b6xatQoVFRWYM2cO9uzZg5kzZyrf2o8ePYqIiAgUFhZi48aNWLNmDfLz8yEi\nSEpKwq5du6q9eS7n4OCAMWPG4J///Cfy8/MRGhoKACgrK8Pnn3+OwsJC5dDzBg0aqH4spaWlKC0t\nRYsWLWBnZ4ctW7Zg27ZtyvJNmzbh6NGjEBE4OjqiQYMGyp6ryWSqVkhGjx6NTZs24aeffkJpaSle\nffVVVUfEffbZZzh9+jQAwMnJCTqdDg0aNMC4ceOwfft2rFu3DuXl5cjNzcXhw4cBoMYHUnBwMPR6\nPRYsWIALFy6goqIC//3vf7F//34AwBNPPIGXXnpJ+bJz+vRpbNy48aq5avvQq2t+UFAQvv76a1y4\ncAFHjx695jk8l3+omkwmZGZmVvuyVNeHrhpXe6yJiYn49ddfUVFRAb1eDwcHhzpfL4MGDcKuXbtq\nXda9e3c0bdoUCxYsQFlZGRITE7Fp0yaEhYXBzs4OI0eORFRUFC5cuIDff/8dK1eurLPw1pXJ1dUV\nDzzwAKZNm4aCggKUlZVh9+7dAICzZ8+iSZMmcHJyQl5eHubMmXPV9pg/fz5SUlIAXDqCd926dcry\nqs+Uut57WsRCpVE6nQ7jxo1TuqB8fX2rnWdytW+fl59T8eSTTyI8PBy9e/dWli9duhTvvfcefvvt\ntzrvf7n169fjjjvuwIQJE+Di4qL8TZo0CeXl5di6dSvatWuH//znP8jIyMCdd94Jg8GA0aNHo1u3\nbtDr9TAajVi6dCn8/Pzg5OSEiIgIzJw5E+Hh4XU+jnHjxmHHjh0YM2ZMtW7Ozz77DG3btoWTkxOW\nLFmCzz///JrtUEWv12Px4sUYO3Ysmjdvji+++ALDhw9Xlh89ehShoaHQ6/Xo1asXnnzySfTt2xfA\npZNB33jjDRiNRrzzzjvw9/fH+++/j3HjxqFVq1Zo3rz5Vbt8qmzduhWdOnWCXq/HjBkzsHr1ajRq\n1AitW7dGfHw8Fi5cCGdnZ3Tu3FnpWr3ysdjZ2WHTpk04dOgQ2rVrh5YtW+Lxxx9HUVERAGD69OkY\nNmwYBgwYAEdHR/Ts2RNJSUnV2qa29lLbjjNmzEDDhg1hMpkwadIkjB8/vtptrrz95esICQnBnXfe\nCVdXV7i4uNS6jdruX5erPdaTJ09izJgxcHJygr+/P/r164eIiIha1zNhwgTEx8fj4sWLNbbbsGFD\nfPvtt9iyZQtatmyJp556CitXroSfnx8A4P/+7/9QWFgIV1dXREZGIjw8HA0bNqx1O1fLtHLlSjg4\nOKBDhw4wmUzKycfPPvssLly4gBYtWqBXr1544IEH6myTESNGYNasWQgLC4OTkxMCAgKwdetWZfmq\nVaswceJEODg41NmmWqOT6/0aQ/Wqbdu2iI2NxX333WftKGQGPm+3tpdffhkuLi6YPn36Da1n1qxZ\n+Pvvv7F8+fKblOzmKCkpQVBQEHbv3o0WLVpYO45q9tYOQESkFeZ0iV/ujz/+QElJCQICAvDzzz9j\n2bJlqn7SyNIaNWpUZ0+KlrHrj+gmExEMGjSo2k83Vf3daj9dQ+oUFxdj1KhRaNasGcLCwvDPf/4T\nw4YNs3Ysm8GuPyIi0jTuURERkaZxjMoMQUFByuHCRESkTmBgIA4dOnTd9+celRkOHz6snO+hpb/X\nXnvN6hmYiZlux1zMpO7vRr/gs1DZgIyMDGtHqIGZ1GEm9bSYi5ksg4WKiIg0jYXKBkycONHaEWpg\nJnWYST0t5mImy+Dh6WbQ0hVeiYhuFTf62ck9KhuQmJho7Qg1MJM6zKSeFnMxk2WwUBERkaax688M\n7PojIjIfu/6IiMimsVDZAC32STOTOsyknhZzMZNlsFAREZGmcYzKDByjIiIy341+dvJHac10tUti\nExHd6vROehQVFFk7RjXcozKDTqcDoqydohbpANpaO8QVmEkdZlJPi7lsMVMUbnrPEY/6IyIim8ZC\nZQu09o0OYCa1mEk9LeZiJotgoSIiIk1jobIF6dYOUAtmUoeZ1NNiLmayCBYqIiLSNBYqW6DFPmlm\nUoeZ1NNiLmayCBYqIiLSNBYqW6DFPmlmUoeZ1NNiLmayCBYqIiLSNBYqW6DFPmlmUoeZ1NNiLmay\nCBYqIiLSNBYqW6DFPmlmUoeZ1NNiLmayCBYqIiLStHorVJMnT4bJZEJAQIAyLy8vD6GhofDz88OA\nAQNQUFCgLIuOjoavry86dOiAbdu2KfMPHDiAgIAA+Pr6Yvr06cr8kpISPPTQQ/D19UWPHj1w/Phx\nZVlcXBz8/Pzg5+eHTz/9VJmfnp6O7t27w9fXF2FhYSgrK1OWPfPMM/D19UVgYCCSk5NvenvUKy32\nSTOTOsyknhZzMZNF1FuhmjRpEhISEqrNi4mJQWhoKFJTUxESEoKYmBgAQEpKCtasWYOUlBQkJCRg\n2rRpyk/CT506FbGxsUhLS0NaWpqyztjYWDg7OyMtLQ0zZszArFmzAFwqhnPnzkVSUhKSkpIwZ84c\nFBYWAgBmzZqF559/HmlpaTAajYiNjQUAxMfH4+jRo0hLS8OSJUswderU+moWIiIyU70Vqj59+sBo\nNFabt3HjRkRGRgIAIiMjsX79egDAhg0bEB4eDgcHB3h5ecHHxwf79u1DTk4OiouLERwcDACYMGGC\ncp/L1zVq1Cjs2LEDALB161YMGDAABoMBBoMBoaGh2LJlC0QEO3fuxOjRo2vdftW6unfvjoKCApw6\ndaq+mubm02KfNDOpw0zqaTEXM1mERceoTp06BZPJBAAwmUxKMcjOzoaHh4dyOw8PD2RlZdWY7+7u\njqysLABAVlYWPD09AQD29vZwcnJCbm5unevKy8uDwWCAnZ1djXVlZ2cr66q6T2ZmZn00ARERmclq\nl6LX6XQWu6y7mu1cefXJOu8TdRMCERFplN5JDwBITEwEAPTr18/s6cTERKxYsQIA4OXldcOZLFqo\nTCYTTp48CVdXV+Tk5MDFxQXApb2bEydOKLfLzMyEh4cH3N3dq+3ZVM2vus9ff/2FVq1aoby8HIWF\nhXB2doa7u7vSYABw4sQJ3HfffWjevDkKCgpQWVkJOzs7ZGZmwt3dvc7tVy2r6Xoup3xjl2EmIrK0\nqgJ0PdP9+vWrNj1nzpwbymLRrr9hw4YhLi4OwKUj80aMGKHMX716NUpLS5Geno60tDQEBwfD1dUV\njo6O2LdvH0QEK1euxPDhw2us68svv0RISAgAYMCAAdi2bRsKCgqQn5+P7777DgMHDoROp8O9996L\ndevW1br9qqMD9+7dC4PBoHRR3gouL8xawUzqMJN6WszFTJZRb3tU4eHh2LVrF86cOQNPT0/MnTsX\nL774IsaOHYvY2Fh4eXlh7dq1AAB/f3+MHTsW/v7+sLe3xwcffKB0vX3wwQeYOHEiLly4gEGDBuH+\n++8HADzyyCOIiIiAr68vnJ2dsXr1agBA8+bNMXv2bHTr1g0A8Nprr8FgMAAA3nzzTYSFheGVV17B\n3XffjUceeQQAMGjQIMTHx8PHxwd33HEHli9fXl/NQkREZtIJ+6RUu1Q82fVHRGQOne7GPgP5yxRE\nRKRpLFQ2QIt90sykDjOpp8VczGQZLFRERKRpHKMyA8eoiIjMxzEqIiKyaSxUNkCLfdLMpA4zqafF\nXMxkGSxURESkaRyjMgPHqIiIzMcxKiIismksVDZAi33SzKQOM6mnxVzMZBksVEREpGkcozIDx6iI\niMzHMSoiIrJpLFQ2QIt90sykDjOpp8VczGQZLFRERKRpHKMyQ9XFHM2l1xtRVJR3k9MQEd0abnSM\nqt6u8GurWNeJiCyLXX82QIt90sykDjOpp8VczGQZLFRERKRpHKMyw432sxIR3Y54HhUREdk0Fiob\noMU+aWZSh5nU02IuZrIMFioiItI0jlGZgWNURETm4xgVERHZNBYqG6DFPmlmUoeZ1NNiLmayDBYq\nIiLSNI5RmYFjVERE5uNv/VnY9f4w7c2gd9KjqKDIatsnIrIG7lGZQafTAVFWDBBV+4/iJiYmol+/\nfhaPczXMpA4zqafFXMykDo/6IyIim8Y9KjNodY+KiEjLuEdFREQ2jYXKBmjxvAlmUoeZ1NNiLmay\nDBYqIiLSNI5RmYFjVERE5uMYFRER2TQWKhugxT5pZlKHmdTTYi5msgwWKiIi0jSOUZmBY1RERObj\nGBUREdk0FioboMU+aWZSh5nU02IuZrIMFioiItI0jlGZgWNURETmuyXHqCZPngyTyYSAgABlXl5e\nHkJDQ+Hn54cBAwagoKBAWRYdHQ1fX1906NAB27ZtU+YfOHAAAQEB8PX1xfTp05X5JSUleOihh+Dr\n64sePXrg+PHjyrK4uDj4+fnBz88Pn376qTI/PT0d3bt3h6+vL8LCwlBWVlZfD5+IiMxglUI1adIk\nJCQkVJsXExOD0NBQpKamIiQkBDExMQCAlJQUrFmzBikpKUhISMC0adOUyjx16lTExsYiLS0NaWlp\nyjpjY2Ph7OyMtLQ0zJgxA7NmzQJwqRjOnTsXSUlJSEpKwpw5c1BYWAgAmDVrFp5//nmkpaXBaDQi\nNjbWUs1xw7TYJ81M6jCTelrMxUyWYZVC1adPHxiNxmrzNm7ciMjISABAZGQk1q9fDwDYsGEDwsPD\n4eDgAC8vL/j4+GDfvn3IyclBcXExgoODAQATJkxQ7nP5ukaNGoUdO3YAALZu3YoBAwbAYDDAYDAg\nNDQUW7ZsgYhg586dGD16dI3tExGRdWnmYIpTp07BZDIBAEwmE06dOgUAyM7OhoeHh3I7Dw8PZGVl\n1Zjv7u6OrKwsAEBWVhY8PT0BAPb29nByckJubm6d68rLy4PBYICdnV2Ndd0KtHY1T4CZ1GIm9bSY\ni5ksw97aAWqj0+kuHbhgoW2ZJapeYqjS5I4m1S4zXbWLz2lOc5rTWppOTEzEihUrAABeXl64YWIl\n6enp0qlTJ2W6ffv2kpOTIyIi2dnZ0r59exERiY6OlujoaOV2AwcOlL1790pOTo506NBBmb9q1Sp5\n4oknlNv85z//ERGRsrIyadGihYiIfPHFFzJlyhTlPo8//risXr1aKisrpUWLFlJRUSEiInv27JGB\nAwfWyAxAgEv/asnOnTutHaEGZlKHmdTTYi5mUudGPzM10/U3bNgwxMXFAbh0ZN6IESOU+atXr0Zp\naSnS09ORlpaG4OBguLq6wtHREfv27YOIYOXKlRg+fHiNdX355ZcICQkBAAwYMADbtm1DQUEB8vPz\n8d1332HgwIHQ6XS49957sW7duhrbJyIiK7s59dI8YWFh4ubmJg4ODuLh4SHLli2T3NxcCQkJEV9f\nXwkNDZX8/Hzl9vPmzRNvb29p3769JCQkKPP3798vnTp1Em9vb3n66aeV+RcvXpQxY8aIj4+PdO/e\nXdLT05Vly5YtEx8fH/Hx8ZEVK1Yo848dOybBwcHi4+MjY8eOldLS0hq5odE9KiIiLbvRz0ye8GuG\nS+NZAuDGTl4jIrqd3JIn/NLNVTWIqSXMpA4zqafFXMxkGSxURESkaez6MwO7/oiIzMeuPyIismks\nVDZAi33SzKQOM6mnxVzMZBksVEREpGkcozIDx6iIiMzHMSoiIrJpLFQ2QIt90sykDjOpp8VczGQZ\nZhWqvLw8/PLLL/WVhYiIqIZrjlH17dsX3377LcrLy9GlSxe0bNkSvXv3xrvvvmupjJrBMSoiIvPV\n+xhVYWEhHB0d8fXXX2PChAlISkrC9u3br3uDRERE5rhmoaqoqEBOTg7Wrl2LwYMHA7iOiw1SvdJi\nnzQzqcNM6mkxFzNZxjUL1auvvoqBAwfC29sbwcHB+PPPP+Hr62uJbERERDyPyhwcoyIiMt+NjlHZ\n17Xg6aefrnUjVd1+ixcvvu6N3tp00OuN1g5BRHTbqLPrr0uXLujSpQtKSkpw8OBB+Pn5wdfXF8nJ\nySgtLbVkRk0RERQV5Vk7RjVa7JNmJnWYST0t5mImy6hzj2rixIkAgA8//BA//vgjHBwcAABTp07F\nPffcY5FwRERE1xyjat++Pfbs2QNnZ2cAl0767dmzJ/744w+LBNSSG+1nJSK6HdXbGFWVF198EXff\nfTf69esHANi1axeioqKue4NERETmuObh6ZMmTcLevXvx4IMPYuTIkdi7d6/SLUjaoMU+aWZSh5nU\n02IuZrIMVb/117hxY7i5ucFgMCA1NRU//PBDfeciIiICoGKMaunSpVi8eDEyMzMRFBSEvXv3omfP\nnvj+++8tlVEzOEZFRGS+ev+tv0WLFiEpKQlt2rTBzp07kZycDCcnp+veIBERkTmuWagaN26MJk2a\nAAAuXryIDh063JZH/GmZFvukmUkdZlJPi7mYyTKuedSfp6cn8vPzMWLECISGhsJoNMLLy8sC0YiI\niMz8rb/ExEQUFRXh/vvvR8OGDeszlyZxjIqIyHw3+tmpqlDt3r0bR48exaRJk3D69GmcPXsWbdu2\nve6N3qpYqIiIzFfvB1NERUVhwYIFiI6OBgCUlpZi/Pjx173BW52jwdHaEWrQYp80M6nDTOppMRcz\nWcY1C9XrN2OnAAAXMUlEQVQ333yDDRs24I477gAAuLu7o7i4uN6DaVVx4e372ImIrOGaXX/BwcFI\nSkpC586dkZycjHPnzqFnz5745ZdfLJVRM6ouccLuPyIi9eq1609EMGTIEEyZMgUFBQVYsmQJQkJC\n8Oijj173BomIiMxxza6/tWvXYvTo0Rg1ahRSU1Px+uuv45lnnrFENlJJi33SzKQOM6mnxVzMZBlX\nPY9Kp9OhS5cucHJywttvv22pTERERApV16M6evQo2rRpoxxQodPpOEZFRESq1Pt5VBkZGbXOvx1/\nnYKFiojIfPV+HpWXl1etf6QdWuyTZiZ1mEk9LeZiJstQdT0qIiIiazHrt/5ud+z6IyIyX713/RER\nEVkTC5UN0GKfNDOpw0zqaTEXM1kGCxUREWkax6jMwDEqIiLz3fZjVJMnT4bJZEJAQIAyLy8vD6Gh\nofDz88OAAQNQUFCgLIuOjoavry86dOiAbdu2KfMPHDiAgIAA+Pr6Yvr06RZ9DEREVLdbvlBNmjQJ\nCQkJ1ebFxMQgNDQUqampCAkJQUxMDAAgJSUFa9asQUpKChISEjBt2jSlyk+dOhWxsbFIS0tDWlpa\njXVqmRb7pJlJHWZST4u5mMkybvlC1adPHxiNxmrzNm7ciMjISABAZGQk1q9fDwDYsGEDwsPD4eDg\nAC8vL/j4+GDfvn3IyclBcXExgoODAQATJkxQ7kNERNZ1yxeq2pw6dQomkwkAYDKZcOrUKQBAdnY2\nPDw8lNt5eHggKyurxnx3d3dkZWVZNvQN6Nevn7Uj1MBM6jCTelrMxUyWcdVfT7cFOp1OOQjiZomK\nigIAGAwGBAUFKS+Mql1uTnOa05y+nacTExOxYsUKADfpd2HFBqSnp0unTp2U6fbt20tOTo6IiGRn\nZ0v79u1FRCQ6Olqio6OV2w0cOFD27t0rOTk50qFDB2X+qlWrZMqUKTW2A0C02GQ7d+60doQamEkd\nZlJPi7mYSZ0b/dy0ya6/YcOGIS4uDgAQFxeHESNGKPNXr16N0tJSpKenIy0tDcHBwXB1dYWjoyP2\n7dsHEcHKlSuV+xARkXXd8udRhYeHY9euXThz5gxMJhPmzp2L4cOHY+zYsfjrr7/g5eWFtWvXwmAw\nAADmz5+PZcuWwd7eHosWLcLAgQMBXDo8feLEibhw4QIGDRqExYsX19gWz6MiIjJfvV+Piv6HhYqI\nyHy3/Qm/pM3zJphJHWZST4u5mMkyWKiIiEjT2PVnBnb9ERGZj11/RERk01iobIAW+6SZSR1mUk+L\nuZjJMlioiIhI0zhGZQaOURERmY9jVEREZNNYqGyAFvukmUkdZlJPi7mYyTJYqIiISNM4RmUGjlER\nEZmPY1RERGTTWKhsgBb7pJlJHWZST4u5mMkyWKiIiEjTOEZlBo5RERGZj2NUFqbXG60dgYjotsJC\nZaaiojxrR6hBi33SzKQOM6mnxVzMZBksVEREpGkcozLDjfazEhHdjjhGRURENo2FygZosU+amdRh\nJvW0mIuZLIOFioiINI1jVGbgGBURkfk4RkVERDaNhcoGaLFPmpnUYSb1tJiLmSyDhYqIiDSNY1Rm\n4BgVEZH5OEZFREQ2jYXKTI4GR2tHqEGLfdLMpA4zqafFXMxkGSxUZiouLLZ2BCKi2wrHqMzA61ER\nEZmPY1RERGTTWKhsgBb7pJlJHWZST4u5mMky7K0dwBY0b94c+fn51o5BZjAajcjL095FMImoJo5R\nmaGuMSqeX3Xr4XNGZDkcoyIiIpvGQkVkRVocT9BiJkCbuZjJMlioiIhI0zhGZQaOUdkOPmdElsMx\nKiIismksVPXE0bE5dDpdvf05Oja/7mwTJ07E7Nmzr3k7Ly8v7Nix47q3U5cPP/wQJpMJjo6Ot/1h\n/VocT9BiJkCbuZjJMlio6klxcT4Aqbe/S+u/PlXFzpzbRUVFISIi4rq3WaWsrAzPP/88duzYgaKi\nIhiNxhteJxHZNhaq25S1xmdOnjyJixcvomPHjlbZvtb069fP2hFq0GImQJu5mMkyWKhuA8nJybj7\n7rvh6OiIsLAwXLx4UVm2adMmBAUFwWg0onfv3vj1119r3D8hIQHR0dFYs2YN9Ho9OnfuDABYvnw5\n/P394ejoCG9vbyxZsuSqOVJTU5UCZTAY0L9/fwDA9OnT0bp1azg5OaFr16748ccflftUVlZi/vz5\n8PHxgaOjI7p27YrMzEwAwIwZM2AymeDk5IS77roLR44cubGGIiJtEhs1adIkcXFxkU6dOinzcnNz\npX///uLr6yuhoaGSn5+vLJs/f774+PhI+/btZevWrbWuE/+/3622+bXfVurxT91TV1JSIq1bt5b3\n3ntPysvL5csvvxQHBweZPXu2HDx4UFxcXCQpKUkqKyslLi5OvLy8pLS0VEREvLy8ZMeOHSIiEhUV\nJREREdXWvXnzZjl27JiIiOzatUuaNm0qBw8evGqejIwM0el0UlFRocz77LPPJC8vTyoqKmThwoXi\n6uoqJSUlIiKyYMECCQgIkNTUVBER+eWXXyQ3N1cSEhKkS5cuUlhYKCIiv//+u+Tk5KhqExH17Vff\ndu7cae0INWgxk4g2czGTOjf6frPZPapJkyYhISGh2ryYmBiEhoYiNTUVISEhiImJAQCkpKRgzZo1\nSElJQUJCAqZNm4bKykprxL7p9u7di/LyckyfPh0NGjTAqFGj0K1bN4gIli5diilTpqBbt27Q6XSY\nMGECGjVqhL1799ZYj4jU6C4cNGgQ2rZtCwD4xz/+gQEDBmD37t1XzXPlOgDg4YcfhtFohJ2dHZ57\n7jmUlJTgjz/+AAB88sknmDdvHnx9fQEAAQEBaN68ORo2bIji4mL89ttvqKysRPv27eHq6npdbURE\n2mazhapPnz41Buo3btyIyMhIAEBkZCTWr18PANiwYQPCw8Ph4OAALy8v+Pj4ICkpyeKZ60N2djbc\n3d2rzWvTpg0A4Pjx41i4cCGMRqPyl5mZiezsbFXr3rJlC3r06AFnZ2cYjUbEx8cjNzfX7Ixvv/02\n/P39YTAYYDQaUVhYiDNnzgAAMjMz4e3tXeM+9957L5566ik8+eSTMJlMmDJlCoqLb72LWmpxPEGL\nmQBt5mImy7DZQlWbU6dOwWQyAQBMJhNOnToF4NKHuYeHh3I7Dw8PZGVlWSXjzebm5lbjsRw/fhwA\n4OnpiZdffhn5+fnK39mzZ/HQQw/VWM+VRwmWlJRg1KhRmDlzJv7++2/k5+dj0KBBZh+ksXv3brz1\n1ltYt24dCgoKkJ+fDycnJ2U9np6eOHr0aK33ffrpp7F//36kpKQgNTUVb731llnbJqJbw217mY9r\nHaJ9tWVRUVEALh0QEBQUVOtt9HojiouvfQj49dLr1R3W3atXL9jb22Px4sWYOnUqvv32W/z8888I\nCQnBY489hgcffBD9+/dHt27dcP78eSQmJqJv375o1qxZtfW4urpi+/btEBHodDqUlpaitLQULVq0\ngJ2dHbZs2YJt27YhICDArMdRXFwMe3t7tGjRAqWlpYiJiUFRUZGy/NFHH8Xs2bPh7+8Pb29v/Prr\nr/Dw8MCxY8dQUVGBu+++G02bNkXjxo3RoEEDs7Zddb5J1TdQa0wfOnQIzz77rGbyVOnXr59m8lRN\nv/feewgKCtJMHj5/dU8nJiZixYoVAC6dj3nDbnSQTMvS09OrHUzRvn17ZcA9Oztb2rdvLyIi0dHR\nEh0drdxu4MCBsnfv3hrrgxkHU2jJ/v37pXPnzqLX6+Whhx6SsLAwmT17toiIJCQkSLdu3cRgMIib\nm5uMHTtWzp49KyLVD6bIzc2Ve+65R4xGo3Tp0kVERN5//30xmUxiMBgkIiJCwsPDlfXWJT09Xezs\n7JSDKSoqKmTy5Mni6Ogobm5usmDBAmnbtq2y3YqKCnnjjTekbdu2otfrJTg4WDIzM2XHjh1y1113\nSbNmzaRFixYyfvx4OXfunOo20cpzpsWBby1mEtFmLmZS50bfbzb9W38ZGRkYOnSocsj1zJkz4ezs\njFmzZiEmJgYFBQWIiYlBSkoKxo0bh6SkJGRlZaF///44evRojb0q/taf7eBzRmQ5N/p+s9muv/Dw\ncOzatQtnzpyBp6cn5s6dixdffBFjx45FbGwsvLy8sHbtWgCAv78/xo4dC39/f9jb2+ODDz5Q9csN\nRERU/2x6j+pm4x6VOvPnz0d0dHSN+f/4xz+wefNmKySqSSvPWWJiouaO0tJiJkCbuZhJHe5Rkea8\n9NJLeOmll6wdg4hsBPeozMA9KtvB54zIcng9KiIismksVERWpMVrB2kxE6DNXMxkGSxURESkaRyj\nMoOtjFFNnDgRnp6eeP311696Oy8vL8TGxiIkJOSmbv/DDz9EVFQULly4gOPHj1vl4om32nNGdCvj\nGJVGORoc6/dS9AbH687GK/wS0a2Eh6fXk+LCYiCqHtcfdWO/FG6tvQlrXOG3oqLC7N8BtBQtnvOi\nxUyANnMxk2Vwj+o2oPUr/H733Xfo0KEDDAYDnn76afTt2xexsbEAgKNHj6Jv374wGAxo2bIlwsLC\nlPUdOXIEoaGhcHZ2hqurq3KScVRUFEaPHo2IiAg4OTkhLi7uBlqPiKyNhcrGlZaWYsSIEYiMjER+\nfj7GjBmDr776CjqdDsnJyXjkkUewdOlS5OXlYcqUKRg2bBjKysqqreP+++/HSy+9hLCwMBQXFyM5\nORnApUulbN68GUVFRVi+fDlmzJihLKuNn5+fcrn4wsJCbN++HWfOnMGoUaMwf/585ObmwtvbG3v2\n7FG6HGfPno37778fBQUFyMrKwjPPPAPg0q+u9+/fH4MGDUJOTg6OHj1abSxt48aNGDNmDAoLCzFu\n3Lib2qY3kxa/+WoxE6DNXMxkGSxUNk7rV/iNj49Hp06dMHLkSDRo0ADPPvtstSv1NmzYEBkZGcjK\nykLDhg3Rq1cvAJf2BFu1aoUZM2agYcOGaNasGYKDg5X79erVC8OGDQMANG7c2IwWIyKtYaGycVq/\nwu+VF60ELl0sscqCBQsgIggODkanTp2wfPlyAMCJEyfQrl27Otd75Tq1SovnvGgxE6DNXMxkGSxU\nNk7rV/ht1aoVTpw4oUyLSLVpk8mEJUuWICsrCx9//DGmTZuGP//8E61bt8axY8dqXafaoxqJ6NbA\nQmXjLr/Cb1lZGb7++mv8/PPP0Ol0eOyxx/DRRx8hKSkJIoJz585h8+bNOHv2bI31uLq6IiMjQylE\ndV3h11yDBw/GkSNH8M0336C8vByLFy/GyZMnleXr1q1DZmYmgEsHYOh0OjRo0ABDhgxBTk4OFi1a\nhJKSEhQXFyMpKQmA9Y5ovB5aHE/QYiZAm7mYyTJ4eHo90Tvpb/gQ8mutXw0HBwd8/fXXeOyxx/DK\nK69g0KBBGDVqFACgS5cuWLp0KZ566imkpaWhSZMm6NOnT60v9DFjxuCzzz6Ds7Mz2rVrh/3792Px\n4sUYO3YsSkpKMHToUAwfPlxVpsv3dpydnbFu3To888wzmDRpEiIiItC7d29l+f79+zFjxgwUFhbC\nZDJh8eLFyqWtv/vuO0yfPh1z5sxBo0aNMGPGDAQHB3OPisjG8JcpzKDT6aDXG1FUlFdjPpvx5rn3\n3nsRERGByZMn19s2tPKcafGcFy1mArSZi5nU4S9TWNiVRYrqhxaKCBFpAwsV3XTz58+HXq+v8Td4\n8GDV67hduu609s0X0GYmQJu5mMky2PVnhrp2X7XSjUTq8Tkjshx2/RHdwrR4zosWMwHazMVMlsFC\nRUREmsauPzOw68928Dkjspwbfb/xPKqbwGg03jaD/7aC18EiunWw6+8myMvLU3601Rp/O3futOr2\nb8VMeXnaOM1Ai+MJWswEaDMXM1kGC5UNOHTokLUj1MBM6jCTelrMxUyWwUJlAwoKCqwdoQZmUoeZ\n1NNiLmayDBYqIiLSNBYqG5CRkWHtCDUwkzrMpJ4WczGTZfDwdDMEBQXh8OHD1o5BRHRLCQwMvKGx\nMxYqIiLSNHb9ERGRprFQERGRprFQqZSQkIAOHTrA19cXb775ptVyeHl54a677kLnzp0RHBwM4NIJ\nx6GhofDz88OAAQPq/fDUyZMnw2QyISAgQJl3tQzR0dHw9fVFhw4druty9debKSoqCh4eHujcuTM6\nd+6MLVu2WDTTiRMncO+99+LOO+9Ep06dsHjxYgDWb6u6clmzvS5evIju3bsjKCgI/v7++Ne//gXA\num1VVyZrv64AoKKiAp07d8bQoUMBWP81VVumm9pOQtdUXl4u3t7ekp6eLqWlpRIYGCgpKSlWyeLl\n5SW5ubnV5r3wwgvy5ptviohITEyMzJo1q14z/PDDD3Lw4EHp1KnTNTMcOXJEAgMDpbS0VNLT08Xb\n21sqKioskikqKkoWLlxY47aWypSTkyPJyckiIlJcXCx+fn6SkpJi9baqK5e12+vcuXMiIlJWVibd\nu3eX3bt3W72tastk7XYSEVm4cKGMGzdOhg4dKiLWf//VlulmthP3qFRISkqCj48PvLy84ODggLCw\nMGzYsMFqeeSK4182btyIyMhIAEBkZCTWr19fr9vv06dPjd/KqyvDhg0bEB4eDgcHB3h5ecHHxwdJ\nSUkWyQTUfqVgS2VydXVFUFAQAKBZs2bo2LEjsrKyrN5WdeUCrNteTZs2BQCUlpaioqICRqPR6m1V\nWybAuu2UmZmJ+Ph4PProo0oOa7dTbZnk//9c2ZWuJxMLlQpZWVnw9PRUpj08PJQ3tqXpdDr0798f\nXbt2xdKlSwEAp06dgslkAgCYTCacOnXK4rnqypCdnQ0PDw/ldpZuu3//+98IDAzEI488onSHWCNT\nRkYGkpOT0b17d021VVWuHj16ALBue1VWViIoKAgmk0npmrR2W9WWCbBuO82YMQNvvfUW7Oz+9/Ft\n7XaqLZNOp7tp7cRCpYKWfhn9p59+QnJyMrZs2YL3338fu3fvrrZcp9NZPe+1Mlgq39SpU5Geno5D\nhw7Bzc0Nzz//vFUynT17FqNGjcKiRYug1+trbNdabXX27FmMHj0aixYtQrNmzazeXnZ2djh06BAy\nMzPxww8/YOfOnTW2aem2ujJTYmKiVdtp06ZNcHFxQefOneu8bIal26muTDeznVioVHB3d8eJEyeU\n6RMnTlT7RmBJbm5uAICWLVviwQcfRFJSEkwmE06ePAkAyMnJgYuLi8Vz1ZXhyrbLzMyEu7u7RTK5\nuLgob9pHH31U6V6wZKaysjKMGjUKERERGDFiBABttFVVrvHjxyu5tNBeAODk5ITBgwfjwIEDmmir\nyzPt37/fqu20Z88ebNy4EW3btkV4eDi+//57REREWLWdass0YcKEm9tON3EszWaVlZVJu3btJD09\nXUpKSqx2MMW5c+ekqKhIRETOnj0rvXr1kq1bt8oLL7wgMTExIiISHR1d7wdTiIikp6fXOJiitgxV\nA6clJSVy7NgxadeunVRWVlokU3Z2tvL/d955R8LDwy2aqbKyUiIiIuTZZ5+tNt/abVVXLmu21+nT\npyU/P19ERM6fPy99+vSR7du3W7Wt6sqUk5Oj3MYar6sqiYmJMmTIEBGx/muqtkw38/XEQqVSfHy8\n+Pn5ibe3t8yfP98qGY4dOyaBgYESGBgod955p5IjNzdXQkJCxNfXV0JDQ5U3V30JCwsTNzc3cXBw\nEA8PD1m2bNlVM8ybN0+8vb2lffv2kpCQYJFMsbGxEhERIQEBAXLXXXfJ8OHD5eTJkxbNtHv3btHp\ndBIYGChBQUESFBQkW7ZssXpb1ZYrPj7equ31yy+/SOfOnSUwMFACAgJkwYIFInL117a1Mln7dVUl\nMTFROcLO2q+pKjt37lQyjR8//qa1E39CiYiINI1jVEREpGksVEREpGksVEREpGksVEREpGksVERE\npGksVEREpGksVEREpGksVEREpGn/D+IpW/NYnHlTAAAAAElFTkSuQmCC\n",
+       "text": [
+        "<matplotlib.figure.Figure at 0x10b59cc50>"
+       ]
+      }
+     ],
+     "prompt_number": 20
     },
     {
      "cell_type": "code",
      "collapsed": false,
      "input": [
-      "# Slicing main dataframe into individual organism dataframes\n",
-      "\n",
-      "dm3 = frame['sample_fqscr'].map(lambda x: 'dm3' in x)\n",
-      "eschColi = frame['sample_fqscr'].map(lambda x: 'eschColi_K12' in x)\n",
-      "phiX = frame['sample_fqscr'].map(lambda x: 'phiX' in x)\n",
+      "#frame.mem_facs[0], frame.mem_fqscr[0]\n",
+      "#frame.loc[:,['mem_facs', 'mem_fqscr']]\n",
+      "#[avg for avg in frame['mem_facs']]\n",
       "\n",
-      "dm3 = frame[dm3]\n",
-      "eschColi = frame[eschColi]\n",
-      "phiX = frame[phiX]"
+      "#mem_usage = DataFrame(data = {'mem_facs': [[1,2], [8,9]],\n",
+      "#'mem_fqscr': [[3,4], [10,12]]})\n",
+      "#mem_usage_mean = mem_usage.applymap(lambda x: sum(x)/len(x))\n",
+      "#mem_usage_mean.plot()"
+     ],
+     "language": "python",
+     "metadata": {},
+     "outputs": [
+      {
+       "ename": "AttributeError",
+       "evalue": "'DataFrame' object has no attribute 'mem_facs'",
+       "output_type": "pyerr",
+       "traceback": [
+        "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mAttributeError\u001b[0m                            Traceback (most recent call last)",
+        "\u001b[0;32m<ipython-input-21-2b2679d7b8ea>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mframe\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmem_facs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mframe\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmem_fqscr\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      2\u001b[0m \u001b[0;31m#frame.loc[:,['mem_facs', 'mem_fqscr']]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      3\u001b[0m \u001b[0;31m#[avg for avg in frame['mem_facs']]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[0;31m#mem_usage = DataFrame(data = {'mem_facs': [[1,2], [8,9]],\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+        "\u001b[0;32m/Users/roman/.virtualenvs/facs/lib/python2.7/site-packages/pandas/core/generic.pyc\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m   1600\u001b[0m             \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1601\u001b[0m         raise AttributeError(\"'%s' object has no attribute '%s'\" %\n\u001b[0;32m-> 1602\u001b[0;31m                              (type(self).__name__, name))\n\u001b[0m\u001b[1;32m   1603\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1604\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m__setattr__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+        "\u001b[0;31mAttributeError\u001b[0m: 'DataFrame' object has no attribute 'mem_facs'"
+       ]
+      }
+     ],
+     "prompt_number": 21
+    },
+    {
+     "cell_type": "code",
+     "collapsed": false,
+     "input": [
+      "frame"
+     ],
+     "language": "python",
+     "metadata": {},
+     "outputs": [
+      {
+       "html": [
+        "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
+        "<table border=\"1\" class=\"dataframe\">\n",
+        "  <thead>\n",
+        "    <tr style=\"text-align: right;\">\n",
+        "      <th></th>\n",
+        "      <th>contam_facs</th>\n",
+        "      <th>contam_fqscr</th>\n",
+        "      <th>delta_fqscr</th>\n",
+        "      <th>delta_facs</th>\n",
+        "      <th>filter_facs</th>\n",
+        "      <th>filter_fqscr</th>\n",
+        "      <th>sample_facs</th>\n",
+        "      <th>sample_fqscr</th>\n",
+        "      <th>threads_facs</th>\n",
+        "      <th>threads_fqscr</th>\n",
+        "      <th>reads</th>\n",
+        "    </tr>\n",
+        "  </thead>\n",
+        "  <tbody>\n",
+        "    <tr>\n",
+        "      <th>0 </th>\n",
+        "      <td> 0.000071</td>\n",
+        "      <td> 0.0001</td>\n",
+        "      <td>  995.512687</td>\n",
+        "      <td>  10.710</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                      simngs_phiX_10000000.fastq</td>\n",
+        "      <td>                      simngs_phiX_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>1 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>  480.008990</td>\n",
+        "      <td>  13.787</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                      simngs_phiX_10000000.fastq</td>\n",
+        "      <td>                      simngs_phiX_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>2 </th>\n",
+        "      <td> 0.995249</td>\n",
+        "      <td> 0.9958</td>\n",
+        "      <td>  710.577691</td>\n",
+        "      <td>  32.584</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                      simngs_phiX_10000000.fastq</td>\n",
+        "      <td>                      simngs_phiX_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>3 </th>\n",
+        "      <td> 0.917971</td>\n",
+        "      <td> 0.9153</td>\n",
+        "      <td> 1747.636472</td>\n",
+        "      <td> 101.781</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>4 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>  162.226401</td>\n",
+        "      <td>  10.476</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>5 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    2.863820</td>\n",
+        "      <td>   1.313</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                          simngs_phiX_1000.fastq</td>\n",
+        "      <td>                          simngs_phiX_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>6 </th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.225909</td>\n",
+        "      <td>   0.058</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                          simngs_phiX_1000.fastq</td>\n",
+        "      <td>                          simngs_phiX_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>7 </th>\n",
+        "      <td> 0.998000</td>\n",
+        "      <td> 0.9990</td>\n",
+        "      <td>    0.452245</td>\n",
+        "      <td>   0.017</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                          simngs_phiX_1000.fastq</td>\n",
+        "      <td>                          simngs_phiX_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>8 </th>\n",
+        "      <td> 0.000240</td>\n",
+        "      <td> 0.0001</td>\n",
+        "      <td>  494.496125</td>\n",
+        "      <td>  13.373</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>9 </th>\n",
+        "      <td> 0.000004</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>  168.785631</td>\n",
+        "      <td>   9.916</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>10</th>\n",
+        "      <td> 0.003942</td>\n",
+        "      <td> 0.0032</td>\n",
+        "      <td>   98.408732</td>\n",
+        "      <td>   3.251</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>11</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.211287</td>\n",
+        "      <td>   0.539</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>12</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.444665</td>\n",
+        "      <td>   0.020</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>  3000vs6000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>13</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    1.127904</td>\n",
+        "      <td>   0.456</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 3000vs93000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>14</th>\n",
+        "      <td> 0.000066</td>\n",
+        "      <td> 0.0001</td>\n",
+        "      <td>   13.093603</td>\n",
+        "      <td>   2.012</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                       simngs_phiX_1000000.fastq</td>\n",
+        "      <td>                       simngs_phiX_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>15</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    7.200159</td>\n",
+        "      <td>   1.846</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                       simngs_phiX_1000000.fastq</td>\n",
+        "      <td>                       simngs_phiX_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>16</th>\n",
+        "      <td> 0.995194</td>\n",
+        "      <td> 0.9958</td>\n",
+        "      <td>   84.579529</td>\n",
+        "      <td>   4.066</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                       simngs_phiX_1000000.fastq</td>\n",
+        "      <td>                       simngs_phiX_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>17</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.681134</td>\n",
+        "      <td>   1.017</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                           simngs_phiX_100.fastq</td>\n",
+        "      <td>                           simngs_phiX_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>18</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.439895</td>\n",
+        "      <td>   0.013</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                           simngs_phiX_100.fastq</td>\n",
+        "      <td>                           simngs_phiX_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>19</th>\n",
+        "      <td> 1.000000</td>\n",
+        "      <td> 1.0000</td>\n",
+        "      <td>    0.213116</td>\n",
+        "      <td>   0.038</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                           simngs_phiX_100.fastq</td>\n",
+        "      <td>                           simngs_phiX_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>20</th>\n",
+        "      <td> 0.032462</td>\n",
+        "      <td> 0.0322</td>\n",
+        "      <td>    1.096185</td>\n",
+        "      <td>   0.576</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 3000vs93000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>21</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.220144</td>\n",
+        "      <td>   0.030</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>22</th>\n",
+        "      <td> 0.999000</td>\n",
+        "      <td> 0.9990</td>\n",
+        "      <td>    0.218054</td>\n",
+        "      <td>   0.035</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>23</th>\n",
+        "      <td> 0.000261</td>\n",
+        "      <td> 0.0001</td>\n",
+        "      <td>    7.338175</td>\n",
+        "      <td>   2.138</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>24</th>\n",
+        "      <td> 0.917631</td>\n",
+        "      <td> 0.9149</td>\n",
+        "      <td>   40.650027</td>\n",
+        "      <td>   9.936</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>25</th>\n",
+        "      <td> 0.002000</td>\n",
+        "      <td> 0.0020</td>\n",
+        "      <td>    0.838629</td>\n",
+        "      <td>   1.092</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>26</th>\n",
+        "      <td> 0.000006</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    6.060514</td>\n",
+        "      <td>   1.789</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td>                        simngs_dm3_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>27</th>\n",
+        "      <td> 0.917000</td>\n",
+        "      <td> 0.9210</td>\n",
+        "      <td>    0.632960</td>\n",
+        "      <td>   0.703</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>28</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.237581</td>\n",
+        "      <td>   0.020</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>  3000vs6000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>29</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.227470</td>\n",
+        "      <td>   0.021</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>30</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.215520</td>\n",
+        "      <td>   0.027</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td>                           simngs_dm3_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>31</th>\n",
+        "      <td> 1.000000</td>\n",
+        "      <td> 1.0000</td>\n",
+        "      <td>    0.220209</td>\n",
+        "      <td>   0.021</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                   simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td>                   simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>32</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.674059</td>\n",
+        "      <td>   0.921</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                   simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td>                   simngs_eschColi_K12_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>33</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.210950</td>\n",
+        "      <td>   0.539</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>34</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.227650</td>\n",
+        "      <td>   0.016</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>35</th>\n",
+        "      <td> 0.917971</td>\n",
+        "      <td> 0.9153</td>\n",
+        "      <td>  940.853700</td>\n",
+        "      <td> 101.781</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>36</th>\n",
+        "      <td> 0.995249</td>\n",
+        "      <td> 0.9958</td>\n",
+        "      <td>  920.436917</td>\n",
+        "      <td>  32.584</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                      simngs_phiX_10000000.fastq</td>\n",
+        "      <td>                      simngs_phiX_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>37</th>\n",
+        "      <td> 0.000004</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>  101.717528</td>\n",
+        "      <td>   9.916</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>38</th>\n",
+        "      <td> 0.000240</td>\n",
+        "      <td> 0.0001</td>\n",
+        "      <td>   71.551788</td>\n",
+        "      <td>  13.373</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td>                       simngs_dm3_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>39</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.212676</td>\n",
+        "      <td>   0.013</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                           simngs_phiX_100.fastq</td>\n",
+        "      <td>                           simngs_phiX_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>40</th>\n",
+        "      <td> 1.000000</td>\n",
+        "      <td> 1.0000</td>\n",
+        "      <td>    0.431265</td>\n",
+        "      <td>   0.038</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                           simngs_phiX_100.fastq</td>\n",
+        "      <td>                           simngs_phiX_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>41</th>\n",
+        "      <td> 0.995194</td>\n",
+        "      <td> 0.9958</td>\n",
+        "      <td>   23.491512</td>\n",
+        "      <td>   4.066</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                       simngs_phiX_1000000.fastq</td>\n",
+        "      <td>                       simngs_phiX_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>42</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.420386</td>\n",
+        "      <td>   1.017</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                           simngs_phiX_100.fastq</td>\n",
+        "      <td>                           simngs_phiX_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  8</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>43</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   10.272867</td>\n",
+        "      <td>   1.828</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>44</th>\n",
+        "      <td> 0.920000</td>\n",
+        "      <td> 0.9100</td>\n",
+        "      <td>    0.673775</td>\n",
+        "      <td>   0.774</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>45</th>\n",
+        "      <td> 0.003942</td>\n",
+        "      <td> 0.0032</td>\n",
+        "      <td>   11.681972</td>\n",
+        "      <td>   3.251</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>46</th>\n",
+        "      <td> 0.995472</td>\n",
+        "      <td> 0.9959</td>\n",
+        "      <td>   86.200919</td>\n",
+        "      <td>   5.319</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td>               simngs_eschColi_K12_1000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>     1000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>47</th>\n",
+        "      <td> 0.920000</td>\n",
+        "      <td> 0.9100</td>\n",
+        "      <td>    0.628286</td>\n",
+        "      <td>   0.774</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td>                            simngs_dm3_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>48</th>\n",
+        "      <td> 0.333000</td>\n",
+        "      <td> 0.3325</td>\n",
+        "      <td>    0.835371</td>\n",
+        "      <td>   0.070</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td>  simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>  3000vs6000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>49</th>\n",
+        "      <td> 0.000071</td>\n",
+        "      <td> 0.0001</td>\n",
+        "      <td>  112.764168</td>\n",
+        "      <td>  10.710</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                      simngs_phiX_10000000.fastq</td>\n",
+        "      <td>                      simngs_phiX_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>50</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   67.589326</td>\n",
+        "      <td>  13.787</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                      simngs_phiX_10000000.fastq</td>\n",
+        "      <td>                      simngs_phiX_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>51</th>\n",
+        "      <td> 0.003922</td>\n",
+        "      <td> 0.0032</td>\n",
+        "      <td>  114.119080</td>\n",
+        "      <td>  12.478</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>52</th>\n",
+        "      <td> 0.995490</td>\n",
+        "      <td> 0.9959</td>\n",
+        "      <td>  848.533965</td>\n",
+        "      <td>  41.880</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>53</th>\n",
+        "      <td> 0.999000</td>\n",
+        "      <td> 0.9990</td>\n",
+        "      <td>    0.218013</td>\n",
+        "      <td>   0.035</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>54</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.223678</td>\n",
+        "      <td>   0.030</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td>                  simngs_eschColi_K12_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>55</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.217786</td>\n",
+        "      <td>   0.058</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td> eschColi_K12</td>\n",
+        "      <td>                          simngs_phiX_1000.fastq</td>\n",
+        "      <td>                          simngs_phiX_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>56</th>\n",
+        "      <td> 0.998000</td>\n",
+        "      <td> 0.9990</td>\n",
+        "      <td>    0.217264</td>\n",
+        "      <td>   0.017</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>                          simngs_phiX_1000.fastq</td>\n",
+        "      <td>                          simngs_phiX_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>57</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>   97.366328</td>\n",
+        "      <td>  10.476</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>         phiX</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td>              simngs_eschColi_K12_10000000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>    10000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>58</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.854444</td>\n",
+        "      <td>   1.313</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                          simngs_phiX_1000.fastq</td>\n",
+        "      <td>                          simngs_phiX_1000.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>        1000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th>59</th>\n",
+        "      <td> 0.000000</td>\n",
+        "      <td> 0.0000</td>\n",
+        "      <td>    0.638649</td>\n",
+        "      <td>   1.017</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>          dm3</td>\n",
+        "      <td>                           simngs_phiX_100.fastq</td>\n",
+        "      <td>                           simngs_phiX_100.fastq</td>\n",
+        "      <td> 16</td>\n",
+        "      <td>  1</td>\n",
+        "      <td>         100</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <th></th>\n",
+        "      <td>...</td>\n",
+        "      <td>...</td>\n",
+        "      <td>...</td>\n",
+        "      <td>...</td>\n",
+        "      <td>...</td>\n",
+        "      <td>...</td>\n",
+        "      <td>...</td>\n",
+        "      <td>...</td>\n",
+        "      <td>...</td>\n",
+        "      <td>...</td>\n",
+        "      <td>...</td>\n",
+        "    </tr>\n",
+        "  </tbody>\n",
+        "</table>\n",
+        "<p>126 rows \u00d7 11 columns</p>\n",
+        "</div>"
+       ],
+       "metadata": {},
+       "output_type": "pyout",
+       "prompt_number": 22,
+       "text": [
+        "    contam_facs  contam_fqscr  delta_fqscr  delta_facs   filter_facs  \\\n",
+        "0      0.000071        0.0001   995.512687      10.710           dm3   \n",
+        "1      0.000000        0.0000   480.008990      13.787  eschColi_K12   \n",
+        "2      0.995249        0.9958   710.577691      32.584          phiX   \n",
+        "3      0.917971        0.9153  1747.636472     101.781           dm3   \n",
+        "4      0.000000        0.0000   162.226401      10.476          phiX   \n",
+        "5      0.000000        0.0000     2.863820       1.313           dm3   \n",
+        "6      0.000000        0.0000     0.225909       0.058  eschColi_K12   \n",
+        "7      0.998000        0.9990     0.452245       0.017          phiX   \n",
+        "8      0.000240        0.0001   494.496125      13.373  eschColi_K12   \n",
+        "9      0.000004        0.0000   168.785631       9.916          phiX   \n",
+        "10     0.003942        0.0032    98.408732       3.251           dm3   \n",
+        "11     0.000000        0.0000     0.211287       0.539  eschColi_K12   \n",
+        "12     0.000000        0.0000     0.444665       0.020          phiX   \n",
+        "13     0.000000        0.0000     1.127904       0.456          phiX   \n",
+        "14     0.000066        0.0001    13.093603       2.012           dm3   \n",
+        "15     0.000000        0.0000     7.200159       1.846  eschColi_K12   \n",
+        "16     0.995194        0.9958    84.579529       4.066          phiX   \n",
+        "17     0.000000        0.0000     0.681134       1.017           dm3   \n",
+        "18     0.000000        0.0000     0.439895       0.013  eschColi_K12   \n",
+        "19     1.000000        1.0000     0.213116       0.038          phiX   \n",
+        "20     0.032462        0.0322     1.096185       0.576  eschColi_K12   \n",
+        "21     0.000000        0.0000     0.220144       0.030          phiX   \n",
+        "22     0.999000        0.9990     0.218054       0.035  eschColi_K12   \n",
+        "23     0.000261        0.0001     7.338175       2.138  eschColi_K12   \n",
+        "24     0.917631        0.9149    40.650027       9.936           dm3   \n",
+        "25     0.002000        0.0020     0.838629       1.092           dm3   \n",
+        "26     0.000006        0.0000     6.060514       1.789          phiX   \n",
+        "27     0.917000        0.9210     0.632960       0.703           dm3   \n",
+        "28     0.000000        0.0000     0.237581       0.020          phiX   \n",
+        "29     0.000000        0.0000     0.227470       0.021          phiX   \n",
+        "30     0.000000        0.0000     0.215520       0.027  eschColi_K12   \n",
+        "31     1.000000        1.0000     0.220209       0.021  eschColi_K12   \n",
+        "32     0.000000        0.0000     0.674059       0.921           dm3   \n",
+        "33     0.000000        0.0000     0.210950       0.539  eschColi_K12   \n",
+        "34     0.000000        0.0000     0.227650       0.016          phiX   \n",
+        "35     0.917971        0.9153   940.853700     101.781           dm3   \n",
+        "36     0.995249        0.9958   920.436917      32.584          phiX   \n",
+        "37     0.000004        0.0000   101.717528       9.916          phiX   \n",
+        "38     0.000240        0.0001    71.551788      13.373  eschColi_K12   \n",
+        "39     0.000000        0.0000     0.212676       0.013  eschColi_K12   \n",
+        "40     1.000000        1.0000     0.431265       0.038          phiX   \n",
+        "41     0.995194        0.9958    23.491512       4.066          phiX   \n",
+        "42     0.000000        0.0000     0.420386       1.017           dm3   \n",
+        "43     0.000000        0.0000    10.272867       1.828          phiX   \n",
+        "44     0.920000        0.9100     0.673775       0.774           dm3   \n",
+        "45     0.003942        0.0032    11.681972       3.251           dm3   \n",
+        "46     0.995472        0.9959    86.200919       5.319  eschColi_K12   \n",
+        "47     0.920000        0.9100     0.628286       0.774           dm3   \n",
+        "48     0.333000        0.3325     0.835371       0.070  eschColi_K12   \n",
+        "49     0.000071        0.0001   112.764168      10.710           dm3   \n",
+        "50     0.000000        0.0000    67.589326      13.787  eschColi_K12   \n",
+        "51     0.003922        0.0032   114.119080      12.478           dm3   \n",
+        "52     0.995490        0.9959   848.533965      41.880  eschColi_K12   \n",
+        "53     0.999000        0.9990     0.218013       0.035  eschColi_K12   \n",
+        "54     0.000000        0.0000     0.223678       0.030          phiX   \n",
+        "55     0.000000        0.0000     0.217786       0.058  eschColi_K12   \n",
+        "56     0.998000        0.9990     0.217264       0.017          phiX   \n",
+        "57     0.000000        0.0000    97.366328      10.476          phiX   \n",
+        "58     0.000000        0.0000     0.854444       1.313           dm3   \n",
+        "59     0.000000        0.0000     0.638649       1.017           dm3   \n",
+        "            ...           ...          ...         ...           ...   \n",
+        "\n",
+        "    filter_fqscr                                      sample_facs  \\\n",
+        "0            dm3                       simngs_phiX_10000000.fastq   \n",
+        "1   eschColi_K12                       simngs_phiX_10000000.fastq   \n",
+        "2           phiX                       simngs_phiX_10000000.fastq   \n",
+        "3            dm3                        simngs_dm3_10000000.fastq   \n",
+        "4           phiX               simngs_eschColi_K12_10000000.fastq   \n",
+        "5            dm3                           simngs_phiX_1000.fastq   \n",
+        "6   eschColi_K12                           simngs_phiX_1000.fastq   \n",
+        "7           phiX                           simngs_phiX_1000.fastq   \n",
+        "8   eschColi_K12                        simngs_dm3_10000000.fastq   \n",
+        "9           phiX                        simngs_dm3_10000000.fastq   \n",
+        "10           dm3                simngs_eschColi_K12_1000000.fastq   \n",
+        "11  eschColi_K12                             simngs_dm3_100.fastq   \n",
+        "12          phiX   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
+        "13          phiX  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq   \n",
+        "14           dm3                        simngs_phiX_1000000.fastq   \n",
+        "15  eschColi_K12                        simngs_phiX_1000000.fastq   \n",
+        "16          phiX                        simngs_phiX_1000000.fastq   \n",
+        "17           dm3                            simngs_phiX_100.fastq   \n",
+        "18  eschColi_K12                            simngs_phiX_100.fastq   \n",
+        "19          phiX                            simngs_phiX_100.fastq   \n",
+        "20  eschColi_K12  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq   \n",
+        "21          phiX                   simngs_eschColi_K12_1000.fastq   \n",
+        "22  eschColi_K12                   simngs_eschColi_K12_1000.fastq   \n",
+        "23  eschColi_K12                         simngs_dm3_1000000.fastq   \n",
+        "24           dm3                         simngs_dm3_1000000.fastq   \n",
+        "25           dm3                   simngs_eschColi_K12_1000.fastq   \n",
+        "26          phiX                         simngs_dm3_1000000.fastq   \n",
+        "27           dm3                            simngs_dm3_1000.fastq   \n",
+        "28          phiX   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
+        "29          phiX                            simngs_dm3_1000.fastq   \n",
+        "30  eschColi_K12                            simngs_dm3_1000.fastq   \n",
+        "31  eschColi_K12                    simngs_eschColi_K12_100.fastq   \n",
+        "32           dm3                    simngs_eschColi_K12_100.fastq   \n",
+        "33  eschColi_K12                             simngs_dm3_100.fastq   \n",
+        "34          phiX                             simngs_dm3_100.fastq   \n",
+        "35           dm3                        simngs_dm3_10000000.fastq   \n",
+        "36          phiX                       simngs_phiX_10000000.fastq   \n",
+        "37          phiX                        simngs_dm3_10000000.fastq   \n",
+        "38  eschColi_K12                        simngs_dm3_10000000.fastq   \n",
+        "39  eschColi_K12                            simngs_phiX_100.fastq   \n",
+        "40          phiX                            simngs_phiX_100.fastq   \n",
+        "41          phiX                        simngs_phiX_1000000.fastq   \n",
+        "42           dm3                            simngs_phiX_100.fastq   \n",
+        "43          phiX                simngs_eschColi_K12_1000000.fastq   \n",
+        "44           dm3                             simngs_dm3_100.fastq   \n",
+        "45           dm3                simngs_eschColi_K12_1000000.fastq   \n",
+        "46  eschColi_K12                simngs_eschColi_K12_1000000.fastq   \n",
+        "47           dm3                             simngs_dm3_100.fastq   \n",
+        "48  eschColi_K12   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq   \n",
+        "49           dm3                       simngs_phiX_10000000.fastq   \n",
+        "50  eschColi_K12                       simngs_phiX_10000000.fastq   \n",
+        "51           dm3               simngs_eschColi_K12_10000000.fastq   \n",
+        "52  eschColi_K12               simngs_eschColi_K12_10000000.fastq   \n",
+        "53  eschColi_K12                   simngs_eschColi_K12_1000.fastq   \n",
+        "54          phiX                   simngs_eschColi_K12_1000.fastq   \n",
+        "55  eschColi_K12                           simngs_phiX_1000.fastq   \n",
+        "56          phiX                           simngs_phiX_1000.fastq   \n",
+        "57          phiX               simngs_eschColi_K12_10000000.fastq   \n",
+        "58           dm3                           simngs_phiX_1000.fastq   \n",
+        "59           dm3                            simngs_phiX_100.fastq   \n",
+        "             ...                                              ...   \n",
+        "\n",
+        "                                       sample_fqscr  threads_facs  \\\n",
+        "0                        simngs_phiX_10000000.fastq            16   \n",
+        "1                        simngs_phiX_10000000.fastq            16   \n",
+        "2                        simngs_phiX_10000000.fastq            16   \n",
+        "3                         simngs_dm3_10000000.fastq            16   \n",
+        "4                simngs_eschColi_K12_10000000.fastq            16   \n",
+        "5                            simngs_phiX_1000.fastq            16   \n",
+        "6                            simngs_phiX_1000.fastq            16   \n",
+        "7                            simngs_phiX_1000.fastq            16   \n",
+        "8                         simngs_dm3_10000000.fastq            16   \n",
+        "9                         simngs_dm3_10000000.fastq            16   \n",
+        "10                simngs_eschColi_K12_1000000.fastq            16   \n",
+        "11                             simngs_dm3_100.fastq            16   \n",
+        "12   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
+        "13  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq            16   \n",
+        "14                        simngs_phiX_1000000.fastq            16   \n",
+        "15                        simngs_phiX_1000000.fastq            16   \n",
+        "16                        simngs_phiX_1000000.fastq            16   \n",
+        "17                            simngs_phiX_100.fastq            16   \n",
+        "18                            simngs_phiX_100.fastq            16   \n",
+        "19                            simngs_phiX_100.fastq            16   \n",
+        "20  simngs.mixed_eschColi_K12_dm3_3000vs93000.fastq            16   \n",
+        "21                   simngs_eschColi_K12_1000.fastq            16   \n",
+        "22                   simngs_eschColi_K12_1000.fastq            16   \n",
+        "23                         simngs_dm3_1000000.fastq            16   \n",
+        "24                         simngs_dm3_1000000.fastq            16   \n",
+        "25                   simngs_eschColi_K12_1000.fastq            16   \n",
+        "26                         simngs_dm3_1000000.fastq            16   \n",
+        "27                            simngs_dm3_1000.fastq            16   \n",
+        "28   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
+        "29                            simngs_dm3_1000.fastq            16   \n",
+        "30                            simngs_dm3_1000.fastq            16   \n",
+        "31                    simngs_eschColi_K12_100.fastq            16   \n",
+        "32                    simngs_eschColi_K12_100.fastq            16   \n",
+        "33                             simngs_dm3_100.fastq            16   \n",
+        "34                             simngs_dm3_100.fastq            16   \n",
+        "35                        simngs_dm3_10000000.fastq            16   \n",
+        "36                       simngs_phiX_10000000.fastq            16   \n",
+        "37                        simngs_dm3_10000000.fastq            16   \n",
+        "38                        simngs_dm3_10000000.fastq            16   \n",
+        "39                            simngs_phiX_100.fastq            16   \n",
+        "40                            simngs_phiX_100.fastq            16   \n",
+        "41                        simngs_phiX_1000000.fastq            16   \n",
+        "42                            simngs_phiX_100.fastq            16   \n",
+        "43                simngs_eschColi_K12_1000000.fastq            16   \n",
+        "44                             simngs_dm3_100.fastq            16   \n",
+        "45                simngs_eschColi_K12_1000000.fastq            16   \n",
+        "46                simngs_eschColi_K12_1000000.fastq            16   \n",
+        "47                             simngs_dm3_100.fastq            16   \n",
+        "48   simngs.mixed_eschColi_K12_dm3_3000vs6000.fastq            16   \n",
+        "49                       simngs_phiX_10000000.fastq            16   \n",
+        "50                       simngs_phiX_10000000.fastq            16   \n",
+        "51               simngs_eschColi_K12_10000000.fastq            16   \n",
+        "52               simngs_eschColi_K12_10000000.fastq            16   \n",
+        "53                   simngs_eschColi_K12_1000.fastq            16   \n",
+        "54                   simngs_eschColi_K12_1000.fastq            16   \n",
+        "55                           simngs_phiX_1000.fastq            16   \n",
+        "56                           simngs_phiX_1000.fastq            16   \n",
+        "57               simngs_eschColi_K12_10000000.fastq            16   \n",
+        "58                           simngs_phiX_1000.fastq            16   \n",
+        "59                            simngs_phiX_100.fastq            16   \n",
+        "                                                ...           ...   \n",
+        "\n",
+        "   threads_fqscr        reads  \n",
+        "0              1     10000000  \n",
+        "1              1     10000000  \n",
+        "2              1     10000000  \n",
+        "3              1     10000000  \n",
+        "4              1     10000000  \n",
+        "5              1         1000  \n",
+        "6              1         1000  \n",
+        "7              1         1000  \n",
+        "8              1     10000000  \n",
+        "9              1     10000000  \n",
+        "10             1      1000000  \n",
+        "11             1          100  \n",
+        "12             1   3000vs6000  \n",
+        "13            16  3000vs93000  \n",
+        "14            16      1000000  \n",
+        "15            16      1000000  \n",
+        "16            16      1000000  \n",
+        "17            16          100  \n",
+        "18            16          100  \n",
+        "19            16          100  \n",
+        "20            16  3000vs93000  \n",
+        "21             8         1000  \n",
+        "22             8         1000  \n",
+        "23             8      1000000  \n",
+        "24             8      1000000  \n",
+        "25             8         1000  \n",
+        "26             8      1000000  \n",
+        "27             8         1000  \n",
+        "28             8   3000vs6000  \n",
+        "29             8         1000  \n",
+        "30             8         1000  \n",
+        "31            16          100  \n",
+        "32            16          100  \n",
+        "33            16          100  \n",
+        "34            16          100  \n",
+        "35            16     10000000  \n",
+        "36            16     10000000  \n",
+        "37            16     10000000  \n",
+        "38            16     10000000  \n",
+        "39             8          100  \n",
+        "40             8          100  \n",
+        "41             8      1000000  \n",
+        "42             8          100  \n",
+        "43            16      1000000  \n",
+        "44            16          100  \n",
+        "45            16      1000000  \n",
+        "46            16      1000000  \n",
+        "47             1          100  \n",
+        "48             1   3000vs6000  \n",
+        "49            16     10000000  \n",
+        "50            16     10000000  \n",
+        "51            16     10000000  \n",
+        "52            16     10000000  \n",
+        "53            16         1000  \n",
+        "54            16         1000  \n",
+        "55            16         1000  \n",
+        "56            16         1000  \n",
+        "57            16     10000000  \n",
+        "58            16         1000  \n",
+        "59             1          100  \n",
+        "             ...          ...  \n",
+        "\n",
+        "[126 rows x 11 columns]"
+       ]
+      }
      ],
-     "language": "python",
-     "metadata": {},
-     "outputs": [],
-     "prompt_number": 90
+     "prompt_number": 22
     },
     {
      "cell_type": "code",
      "collapsed": false,
-     "input": [
-      "# Ready to plot\n",
-      "\n",
-      "runtimes_eschColi = eschColi.loc[:,['reads', 'delta_fqscr', 'delta_facs']]\n",
-      "ecoli_table = runtimes_eschColi.pivot_table(values=['delta_fqscr', 'delta_facs'], rows=['reads'])\n",
-      "ecoli_table.plot(title='eschColi_K12 FACS vs Fastq_screen runtimes (log scale)', kind='bar', logy=True, logx=True)\n",
-      "\n",
-      "runtimes_phiX = phiX.loc[:,['reads', 'delta_fqscr', 'delta_facs']]\n",
-      "phiX_table = runtimes_phiX.pivot_table(values=['delta_fqscr', 'delta_facs'], rows=['reads'])\n",
-      "phiX_table.plot(title ='phiX FACS vs Fastq_screen runtimes (log scale)', kind='bar', logy=True, logx=True)\n",
-      "\n",
-      "runtimes_dm3 = dm3.loc[:,['reads', 'delta_fqscr', 'delta_facs']]\n",
-      "dm3_table = runtimes_dm3.pivot_table(values=['delta_fqscr', 'delta_facs'], rows=['reads'])\n",
-      "dm3_table.plot(title='eschColi_K12 FACS vs Fastq_screen runtimes (log scale)', kind='bar', logy=True, logx=True)"
-     ],
+     "input": [],
      "language": "python",
      "metadata": {},
-     "outputs": [
-      {
-       "output_type": "pyout",
-       "prompt_number": 91,
-       "text": [
-        "<matplotlib.axes.AxesSubplot at 0xc14168c>"
-       ]
-      },
-      {
-       "output_type": "display_data",
-       "png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAAFACAYAAACY8Ub0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVHX6B/DPKJi3gRlQB0VwVESkUFAisVUgHDRNwky8\nLYKW1qqlVpusZdJNcavN6OamJmg/ReyiroXibcy2kEyxvBCigoKAF0Dxgty+vz/QsyADgyMwFz7v\n12tees6ZOeeZZ2YezjzznfnKhBACRERk8loZOwAiImoYFmwiIjPBgk1EZCZYsImIzAQLNhGRmWDB\nJiIyE2ZXsCMiIrBo0aIm2XdsbCyGDh0qLcvlcmRmZjbJsYjMwf79++Hm5mbsMHD8+HE8/PDD0rJa\nrcbu3buNGFHD3F1T6vPKK69gxYoV9V7H7Aq2TCaDTCarc7sQAjExMfDw8EDHjh3h5OSE0NBQHD16\n9J6PVVxcDLVaXe917v4DcuzYMXTt2hX/+te/AACffPIJvL290bZtW0ybNq3GbZOTk6HRaGBvb48u\nXbogNDQUeXl5dR7L398f7dq1g1wuly4HDhwAAFy7dg0dO3bEqFGjat2utLQUUVFRcHV1RceOHdGz\nZ08888wzyMrKkmIOCgqCvb09lEolvL29kZiY2KAcGapVq1bo2LGjdD/s7OwM3ldUVBTCwsIaMbqW\nq1WrVjh9+rS0PHToUKSlpRkxoiqLFi3C3//+d2lZXx0wR6+88gqWLFmCsrKyOq9jdgVbn7lz5yIm\nJgYff/wxCgsLkZ6ejpCQEHz//fdNcrzqT5zDhw/jsccewxtvvIGXXnoJAODo6IhFixZh+vTptW5b\nVFSE559/HllZWcjKyoJcLq9V1O8+1qeffori4mLp8sgjjwAAvvnmGzg7O0Or1SI/P7/G7Z5++mls\n27YNGzZswNWrV3HkyBF4e3tjz549AIAxY8ZgxIgRyM/Px4ULFxATEwMbG5tGyU99fv/9d+l+FBQU\nNPnxmkN5ebnZH9vUvkuXm5sLrVaLkJAQY4fSpBwcHODm5oatW7fWfSXRxHJycsRTTz0lOnfuLHr2\n7CliYmKkbQcOHBCDBg0SNjY2QqVSiZdeeknatn//fuHr6ysUCoVwcnIScXFxQgghIiIixOzZs8Xo\n0aOFXC4XjzzyiDh16pQQQoj09HTRunVr8euvv9YZT1FRkQgLCxOdO3cWPXr0EO+8846orKwUQgix\nZs0a8Ze//EW6rkwmk/Zdl4iICPH666+LAwcOiE6dOonVq1frvN7rr78uIiIi6t3Xb7/9JuRyeZ3b\n/f3969x/QECA+OCDD8Tw4cPF+++/L63fuXOnaNeuncjOztZ5u4sXLwqZTCauXLlSb2xCCFFSUiJs\nbW3F0aNHpXUXLlwQ7dq1ExcvXhQXL14Uo0ePFgqFQtjZ2YmhQ4dKub2brtxmZGSIgIAAYW9vLzp1\n6iSmTJkiioqKpO3R0dHC0dFRyOVy0bdvX7F7926RmJgo2rRpI6ytrUXHjh2Fp6enEEKI06dPi2HD\nhgm5XC40Go2YPXu2+Otf/1rv/bt586aYMmWKsLe3FwqFQjz88MMiPz9fCCHE5cuXRUREhOjWrZtQ\nKpUiJCRECCHE3r17haOjo1i2bJlwcHAQU6dOFZWVlWLp0qWid+/ewt7eXoSGhoqCggLpOL/88ov0\n3B4wYIDQarXSNj8/P7Fo0SLx6KOPCrlcLoKCgsSlS5d0xnv3scPCwkRsbGyN5/DduQ4PDxezZs3S\n+foZOnSokMlkokOHDqJjx44iISFB7N27V3Tv3l3aV48ePcR7770nPDw8RMeOHcX06dNFXl6eGDly\npLCxsRHDhw8XhYWFDbqva9asEb169RJyuVz07NlT/N///Z/O+xkXFyc0Gk2NdWq1WuzevVsIUfW8\nnDt3rujWrZvo1q2bmDdvnrh165Z03WXLlomuXbsKR0dHsXLlynpf1/XF9MUXX4h+/foJuVwu3N3d\nxaFDh4QQQnqs76z/7rvvauyv+uNx4sQJMXz4cGFnZyf69u0rEhISahz/3XffFdOmTdMZmxBCNGnB\nrqioEAMHDhRvv/22KCsrE6dPnxa9evUSO3bsEEIIMXjwYPHVV18JIYS4fv26SE5OFkIIkZmZKeRy\nuYiPjxfl5eXi8uXLIjU1VQhR9YSzt7cXv/76qygvLxdTpkwREydOFEII8fnnnwu1Wl1vTGFhYSIk\nJERcu3ZNZGZmCldXV6kIGlqwNRqNsLOzk+6LLq+99pregv3hhx8KX1/fOrf7+/uLVatW1VqfmZkp\nWrduLc6dOye++OIL0b9/f2nbggULhL+/f537rKysFH369BFPPPGE2Lx5s8jLy6s3xunTp4vXXntN\nWv7kk0/E448/LoQQIjIyUjz//POivLxclJeXi59++qnO/chkMpGRkVFjXUZGhti1a5coLS0VFy9e\nFMOGDRPz5s0TQgiRlpYmnJycRG5urhBCiKysLOmxiYqKEmFhYTX2NXjwYPHyyy+L0tJS8eOPPwq5\nXF7rOndbsWKFGDNmjLh586aorKwUhw4dElevXhVCCDFq1CgxceJEUVRUJMrKysSPP/4ohKgqmlZW\nViIyMlKUlpaKmzdviuXLlwtfX1+Rk5MjSktLxXPPPScmTZokhBAiOztb2Nvbi8TERCFE1R9Ue3t7\nqSj7+fkJFxcXcfLkSXHz5k3h7+8vIiMjdcar69h3P4fv5Lp6wa7r9XP3de8co3rBVqvVwtfXV1y4\ncEHk5OSILl26CC8vL5GamipKSkrEY489Jt5880299/XatWvCxsZGpKenCyGEyMvLE8eOHdN5P195\n5RUxZ86cGuuqF+xFixYJX19f6aRhyJAhYtGiRUIIIRITE4WDg4M4fvy4uHHjhpgyZYpo1aqVztd1\nfTElJCQIR0dHcfDgQSFE1XM1KytLCCHEpk2bpOflxo0bRYcOHaTXUfXH49q1a6J79+4iNjZWVFRU\niMOHD4tOnTqJ48ePSzF88803YuDAgTrzIEQTF+zk5GTh7OxcY92SJUukvyDDhg0TixcvFhcvXqx1\nnaeeekrnPiMiIsSMGTOk5R9++EG4ubkJIYR45513xODBg+uMp7y8XLRp00acOHFCWvfvf/9bKmiG\nFOzw8HBhY2MjevXqVeeZkBD6z7CPHDki7Ozs6i1yfn5+on379kKhUAiFQiEGDRokhBDi7bfflgr9\npUuXhJWVlfQH7tlnn63xgtQlOztbzJkzR/Tu3Vu0atVKDBs2TJw8eVLndXft2iV69+4tLQ8ZMkSs\nW7dOCCHEG2+8IZ588slahVgXmUwmbGxspPsyd+7cWtf57rvvhJeXlxBCiJMnT4ouXbpIBb26xYsX\n1zh7zsrKElZWVuLGjRvSusmTJ+s9w/7yyy/FkCFDxO+//15j/fnz50WrVq1qnO3fsXfvXtGmTZsa\nZ3T9+vWTismd21tbW4vy8nIRHR1d6w/HiBEjpHeQ/v7+4t1335W2ffbZZ2LkyJE649V1bH0Fu77X\nz93XvXOMuwv2+vXrpeVx48aJWbNmScsff/yx9O6jvvt6/fp1oVAoxDfffFPjcdJlxowZtf5oVS/Y\nvXv3lv4oCCHEjh07pBO3adOmiYULF0rbMjIy6nxdX7t2rc6YgoKCanQH6uPp6Sm2bNkihKj5eMTH\nx4uhQ4fWuO7MmTOlP3BCCJGUlCR69epV576btIedlZWF8+fPQ6lUSpelS5fiwoULAIDVq1cjPT0d\n/fr1g4+Pj9Rnzs7ORq9evercr0qlkv7frl07XLt2DQBgb2+P3NzcOm936dIllJWVoUePHtI6Z2dn\n5OTkGHwfZTIZZs+ejUGDBkGj0aCoqEjn9UQ9fcGMjAyMGjUKMTExePTRR+s91p3efGFhIQ4ePAgA\nWLt2LcaPHw+gKgf+/v6IjY0FAHTq1KnenABVffaPP/4YGRkZyMrKQocOHTB16lSd1/X398eNGzeQ\nkpKCzMxMHDlyBGPHjgUA/P3vf4eLiwuCgoLQu3dvLFu2rN7jHj58WLovy5cvR35+PiZOnIju3bvD\n1tYWYWFhuHz5MgDAxcUFy5cvR1RUFFQqFSZNmlTn/brznGvXrp20rvpjXpewsDCMGDECEydOhKOj\nIxYsWIDy8nKcO3cOdnZ2sLW11Xm7zp07o02bNtJyZmYmxo4dKz3n3d3dYWVlhfz8fGRlZWHTpk01\nXhP//e9/a3zY7ODgIP2/+vO7IcduiLpeP4bevvpy27Ztpf3Vd1/bt2+PjRs3YsWKFejWrRueeOIJ\n/PnnnzqPp1QqUVxcXGc858+fr/WaPn/+PICq/reTk5O0rXv37nXup0OHDnXGlJ2djd69e+u83dq1\na+Hl5SXdx6NHj0rP2+qysrJw4MCBGvlYv359jc+ciouLoVAo6oyxSQu2s7MzevbsKb0oCwsLcfXq\nVWzbtg1A1Ytw/fr1uHjxIhYsWICnn34aN27cgJOTE06dOnXPxwsMDER2djZ+++03nds7deoEa2vr\nGkP1zp49W++D2BBWVlZYv349nJ2dMWLECJ1Prro+0c7KyoJGo8Ebb7yBKVOm3POxf/75Z2RkZOCd\nd95B165d0bVrV/zyyy9Yv349KioqEBgYiJSUlAb/UerevTtmzZpV56ia1q1bIzQ0FBs2bMCGDRsw\nZswYdOjQAQDQsWNHvP/++zh16hS2bt2Kf/3rX9IHmw2xcOFCtG7dGkePHsWVK1ewbt06VFZWStsn\nTZqE/fv3IysrCzKZDAsWLABQO7ddu3ZFYWEhbty4Ia27MyKmPlZWVnjjjTdw7Ngx/Pzzz9i2bRvW\nrl0LZ2dnFBQU4MqVKzpvd/fxnZ2dsX379hrP+xs3bqBbt25wdnZGWFhYjW3FxcV49dVXG5yn+o7d\noUOHGve7vlFHjaWukxF99zUoKAhJSUnIy8uDm5sbZsyYoXM//fv3R3p6ep3H79atW63XtKOjI4Cq\n58K5c+ekbdX/r0tdMTk5OSEjI6PW9bOysjBz5kx8+umnKCgoQGFhIR566CGdOXF2doafn1+tfHz6\n6afSdU6cOAFPT88642vSgu3j4wO5XI5//vOfuHnzJioqKnD06FHpzPCrr77CxYsXAQC2traQyWRo\n3bo1Jk+ejF27dmHTpk0oLy/H5cuXceTIEQD1n6n26dMHs2bNwqRJk7Bv3z6UlpaipKQE8fHxWLZs\nmVRsXnvtNVy7dg1ZWVn48MMP8de//tXg+yiq2kqwsrLCpk2b0KlTJ4waNUp60VRUVKCkpATl5eWo\nqKjArVu3UFFRAQDIycnBY489hjlz5mDmzJkNPl51cXFxCAoKwokTJ3DkyBEcOXIER48exc2bN5GY\nmIjhw4dDo9Fg7NixOHToEMrLy1FcXIwVK1ZgzZo1KCoqwuLFi3Hq1ClUVlbi0qVL+PLLL+Hr61tn\nDJMnT0Z8fDzWr1+PyZMnS+u///57ZGRkQAgBGxsbtG7dGq1bt25wLq9du4YOHTrAxsYGOTk5eO+9\n96Rt6enp2LNnD27duoUHHngAbdu2lfbt4OCAzMxMKTc9evSAt7c3Fi9ejLKyMvz000/Ytm2b3mFg\nWq0Wf/zxByoqKiCXy2FtbY3WrVvDwcEBjz/+OGbNmoWioiKUlZXhxx9/rHM/zz//PBYuXIizZ88C\nAC5evCh98v/Xv/4V//nPf5CUlCQ9N7RabY0/qPU9x/UZMGAAjh07hiNHjqCkpARRUVE1tuvbt0ql\nMuhkSZf67uuFCxewZcsWXL9+HdbW1ujQoUOdz5Xhw4fj0KFDKC0t1bl90qRJeOedd3Dp0iVcunQJ\nb731lvSaDg0NxZo1a5CWloYbN27g7bffrjPe+mJ69tln8f777+PQoUMQQiAjIwNnz57F9evXIZPJ\n0KlTJ1RWVmLNmjV1nuyMHj0a6enp+Oqrr1BWVoaysjL8+uuvNYZN7tu3D48//nidMTZpwW7VqhW2\nbduG1NRU9OrVC507d8bMmTNx9epVAMCOHTvw0EMPQS6XY/78+YiPj8cDDzwAZ2dn/PDDD/jggw9g\nb28PLy8v/P777wB0j7+svhwTE4M5c+Zg9uzZUCqVcHFxwZYtWxAcHAwA+Pjjj9GhQwf06tULQ4cO\nxZQpU6ShdHfvuyHjPKvfxtraGt9++y3atm2L4OBglJSU4O2330b79u2xbNkyfPXVV2jXrh3effdd\nAMCqVatw5swZREVFSeOR9Q2nqx5TSUkJNm3ahBdeeAFdunSRLmq1GmFhYVi7di0A4Ouvv8aoUaMw\nYcIEKBQKeHh44NChQ9BoNGjTpg2ysrIwfPhw2NrawsPDA+3atZNaKrr4+PigY8eOyM3NrfHkOnny\nJDQaDeRyOYYMGYLZs2fDz89P7/24Y/HixTh06BBsbW0xZswYjBs3TrrerVu38I9//AOdO3dG165d\ncenSJSxduhQAarSDvL29AQDr16/HgQMHYGdnh7feegtTp07VW6zy8vIwfvx42Nrawt3dHf7+/tL4\n7nXr1sHa2hpubm5QqVSIiYmp877MnTsXwcHBCAoKgo2NDXx9fZGSkgKg6h3Mli1bsGTJEnTp0gXO\nzs744IMPasR293Owvufh3dtcXV3xxhtvYPjw4ejbty+GDh2qd3/Vl6OiohAeHg6lUomvv/66QeOd\n69p/ffe1srISH374IRwdHWFvb4/9+/fj888/17l/lUqFxx57DJs3b9a5/fXXX4e3tzf69++P/v37\nw9vbG6+//joAYOTIkXjxxRcREBAAV1dX6UTkgQceqLWf+mJ6+umn8dprr2Hy5MmwsbHBU089hcLC\nQri7u+Pll1+Gr68vHBwccPToUfzlL3/RmQ+5XI6kpCTEx8fD0dERXbt2xT/+8Q/pD1Fubi5OnDhR\n7/BFmdDzLP7oo4+watUqCCEwY8YMzJ07FwUFBZgwYQKysrKgVquRkJBQb9+FyNjefPNNZGRkYN26\ndcYOhQxw4sQJhIeHS3/47mc/Hh4eKC0tRatWpvU1lFdeeQUuLi54/vnn67xOvREfPXoUq1atwq+/\n/oojR45g27ZtOHXqFKKjo6HRaJCeno7AwEBER0c3evBEjel+2gxkfP369TO4WH/33Xe4desWCgsL\nsWDBAgQHB5tcsQaA999/v95iDegp2GlpaXjkkUekfqGfnx+++eYbbN26FeHh4QCA8PDwOt+qWIoH\nH3ywxtfB71w2bNhg7NCoge68NV2/fr3Ox9LDw8PYIVIT+eKLL6BSqeDi4gJra+s6Wy/moN6WSFpa\nGp588kn88ssvaNu2LYYPHw5vb2+sW7cOhYWFAKrOXOzs7KRlIiJqGlb1bXRzc8OCBQsQFBSEDh06\nwNPTs9YnufV9KOHi4tJonzgTEbUUAwYMQGpqaq31ehs506dPx8GDB7Fv3z4olUq4urpCpVJJ4ztz\nc3PRpUsXnbc9deqUNOzNXC+LFy82egzmemHumDvmzbDLnWHM91yw73wr8ezZs/j2228xefJkBAcH\nIy4uDkDVOGBL/xUtIjIPS6OXSu/6m/Nio2j6X7cE9LREgKrxh5cvX4a1tTU+++wz2NraIjIyEqGh\noVi9erU0rM9ScQIDwzF3hmPuDFN6qxSIav7jFkfV/dX5xqS3YOv6RpednR127drVJAGZmvq+Jkr1\nY+4Mx9yRLnq/OHNfO5fJ0IS7JyKqQSaTGeUMG1GNO9a/rtqp9wy7KXAYoPlRKpUWMysMkbkyytd9\nCgsLjf4pLC/3djHkD6xWq238J08LwdyRLqb3/UwiItLJKD1s9rbNDx8zMgeW3sPmGTYRkZlgwaYm\nwz6s4Zg70oUFm4jITJhMwbaxsWvar47a2BkUV0REBBYtWqT3emq1Grt37zboGPX5/PPPoVKpYGNj\nY3ZDIf39/Y0dgtli7kgXkynYxcWFAESTXar2f+8aMkXS3deLioqSppa6H2VlZXj55Zexe/duXL16\nFUql8r73SUTmy2QKtikz1uiIvLw8lJSUoF+/fkY5/v1iH9ZwzB3pwoJ9l8OHD2PgwIGwsbHBxIkT\nUVJSIm3btm0bPD09oVQq8eijj+KPP/6odfvt27dj6dKl2LhxI+RyOby8vAAAa9asgbu7O2xsbNC7\nd2988cUX9caRnp4uFWqFQoHhw4cDqJrg1dnZGba2tvD29sZPP/0k3aayshJLliyBi4sLbGxs4O3t\njezsbADA/PnzoVKpYGtri/79++PYsWP3lygianYs2NWUlpYiJCQE4eHhKCwsxPjx4/HNN99AJpPh\n8OHDeOaZZ7By5UoUFBTgueeeQ3BwMMrKymrsY+TIkVi4cCEmTpyI4uJiHD58GEDVzM/ff/89rl69\nijVr1mD+/PnSNl1cXV2lonrlyhXpx7Z8fHxw5MgRFBYWYvLkyRg/frw06/IHH3yA+Ph4JCYmSsdp\n3749duzYgf379+PkyZO4cuUKNm3aBHt7+6ZIYQ3swxqOuSNdWLCrSU5ORnl5OebOnYvWrVtj3Lhx\nePjhhyGEwMqVK/Hcc8/h4Ycfhkwmw9SpU/HAAw8gOTm51n7ufJ27ulGjRqFnz54AgGHDhiEoKAj7\n9++vNx5drZgpU6ZAqVSiVatWeOmll3Dr1i38+eefAIBVq1bh3XffRZ8+fQAAHh4esLOzQ5s2bVBc\nXIwTJ06gsrISffv2hYODg0E5IiLjYcGu5vz583B0dKyxrkePHgCArKwsfPDBB1AqldIlOzsb58+f\nb9C+ExMTMXjwYNjb20OpVOKHH37A5cuX7znG999/H+7u7lAoFFAqlbhy5QouXboEAMjOzkbv3r1r\n3SYgIABz5szB7NmzoVKp8Nxzz6G4uOl/v5d9WMMxd6QLC3Y1Xbt2RU5OTo11WVlZAAAnJye89tpr\nKCwslC7Xrl3DhAkTau3n7lElt27dwrhx4/Dqq6/iwoULKCwsxKhRo+75w8z9+/fjvffew6ZNm1BU\nVITCwkLY2tpK+3FyckJGRobO277wwgs4ePAgjh8/jvT0dLz33nv3dGwiMj69BXvp0qV48MEH4eHh\ngcmTJ+PWrVsoKCiARqOBq6srgoKCUFRUdN+ByOVKALImu1Ttv35DhgyBlZUVYmJiUFZWhm+//Ra/\n/vorZDIZZsyYgRUrViAlJQVCCFy/fh3ff/89rl27Vms/Dg4OyMzMlAppaWkpSktL0alTJ7Rq1QqJ\niYlISkq65xwVFxfDysoKnTp1QmlpKd566y1cvXpV2v7ss89i0aJFyMjIgBACv//+OwoKCnDw4EEc\nOHAAZWVlaN++Pdq2bVtrMuWmwD6s4Zg70qXegp2ZmYmVK1fi0KFD+OOPP1BRUYH4+HhER0dDo9Eg\nPT0dgYGBiI6Ovu9Arl4taNKfB716Vf9vOVtbW+Pbb79FbGws7O3tkZCQgHHjxgEABg0ahJUrV2LO\nnDmws7NDnz59sHbtWp1jtMePHw8AsLe3h7e3N+RyOWJiYhAaGgo7Ozts2LABTz75ZIPyUn3/I0eO\nxMiRI+Hq6gq1Wo127drB2dlZ2v7SSy8hNDQUQUFBsLW1xYwZM3Dz5k1cvXoVM2fOhJ2dHdRqNTp1\n6oS///3vDTo+EZmOen+tr6CgAL6+vkhOToZcLsfYsWPx4osv4oUXXsC+ffuk2dP9/f2RlpZWe+f8\ntT6LYchjptVqeaZoIObOMC361/rs7Ozw8ssvw9nZGd26dYNCoYBGo0F+fj5UKhWAquFq+fn5jRYo\nERHpVu8UYadOncLy5cuRmZkJW1tbjB8/Hl999VWN6+j76nZERATUajWAqi+AcHLRmpYsWYKlS5fW\nWj9s2DB8//33RoiobndGLtw589O3fGddQ6/P5f8t+/v7m1Q85rQsOXP7357Ns3w/8Wu1WsTGxgKA\nVC91qbclsnHjRuzcuROrVq0CAKxbtw7JycnYs2cP9u7dCwcHB+Tm5iIgIIAtEQvHx4zMQYtuibi5\nuSE5ORk3b96EEAK7du2Cu7s7xowZg7i4OABAXFwcQkJCGi1QshwcS2w45o50qbclMmDAAEydOhXe\n3t5o1aoVBg4ciJkzZ6K4uBihoaFYvXo11Go1EhISmiteIqIWi3M6UoPwMSNz0KJbIkREZDpYsPXg\njDOGYx/WcMwd6WIyBdtGYdO0U4QpbAyKizPOEJGpqPdDx+ZUfKW4SXtPxVGG/zpdS5pxpqKiotF+\nZ4Tf1DMcc0e6mMwZtqkw9Rlndu7cCTc3NygUCrzwwgvw8/PD6tWrAQAZGRnw8/ODQqFA586dMXHi\nRGl/x44dg0ajgb29PRwcHKQv60RFReHpp59GWFgYbG1tpeGaRGR6WLCrMfUZZy5duoRx48ZhyZIl\nuHz5Mnr37o2ff/5ZasUsWrQII0eORFFREXJycvDiiy8CqPqVv+HDh2PUqFHIzc1FRkYGAgMDpWNt\n3boV48ePx5UrVzB58uRGyyf7sIZj7kgXFuxqTH3GmR9++AEPPfQQnnrqKbRu3Rrz5s2rMXNMmzZt\nkJmZiZycHLRp0wZDhgwBUPXOoFu3bpg/fz7atGmDjh07wsfHR7rdkCFDEBwcDABo27btPWSMiJoT\nC3Y1pj7jzPnz59G9e/ca65ycnKT///Of/4QQAj4+PnjooYewZs0aAMC5c+fQq1evOvd79z4bC/uw\nhmPuSBcW7GpMfcaZbt264dy5c9KyEKLGskqlwhdffIGcnBz8+9//xqxZs3Dq1Ck4Ozvj9OnTOvfZ\n0FEwRGR8LNjVmPqMM6NHj8axY8fw3Xffoby8HDExMcjLy5O2b9q0CdnZ2QCqPqiUyWRo3bo1nnji\nCeTm5uKjjz7CrVu3UFxcjJSUFABNOwKGfVjDMXeki8kM65Pbyu9r6F1D9q/PnRlnZsyYgddffx2j\nRo3SOePMyZMn0a5dOwwdOlTnW9c7P0Nrb2+PXr164eDBg9KMM7du3cKYMWMMmnHG3t4emzZtwosv\nvohp06YhLCwMjz76qLT94MGDmD9/Pq5cuQKVSoWYmBjppxp37tyJuXPn4s0338QDDzyA+fPnw8fH\nh2fYRGaEvyVi5gICAhAWFobp06c36XH4mJE54G+JkMljISVqGViwjWzJkiWQy+W1LqNHj27wPky1\npcE+rOGoMb+UAAAbnklEQVSYO9LFZHrYLdXChQuxcOFCg2+/d+/eRoyGiEwZe9jUIHzMyBy0+B72\nn3/+CS8vL+lia2uLmJgYFBQUQKPRwNXVFUFBQSgqKmq0YImIqDa9Bbtv3744fPgwDh8+jN9++w3t\n27fH2LFjER0dDY1Gg/T0dAQGBiI6Oro54iUzwj6s4Zg70uWeeti7du2Ci4sLnJycsHXrVuzbtw8A\nEB4eDn9//wYXbaVSabIflJFu/C1uIuO7p4IdHx+PSZMmAQDy8/OhUqkAVH0lOj8/v8H7KSgouJfD\nkpni72EYjrkjXRpcsEtLS/Gf//wHy5Ytq7Wtvm/LRURESN+2UygU8PT0lJ6Md972cZnLXOZyYy1L\nztz+t2fzLN9P/FqtFrGxsQAg1UtdGjxKZMuWLfj888+xfft2AICbmxu0Wi0cHByQm5uLgIAApKWl\n1dy5BYws0Gq1UoLp3jB3hmPuDNPiR4ncsWHDBqkdAgDBwcHS7CRxcXEICQlphDCJiKguDTrDvn79\nOnr06IEzZ85ALq/6EaWCggKEhobi7NmzUKvVSEhIgEKhqLlzCzjDJiLzYeln2Eb54gwRUVOw9ILN\n3xLRo9YHGdRgzJ3hmDvShQWbiMhMsCVCRBaDLREiIjIJLNh6sJdoOObOcMwd6cKCTURkJtjDJiKL\nwR42ERGZBBZsPdhLNBxzZzjmjnRhwSYiMhPsYRORxWAPm4iITAILth7sJRqOuTMcc0e6sGATEZkJ\n9rCJyGKwh01ERCahQQW7qKgITz/9NPr16wd3d3ccOHAABQUF0Gg0cHV1RVBQEIqKipo6VqNgL9Fw\nzJ3hmDvSpUEFe+7cuRg1ahROnDiB33//HW5uboiOjoZGo0F6ejoCAwMRHR3d1LESEbVoenvYV65c\ngZeXF06fPl1jvZubG/bt2weVSoW8vDz4+/tb5KzpRGQ+WnwP+8yZM+jcuTOmTZuGgQMHYsaMGbh+\n/Try8/OhUqkAACqVCvn5+Y0WLBER1Wal7wrl5eU4dOgQPvnkEzz88MOYN29erfaHTCar+sumQ0RE\nBNRqNQBAoVDA09MT/v7+AP7XpzPl5dTUVMybN89k4jGn5eXLl5vd420qy9V72KYQjzktS87c/rdn\n8yzf7+MdGxsLAFK91EVvSyQvLw++vr44c6Yqup9++glLly7F6dOnsXfvXjg4OCA3NxcBAQEW2RLR\narVSguneMHeGY+4M0+JbIg4ODnByckJ6ejoAYNeuXXjwwQcxZswYxMXFAQDi4uIQEhLSaMGaEr5o\nDMfcGY65I10a9MWZI0eO4Nlnn0VpaSl69+6NNWvWoKKiAqGhoTh79izUajUSEhKgUChq7twCzrCJ\nyHxY+hk2v+moB9+aGo65MxxzZxhLL9j8piMRkZngGTYRWQyeYRMRkUlgwdaj1thOajDmznDMHenC\ngk1EZCbYwyYii8EeNhERmQQWbD3YSzQcc2c45o50YcEmIjIT7GETkcVgD5uIiEwCC7Ye7CUajrkz\nHHNHurBgExGZCfawichisIdNREQmoUEFW61Wo3///vDy8oKPjw8AoKCgABqNBq6urggKCkJRUVGT\nBmos7CUajrkzHHNHujSoYMtkMmi1Whw+fBgpKSkAgOjoaGg0GqSnpyMwMLDWxLxERNS4GtTD7tmz\nJw4ePAh7e3tpnZubG/bt2weVSoW8vDz4+/tb5CS8RGQ+2MO+fePhw4fD29sbK1euBADk5+dDpVIB\nAFQqFfLz8xstWCIiqq1BBfu///0vDh8+jMTERHz66afYv39/je0ymazqL5sFYi/RcMyd4Zg70sWq\nIVfq2rUrAKBz584YO3YsUlJSpFaIg4MDcnNz0aVLF523jYiIgFqtBgAoFAp4enpKk4veeVKa8nJq\naqpJxWNOy6mpqSYVD5dbxrLkzO1/ezbP8v3Er9VqERsbCwBSvdRFbw/7xo0bqKiogFwux/Xr1xEU\nFITFixdj165dsLe3x4IFCxAdHY2ioqJaHzyyh01EzcnSe9h6z7Dz8/MxduxYAEB5eTmmTJmCoKAg\neHt7IzQ0FKtXr4ZarUZCQkKjBUtERLXxm456aLVa6S0M3RvmznDMnWEs/Qyb33QkIjITPMMmIovB\nM2wiIjIJLNh61BoqRA3G3BmOuSNdWLCJiMwEe9hEZDHYwyYiIpPAgq0He4mGY+4Mx9yRLizYRERm\ngj1sIrIY7GETEZFJYMHWg71EwzF3hmPuSBcWbCIiM8EeNhFZDPawiYjIJLBg68FeouGYO8Mxd6RL\ngwp2RUUFvLy8MGbMGABAQUEBNBoNXF1dERQUhKKioiYNkoiIGliwP/roI7i7u0szo0dHR0Oj0SA9\nPR2BgYG15nK0JJz1w3DMneGYO9JFb8HOzs7GDz/8gGeffVZqgm/duhXh4eEAgPDwcGzevLlpoyQi\nIv0Fe/78+XjvvffQqtX/rpqfnw+VSgUAUKlUyM/Pb7oIjYy9RMMxd4Zj7kiXemdN37ZtG7p06QIv\nL686n0AymUxqlegSEREBtVoNAFAoFPD09JTe7t3Zpykvp6ammlQ85rScmppqUvFwuWUsS87c/rdn\n8yzfT/xarRaxsbEAINVLXeodh71w4UKsW7cOVlZWKCkpwdWrV/HUU0/h119/hVarhYODA3JzcxEQ\nEIC0tLTaO+c4bCJqRi16HPaSJUtw7tw5nDlzBvHx8Xjsscewbt06BAcHIy4uDgAQFxeHkJCQRguU\niIh0u6dx2HdaH5GRkdi5cydcXV2xZ88eREZGNklwpqDW2yxqMObOcMwd6VJvD7s6Pz8/+Pn5AQDs\n7Oywa9euJguKiIhq42+JEJHFaNE9bCIiMh0s2Hqwl2g45s5wzB3pwoJNRGQm2MMmIovBHjYREZkE\nFmw92Es0HHNnOOaOdGHBJiIyE+xhE5HFYA+biIhMAgu2HuwlGo65MxxzR7qwYBMRmQn2sInIYrCH\nTUREJoEFWw/2Eg3H3BmOuSNdWLCJiMxEvT3skpIS+Pn54datWygtLcWTTz6JpUuXoqCgABMmTEBW\nVhbUajUSEhKgUChq75w9bCJqRi26h922bVvs3bsXqamp+P3337F371789NNPiI6OhkajQXp6OgID\nAxEdHd1ogRIRkW56WyLt27cHAJSWlqKiogJKpRJbt25FeHg4ACA8PBybN29u2iiNiL1EwzF3hmPu\nSBe9BbuyshKenp5QqVQICAjAgw8+iPz8fKhUKgCASqVCfn5+kwdKRNTS6Z2Et1WrVkhNTcWVK1cw\nYsQI7N27t8Z2mUwmzaauS0REBNRqNQBAoVDA09MT/v7+AP53FmHqy3eYSjzmsnxnnanEY07L/v7+\nJhWPOS1Lztz+t2fzLN9P/FqtFrGxsQAg1Utd7umLM2+//TbatWuHVatWQavVwsHBAbm5uQgICEBa\nWlrtnfNDRyJqRi36Q8dLly6hqKgIAHDz5k3s3LkTXl5eCA4ORlxcHAAgLi4OISEhjRaoqan1V5sa\njLkzHHNHutTbEsnNzUV4eDgqKytRWVmJsLAwBAYGwsvLC6GhoVi9erU0rI+IiJoWf0uEiCxGi26J\nEBGR6WDB1oO9RMMxd4Zj7kgXFmwiIjPBHjYRWQz2sImIyCSwYOvBXqLhmDvDMXekCws2EZGZYA+b\niCwGe9hERGQSWLD1YC/RcMyd4Zg70oUFm4jITLCHTUQWgz1sIiIyCSzYerCXaDjmznDMHenCgk1E\nZCbYwyYii9Hie9jnzp2TZkt/6KGHEBMTAwAoKCiARqOBq6srgoKCpKnEiIioaegt2NbW1vjwww9x\n7NgxJCcn49NPP8WJEycQHR0NjUaD9PR0BAYGIjo6ujnibXbsJRqOuTMcc0e66C3YDg4O8PT0BAB0\n7NgR/fr1Q05ODrZu3Yrw8HAAQHh4ODZv3ty0kRIRtXD31MPOzMyEn58fjh49CmdnZxQWFgKo6t3Y\n2dlJy9LO2cMmomZk6T3semdNr+7atWsYN24cPvroI8jl8lo7l8lkOm8XEREBtVoNAFAoFPD09IS/\nvz+A/73t4zKXuczlxlqWnLn9b8/mWb6f+LVaLWJjYwFAqpe6NOgMu6ysDE888QQef/xxzJs3DwDg\n5uYGrVYLBwcH5ObmIiAgAGlpaTV3bgFn2FqtVkow3RvmznDMnWEs/Qxbbw9bCIFnnnkG7u7uUrEG\ngODgYMTFxQEA4uLiEBIS0mjBEhFRbXrPsH/66ScMGzYM/fv3l9oeS5cuhY+PD0JDQ3H27Fmo1Wok\nJCRAoVDU3LkFnGETkfmw9DNsfnGGiCyGpRdsfjVdj1ofZFCDMXeGY+5IFxZsIiIzwZYIETUJGxs7\nFBcX6r9iY4tq/kOa3DhsIqJ7UVWsm/uETff3QSwFWyJ6sJdoOObOcMwd6cKCTURkJtjDJqImUfW9\nDSO0RKKa+ZAAh/UREVFNLNh6sJdoOObOcMwd6cKCTURkJtjDJqImwR624djDJiIycyzYerCXaDjm\nznDMHenCgk1EZCbYwyaiJsEetuHYwyYiMnN6C/b06dOhUqng4eEhrSsoKIBGo4GrqyuCgoJQVFTU\npEEaE3uJhmPuDNe+Y3tpcuvmutgobIx9t0kPvb/WN23aNLzwwguYOnWqtC46OhoajQavvvoqli1b\nhujoaERHRzdpoEQtyc3rN5v9rX1xVHHzHpDumd4z7KFDh0KpVNZYt3XrVoSHhwMAwsPDsXnz5qaJ\nzgRw5mrDMXdEjcugHnZ+fj5UKhUAQKVSIT8/v1GDIiKi2u57AoM7/a+6REREQK1WAwAUCgU8PT2l\nM687PU5TXk5NTcW8efNMJh5zWl6+fLnZPd6mtIwzVf+gJ5pn+XYMjRZ/1VoA/tX+j2ZYvq2Z83c/\n+dJqtYiNjQUAqV7q0qBhfZmZmRgzZgz++OMPAICbmxu0Wi0cHByQm5uLgIAApKWl1d65BQzrq/4E\npnvD3BnOKLN/RzX+0DQO6zNMow7rCw4ORlxcHAAgLi4OISEh9xedCWPBMRxzR9S49BbsSZMmYciQ\nIfjzzz/h5OSENWvWIDIyEjt37oSrqyv27NmDyMjI5oiViKhF09vD3rBhg871u3btavRgTBHf1huO\nuSNqXPymIxGRmWDB1oNniIZj7ogaFws2EZGZYMHW485YSbp3zB1R42LBJiIyEyzYerAPazjmjqhx\nsWATEZkJFmw92Ic1HHNH1LhYsImIzAQLth7swxqOuSNqXCzYRERmggVbD/ZhDcfcETUuFmwiIjPB\ngq0H+7CGY+6IGtd9TxFGZMlsbOxQXFxo7DCIANznGfb27dvh5uaGPn36YNmyZY0Vk0lhH9ZwlpC7\nqmItjHAhqs3ggl1RUYE5c+Zg+/btOH78ODZs2IATJ040ZmwmITU11dghmC3mjqhxGVywU1JS4OLi\nArVaDWtra0ycOBFbtmxpzNhMQlFRkbFDMFvMHVHjMrhg5+TkwMnJSVru3r07cnJyGiUoIiKqzeCC\nXTWFveV7d8m7kMlkzX6xUdgY+67fN2PkzhLyRlQXg0eJODo64ty5c9LyuXPn0L179xrXGTBgQIsp\n7I2t+Eoxc2eApsmbkR6HqOY/pEXkLqr5Dwk0bu4GDBig+xhCCIM+ki4vL0ffvn2xe/dudOvWDT4+\nPtiwYQP69et3X4ESEZFuBp9hW1lZ4ZNPPsGIESNQUVGBZ555hsWaiKgJGXyGTUREzYtfTSciMhMs\n2EREZoK/JVJNZWUlUlJSkJOTA5lMBkdHR/j4+HC0RgNs374dmzdvlsbiOzo6IiQkBCNHjjRyZKat\nrKwMq1ev1pm7Z555BtbW1kaO0LTl5+cjOztber2qVCpjh9Sk2MO+LSkpCbNmzYKLi4s0PDE7Oxsn\nT57EZ599hhEjRhg5QtM1d+5cnDx5ElOnToWjoyOAqtytW7cOLi4uiImJMXKEpmvixIlQKpUIDw+v\nkbu4uDgUFhZi48aNRo7QNB0+fBh/+9vfUFRUVOP1qlAo8Nlnn2HgwIFGjrCJCBJCCNG3b19x5syZ\nWutPnz4t+vbt2/wBmREXFxed6ysrK0Xv3r2bORrzUlfu9G1r6fr37y+Sk5Nrrf/ll19E//79jRBR\n82AP+7aKigrpDKc6R0dHlJeXGyEi89G2bVukpKTUWp+SkoJ27doZISLzYWdnh4SEBFRWVkrrKisr\nsXHjRtjZ2RkxMtN248YNPPLII7XWDx48GNevXzdCRM2DPezbpk+fjocffhiTJk2S3mKdO3cO8fHx\nmD59upGjM22xsbH429/+huLi4hpvT21sbBAbG2vc4ExcfHw8FixYgNmzZ0OhUACo+tGsgIAAxMfH\nGzk60/X4449j1KhRCA8Ph5OTE4QQOHfuHNauXWvRn5uwh13N8ePHsWXLFpw/fx5A1dl1cHAw3N3d\njRyZecjNza2ROwcHByNHZD6EECgoKABQddbND7r1++GHH3S+XkeNGmXkyJoOCzY1CiEEDhw4II10\n6N69O0fYNNCVK1eQmJhYY3TSiBEjpDNuojvYw76tqKgIkZGRcHNzg1KphJ2dHdzc3BAZGcnfddYj\nKSkJffr0QVRUFBITE5GYmIjFixfDxcUFO3bsMHZ4Jm3t2rUYOHAgtFotbt68iRs3bmDPnj0YOHAg\n4uLijB2eySorK8OKFSswcuRIeHh4wMPDAyNHjsSKFStQVlZm7PCaDM+wbwsKCkJgYCDCw8OhUqkg\nk8mQm5uLuLg47NmzB0lJScYO0WS5ublh+/btUKvVNdafOXMGjz/+ONLS0owTmBlwdXVFSkpKrbPp\nwsJC+Pj44OTJk0aKzLS11OGQ/NDxtszMTCxYsKDGuq5duyIyMhJffvmlkaIyDxxh0/jYSqrfb7/9\nVuuPmZOTE3x9fdGnTx8jRdX0WLBv69GjB/75z39KZ9gAkJeXh7i4ODg7Oxs5OtPGETaGe+211zBo\n0CAEBQXVyF1SUhIWLVpk5OhM153hkE8//TRatarq7FZWVmLTpk0WPRySLZHbCgoKEB0dja1btyI/\nPx8AoFKpEBwcjMjISIt+EjQGjrAxXEFBAXbs2FEjd0FBQXzO1ePMmTNYsGAB9u7dW2s45LJly9Cz\nZ08jR9g0WLAbYM2aNZg2bZqxwyALd/nyZQCAvb29kSMxHy1tOCQLdgM4OTnVmA6NaioqKkJ0dDQ2\nb96M/Px8yGQydOnSBSEhIYiMjOTwtHpkZWVhwYIF2L17N2xtbQFUDfMLDAxEdHR0rQ9y6X9a4nBI\nDuu77c7QIF2XOy0S0i00NBRKpRJarRYFBQUoKCiQ3qqGhoYaOzyTNmHCBIwdOxa5ubnIyMhARkYG\ncnNzERISgokTJxo7PJPVUodD8gz7NpVKhe3bt0OpVNbaNmTIEKm/SLW5uroiPT39nrcR0KdPnzqH\n7tW3raVrqcMhOUrkttGjR+PatWvw8vKqtc3Pz88IEZkPjrAx3MCBAzFr1izpNzEA4OzZs4iLi9P5\nXKT6sYdNpAdH2Bju1q1bWL16NbZu3VpjAoPg4GA888wzeOCBB4wcoWmKi4vDW2+9VedwSEsdJMCC\nTU2KI2yoqbTE4ZAs2NSkOMJGv7unV+vevTuefPJJi/6Z0MbUkoZDsmDTffPw8Khz259//onS0tJm\njMa8cHo1w7TU4ZAs2HTfOMLGcHWNBBFCoE+fPsjIyDBCVKZv8ODBmD9/PsaNGwcrq6qxE+Xl5fj6\n66+xfPlyJCcnGznCpsFx2HTf7oywUavVtS4cYVM/Tq9mmMuXL2PChAlSsQYAKysrTJw4UWqRWCKe\nYRMZ0W+//Vbn9GqfffYZBg0aZOQITdOECRNgb2+vczjk5cuXkZCQYOQImwYLNpEJ4PRq96alDodk\nwSYyMk6vRg3FbzoSGVFSUhJmzZoFFxeXGi2RkydP4rPPPsOIESOMHKHpaonDIXmGTWREnF7NMC11\nOCQLNpER9enTB8ePH4e1tXWN9aWlpXB3d+ewvjq01OGQbIkQGRGnVzPMneGQPj4+NdZb+nBInmET\nGRmnV7t3LXU4JAs2EZmtljYckt90JDKioqIiREZGws3NDUqlEnZ2dnBzc0NkZCSKioqMHZ5JE0Ig\nKysLmZmZyMzMRFZWFiz9/JMFm8iIOL2aYZKSktCnTx9ERUUhMTERiYmJWLx4MVxcXLBjxw5jh9dk\n2BIhMiJOr2aYljockmfYREZ0Z3q16hM95+XlYdmyZZxerR4VFRXS+OvqHB0dUV5eboSImgeH9REZ\n0caNGxEdHQ0/P79a06tZ6g8YNYaWOhySLREiE8Xp1erXEodDsmATmShOr0Z3Y0uEyIjqm16tel+b\naioqKkJ0dDQ2b96M/Px8yGQydOnSBSEhIYiMjIRCoTB2iE2CBZvIiC5cuFDv9GqkW2hoKAIDA6HV\naqFSqSCTyZCbm4u4uDiEhoYiKSnJ2CE2CbZEiIxo+vTpmDZtGoYOHVpr26RJk7BhwwYjRGX6Wupw\nSBZsIjI7Go0GGo0G4eHhUKlUAKqGQ8bFxWHnzp3YtWuXkSNsGhyHTURmZ+PGjbh06RL8/PygVCqh\nVCrh7+9v0fM5AjzDJiILY8nDIVmwiciiWPJwSI4SISKz01KHQ7JgE5HZaanDIVmwicjsjB49Gteu\nXYOXl1etbX5+fkaIqHmwh01EZCY4rI+IyEywYBMRmQkWbCIiM8GCTVRNbGwsXnjhBWOHQaQTCzZZ\nFCGExc+cTS0XCzaZvczMTPTt2xfh4eHw8PDA22+/DR8fHwwYMABRUVHS9caOHQtvb2889NBDWLly\npbR+zZo16Nu3Lx555BH8/PPP0vpNmzbBw8MDnp6eFj1UjMwHh/WR2cvMzETv3r3xyy+/4MqVK/j6\n66/x73//G5WVlXjyySfx6quvYujQoSgsLIRSqcTNmzfh4+ODH3/8ESUlJRg8eDAOHToEGxsbBAQE\nYODAgYiJiUH//v2xY8cOdO3aFVevXoWNjY2x7yq1cDzDJovQo0cP+Pj4YMeOHUhKSoKXlxcGDRqE\nP//8ExkZGQCAjz76CJ6envD19UV2djbS09Nx4MAB+Pv7w97eHtbW1pgwYYLUUnn00UcRHh6OVatW\nWfRM3GQ++E1HsggdOnSQ/v+Pf/wDM2fOrLFdq9Vi9+7dSE5ORtu2bREQEICSkhLIZLIa16v+hvPz\nzz9HSkoKvv/+ewwaNAi//fYb7OzsmvaOENWDZ9hkUUaMGIEvv/wS169fBwDk5OTg4sWLuHr1KpRK\nJdq2bYu0tDQkJydDJpPhkUcewb59+1BQUICysjJs2rRJKuKnTp2Cj48P3nzzTXTu3BnZ2dnGvGtE\nPMMmy3CnyGo0Gpw4cQK+vr4AALlcjq+++gojR47EihUr4O7ujr59+0rbHRwcEBUVBV9fXygUihq/\nTfHqq6/i5MmTEEJg+PDh6N+/f/PfMaJq+KEjEZGZYEuEiMhMsGATEZkJFmwiIjPBgk1EZCZYsImI\nzAQLNhGRmWDBJiIyE/8Px05JzBWbUkkAAAAASUVORK5CYII=\n"
-      },
-      {
-       "output_type": "display_data",
-       "png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAAFACAYAAACY8Ub0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX+P/DXILglMAPi4AKOCoiYCi64/QwIwS0RUxEt\nBW23xeXeq9yWq1YqVpb6bbHUZLIS9dY1UnF3zBYiy6XcEBUVRFKHAVSU7fP7AzkxMTA4ArPwej4e\n89Bzzsw573nP8Obwns+cj0wIIUBERBbPztwBEBFR7bBgExFZCRZsIiIrwYJNRGQlWLCJiKwECzYR\nkZVoFAVbo9HAw8Oj2u3PPfcc3nzzzQaMiOj+WMp79t///jdWrFgBwPjPmSUJDg7G2rVrjd7vzp07\n6NatG65du9YAURnXKAq2MR999BFeffVVAMC3336Ltm3bIjc3V9r+zTffoEOHDigoKKjy2IyMDNjZ\n2cHR0VG6BQQESNsTEhJgZ2eHTZs2VXlsWloaJkyYADc3N8jlcvTq1QvvvfceysrKAABr165Ft27d\n4OTkBHd3d4waNQo3btyo66evF2uTJk30nstLL71k8v5UKhX27dtXhxE2TgkJCRgyZIjeusrvWXO5\nevUq1q9fj2effdascZhCJpNBJpMZvV+zZs0wffp0xMfHN0BUxrFg/83o0aPx8MMPY/bs2QAAnU6H\nGTNmYNWqVXB0dKz2cXl5eSgoKEBBQQEOHz4srVer1ejRowc+++wzvfufPXsW/fv3R8eOHfHHH39A\np9Nh8+bN+PXXX1FQUIADBw7glVdeQWJiIvLz83Hy5ElER0fXz5OuZPDgwdLzKCgowMqVK03el0wm\ng6V8L6vil2BjO3Z9SkhIwKhRo9CsWTNzh1KvJk2aBLVajeLiYnOHAggb0bFjR7FkyRLh5+cnFAqF\nmDZtmrh9+7YQQoj9+/eLDh06iGXLlok2bdqItm3binXr1kmPjYmJEa+++qq0fO3aNdGmTRuxc+dO\nERsbKyZPnlztcc+fPy9kMpkoLS2tsi0jI0M4ODiIX3/9VTRt2lRcuXJF2vbYY4+JRx55pNr9vv32\n2yIyMrJWzz0xMVH07dtXb927774rIiIihBBCbNu2Tfj5+QlHR0fRvn178c477xjcz7p168T/+3//\nr8r6Tz/9VHTr1k04OjqKzp07i48//ljadvXqVTFq1Cghl8uFi4uLGDJkiCgrKxOPP/64sLOzEy1a\ntBCtWrUSb7/9thBCiM8++0x4enoKV1dXsWjRItGxY0exZ8+eGp/fzz//LPr06SOcnJyEUqkUc+bM\nkbYdPHhQDBw4UMjlcuHh4SHUarUQovw1ffbZZ8WIESPEAw88IPbu3SuysrLEo48+Ktzc3ESnTp3E\nypUrpf2UlZWJJUuWiC5dughXV1cRFRUltFqtEOKv11itVgtPT0/RunVrsWjRomrj/fux9+zZI4KC\ngsSaNWuqzbVMJhOrVq0S3t7eQi6Xi+eff14IIcSJEydE8+bNRZMmTUSrVq2EQqGQjlHxnt2/f79o\n3769eOutt4Sbm5to27at+N///ie2bdsmvL29hYuLi1iyZEmtnmthYaF47LHHhKurq5DL5aJfv34i\nJyfH4PN8+OGHxRdffCEtV/ycVThx4oQICgoScrlcdO/eXSQlJUnbrl27Jh555BHh5OQk+vXrJ155\n5RWD7z1jMV2/fl3ExsaKdu3aCYVCIf3MaLVaMWrUKOHm5iYUCoV45JFHRGZmprTP4OBgsXbtWml5\n7dq1olu3bkKhUIhhw4aJCxcu6MXg7e0tDhw4YDC+hmRTBbtHjx4iMzNTaLVaMXjwYL03tL29vZg/\nf74oKSkR27dvFy1bthQ6nU4IIURsbKx47bXX9Pa3YcMG4erqKtq0aSOuXbtW7XErfphLSkqqbHv9\n9dfF0KFDhRBCDBo0SCxbtkza5u7uLhISEqrd78GDB0WLFi3E/Pnzxffffy/98jHk1q1bwtHRUZw5\nc0Za17dvX7Fx40bpWN9//70QQgidTid+++03g/uprmBv27ZNnDt3TgghxIEDB0TLli3F4cOHhRBC\nxMXFiWeffVaUlJSIkpIS6ThCCKFSqcTevXul5ePHj4tWrVqJgwcPijt37og5c+YIe3t7vfsYMmDA\nAPH5558LIYS4efOmSElJEUKU/0J0dHQUiYmJoqSkRFy/fl0cOXJECFFe0JydncWPP/4o5ah3797i\njTfeEMXFxeLcuXOic+fOYufOnUIIIZYvXy4GDhwosrKyRFFRkXjmmWfEpEmThBB/vcZPP/20uH37\ntjh69Kho1qyZOHnypMF4/37s27dvVykQhgr26NGjRV5enrh48aJwc3MTO3bsEEIIkZCQUOV1qfye\nrXh/v/HGG6KkpESsXr1auLq6ismTJ4sbN26I48ePixYtWoiMjAyjz3XVqlVi9OjRorCwUJSVlYnf\nfvtN5OfnG3yebm5u4tChQ9Jy5YJdVFQkunTpIpYsWSKKi4vFvn37hKOjozh9+rQQQoiJEyeKSZMm\nicLCQnHixAnh4eEhhgwZYvA4NcU0cuRIER0dLXQ6nSguLhbfffedEKK8kH/99deisLBQFBQUiAkT\nJuidAFV+PbZs2SK8vLzEqVOnRGlpqXjzzTfFoEGD9GKIiIjQ+wVvLjZTsFUqld6Z3/bt20WXLl2E\nEOVvpBYtWuidBbdp00b8/PPPQojyN3/lM2whhDh37pxwcHAQjz/+eI3Hrfhhlsvl0q2iMHt5eUkx\nvffee6JXr17S4xwcHKRiUZ3k5GQxevRoIZfLRatWrcScOXMMnskLIcTjjz8uXn/9dSGEEGlpacLR\n0VEUFhYKIYTw9PQUH3/8scjLy6vxeOvWrRP29vZ6z6UiR5VFRkaKFStWCCGE+M9//iPGjBkj0tPT\nq9zv7wV74cKFUmEQorz4Nm3a1GjBfuihh8T8+fPF1atX9dYvXrxYPProowYfExsbK2JiYqTllJQU\n4enpWeXx06ZNE0II4evrqxfH5cuXhYODgygtLZVe46ysLGl7YGCgSExMrNWxhah6RmeoYP/www/S\nclRUlIiPjzd434pjVD4hadGihSgrKxNCCJGfny9kMplITU2V7t+nTx/xzTff1PhcS0pKxKeffioG\nDRokjh07ZvC5Vebg4CAV4Io4Kgr2d999J9zd3fXuP2nSJLFgwQJRUlIiHBwcRFpamrTt1VdfrfYM\nu7qYLl++LOzs7KQTr5ocPnxY+utECP3XY/jw4XqvTWlpqWjZsqW4ePGitO6xxx6Tfr7MyaZ62JU/\nofb09MTly5elZVdXV9jZ/fV0W7ZsWeMHeE8//TSmTp2Kbdu2ISUlxeixr1+/jtzcXOTm5mLOnDn4\n4YcfkJGRgUcffRQAMH78ePz+++84duyYFE/l+AwZPnw4kpKSkJubi2+++QYJCQlYs2aNwftOnjwZ\nGzZsAAB8+eWXGDt2LJo3bw4A+Oqrr7B9+3aoVCoEBwfX+HwGDBggPY/c3FwEBgYiOTkZAwYMgKur\nKxQKBbZv347r168DAP71r3/By8sL4eHh6NKlC5YuXVrtvrOzs9GhQwdpuWXLlnB1da0xB0D5h69p\naWno1q0bAgMDsW3bNgBAZmYmOnfuXO3jKh/rwoULuHz5MhQKhXRbsmQJ/vzzT2n72LFjpW1+fn6w\nt7dHTk6OtA93d3e92G/evFntsU0ZLXEv+/87V1dX6UO0Fi1aAACUSqW0vUWLFtL7vbrn+ueff2LK\nlCkYNmwYoqOj0b59e8ybNw8lJSUGj6lQKAx+EA8Aly9frpKDjh074vLly7h27RpKSkr0tld+rf6u\nupguXboEFxcXODs7V3nMrVu38Mwzz0ClUsHZ2RlBQUHIy8sz+JnKhQsXMHPmTCkfFe/JrKws6T4F\nBQVQKBTVxthQbKpgX7x4Ue//7dq1M2k/a9euRVZWFj766CMsXrwYTz755D1/4KBWqyGEQI8ePdC2\nbVv069cPQPkHNQAwdOhQfPXVV7Xe38MPP4yHH34Yx48fN7h96NChuHr1Ko4ePYrExERMnjxZ2ta3\nb19s2bIFV69eRWRkJKKiomp93Dt37mDcuHGYO3cu/vzzT+Tm5mLkyJHSG79Vq1Z45513cPbsWSQl\nJeHdd9/F/v37AaDKp/Bt27bFpUuXpOVbt25Jhb8mXl5e+PLLL3H16lXMmzcP48ePx61bt+Dh4YGz\nZ89W+7jKx/f09ESnTp30fhnl5+dj69at0vYdO3bobb916xbatm1b61zV5IEHHtArwFeuXKn1Y6sb\nzVCbUQ6G1PRc7e3t8Z///AfHjx/Hjz/+iK1bt1b5wLxCz549cfr0aYPb2rVrh0uXLukVyAsXLqB9\n+/Zwc3ODvb293nuh8v//rrqYPD09odVqkZeXV+Uxy5YtQ1paGlJTU5GXl4cDBw5AlHcUDObjk08+\n0cvHzZs3MWDAAOk+J0+eRK9evaqNsaHYTMEWQuDDDz9EVlYWtFotFi1aVOtRFZVfxMuXL2Pu3LlY\nvXo1HBwc8Oyzz8LV1RWLFi2qdSy3b9/Gpk2bsHr1ahw9elS6/d///R++/PJLlJaWYuHChfjxxx8x\nd+5c6SwuPT0dU6ZMQV5eHpKSkrBx40bk5uZCCIHU1FQcOHBA701UmYODAyZMmIB//vOfyM3NRVhY\nGACguLgYX3zxBfLy8qQhe02aNKn1cykqKkJRURFat24NOzs7JCcnY9euXdL2rVu3Ij09HUIIODk5\noUmTJtJfMkqlUq+gjh8/Hlu3bsUPP/yAoqIi/Oc//6nVCIrPP/8cV69eBQA4OztDJpOhSZMmmDx5\nMvbs2YPNmzejpKQE169fx9GjRwGgyg9mYGAgHB0d8dZbb6GwsBClpaX4448/cOjQIQDAs88+i5df\nfln6pX/16lUkJSXVGJehH/7q1vv7++Prr79GYWEh0tPTjY4BrlxclEolMjMz9U4aqis+tVHTc9Vo\nNPj9999RWloKR0dHODg4VPt+GTlyJA4cOGBwW//+/dGyZUu89dZbKC4uhkajwdatWxEdHQ07Ozs8\n+uijWLBgAQoLC3Hq1CmsX7++2l9A1cXk7u6OESNGYMaMGdDpdCguLsbBgwcBADdu3ECLFi3g7OwM\nrVaLhQsX1piPxYsX48SJEwDKR3xt3rxZ2l5RU6r72WtINlOwZTIZJk+eLP1p7u3trTdOtaazkcpj\nMp9//nlMmjQJgwcPlravXr0ay5cvx8mTJ6t9fGVbtmzBAw88gKlTp6JNmzbSbdq0aSgpKcHOnTvR\nuXNn/PTTT8jIyED37t0hl8sxfvx49OvXD46OjlAoFFi9ejV8fHzg7OyMKVOmYO7cuZg0aVK1z2Py\n5MnYu3cvJkyYoNf++fzzz9GpUyc4Ozvjk08+wRdffGE0DxUcHR2xcuVKREVFwcXFBRs2bMCYMWOk\n7enp6QgLC4OjoyMGDRqE559/HkFBQQDKv1Tx5ptvQqFQ4N1334Wfnx8++OADTJ48Ge3atYOLi0uN\nfwpX2LlzJx588EE4Ojpi9uzZSExMRLNmzeDp6Ynt27dj2bJlcHV1RUBAgNRy+vtzsbOzw9atW3Hk\nyBF07twZbm5uePrpp5Gfnw8AmDlzJiIiIhAeHg4nJycMHDgQqamperkxlK/a5nH27Nlo2rQplEol\npk2bhscff1zvPn+/f+V9hIaGonv37nB3d0ebNm0MHsPQ46tT03O9cuUKJkyYAGdnZ/j5+SE4OBhT\npkwxuJ+pU6di+/btuH37dpXjNm3aFN9++y2Sk5Ph5uaGF154AevXr4ePjw8A4P3330deXh7c3d0R\nExODSZMmoWnTpgaPU1NM69evh4ODA3x9faFUKqUv8cyaNQuFhYVo3bo1Bg0ahBEjRlSbk8jISMyb\nNw/R0dFwdnZGjx49sHPnTmn7l19+idjYWDg4OFSb0wZjrMm9fPly8eCDD4ru3buL5cuXCyHKP4Ed\nOnSo8Pb2FmFhYSI3N7eue+v37O8fcJF14Otm3V5++WWpLtyPuXPnitjY2DqIqG7dvn1b+Pr6VvnA\n21xqPMP+448/sGbNGvzyyy84evQotm7dirNnzyI+Ph5hYWFIS0tDaGioxXwLiIga1qJFizBz5sx7\nftzp06dx7Ngxqd336aefYuzYsfUQ4f1p1qwZTp48idatW5s7FABGWiKnTp1C//790bx5czRp0gRB\nQUH46quvkJSUhJiYGABATEwMtmzZ0iDBkm0SQmDkyJF6X4mvuPFkwDYVFBRg3LhxaNWqFaKjo/HP\nf/4TERER5g7L4smEqP6Ti1OnTmHMmDH46aef0Lx5cwwdOhR9+/bF+vXrpWttCCHg4uKid+0NIiKq\ne/Y1bfT19cW8efMQHh6OBx54AP7+/lU+Ma7pIipeXl41DrsiIqKqevXqhSNHjlRZb3SUyPTp03Ho\n0CEcOHAACoUCPj4+UCqV0jjS7Oxs6ZPrvzt79qw0/Mhab/Pnzzd7DNZ6Y+6YO+bNtFvF8NR7LtgV\n3wS7ePEivv76a0yePBkRERFQq9UAyr8gEhkZaWw3RER0n2psiQDlX3a4fv06HBwc8OGHH8LZ2Rlx\ncXGIiorC2rVroVKpDF7r2VZkZGSYOwSrxdyZjrkzja3nzWjB/u6776qsc3FxwZ49e+olIEvj7+9v\n7hCsFnNnOubONLaetxpHidz3zi3oAvZERNaiutpp9Ay7PnAYoPVRKBTQarXmDoOoUTPLtUQqLmjE\nm/XcTPkFq9Fo6v7N00gwd6ax9bzZzMWfiIhsnVl62OxtWx++ZmQNnOROKMgzPKlCfXJ0dkS+Lr/O\n9ldt7WTBptrga0bWQCaTAQvMcOAF1V8f3RTV/byxJUL1xtb7ifWJuSNDWLCJiKyExRRsJycX6UJS\n9XFzcnIxKa7Y2Fi89tprRu+nUqmwd+9ek45Rk48++ghKpRJOTk5WNxQyODjY3CFYLeaODLGYgl1Q\nkAtA1NutfP/3rqarEVZ3vwULFlQ7rdK9KC4uxj/+8Q/s3bsX+fn5FjFrMxGZj8UUbEtmrg/brly5\ngtu3b6Nbt25mOf79Yh/WdMwdGcKC/TeHDx9G79694eTkhOjoaL0JRrdu3Qp/f38oFAoMHjwYv//+\ne5XH79ixA0uWLMHGjRvh6OiIgIAAAMC6devg5+cHJycndOnSBZ988kmNcaSlpUmFWi6XY+jQoQDK\nJ1D19PSEs7Mz+vbti++//156TFlZGRYvXgwvLy84OTmhb9++yMzMBFA+CaxSqYSzszN69uyJ48eP\n31+iiKjBsWBXUlRUhMjISMTExCA3NxcTJkzAV199BZlMhsOHD+OJJ57A6tWrodVq8cwzzyAiIgLF\nxcV6+xg+fDhefvllREdHo6CgAIcPHwYAKJVKbNu2Dfn5+Vi3bh1mz54tbTPEx8dHKqp5eXnSxbYC\nAwNx9OhR5ObmYvLkyZgwYQKKiooAAMuWLUNiYiKSk5Ol47Rs2RI7d+7EwYMHcebMGeTl5WHz5s1w\ndXWtjxTqYR/WdMwdGcKCXUlKSgpKSkowc+ZMNGnSBOPGjUO/fv0ghMDq1avxzDPPoF+/fpDJZJg6\ndSqaNWuGlJSUKvup+Dp3ZSNHjkSnTp0AAA899BDCw8Nx8ODBGuMx1Ip57LHHoFAoYGdnhzlz5uDO\nnTs4ffo0AGDNmjVYtGgRvL29AQA9evSAi4sLmjZtioKCApw8eRJlZWXo2rUr3N3dTcoREZkPC3Yl\nly9fRvv27fXWdezYEQBw4cIFLFu2DAqFQrplZmbi8uXLtdp3cnIyBgwYAFdXVygUCmzfvh3Xr1+/\n5xjfeecd+Pn5QS6XQ6FQIC8vD9euXQMAZGZmokuXLlUeExISghdeeAHPP/88lEolnnnmGRQU1P+3\nwdiHNR1zR4awYFfStm1bZGVl6a27cOECAMDDwwOvvPIKcnNzpduNGzcwceLEKvv5+6iSO3fuYNy4\ncZg7dy7+/PNP5ObmYuTIkff8YebBgwfx9ttvY/PmzdDpdMjNzYWzs7O0Hw8PD6Snpxt87IsvvohD\nhw7hxIkTSEtLw9tvv31PxyYi8zNasJcsWYLu3bujR48emDx5Mu7cuQOtVouwsDD4+PggPDwcOp3u\nvgNxdFQAkNXbrXz/NRs0aBDs7e2xcuVKFBcX4+uvv8Yvv/wCmUyGp556CqtWrUJqaiqEELh58ya2\nbduGGzduVNmPu7s7MjIypEJaVFSEoqIitG7dGnZ2dkhOTsauXbvuOUcFBQWwt7dH69atUVRUhNdf\nfx35+X9dv+DJJ5/Ea6+9hvT0dAghcOzYMWi1Whw6dAg///wziouL0bJlSzRv3rzKZMr1gX1Y0zF3\nZEiNBTsjIwOrV6/Gb7/9ht9//x2lpaVITExEfHw8wsLCkJaWhtDQUMTHx993IPn52nq9PGh+vvFr\nOTs4OODrr79GQkICXF1dsWnTJowbNw4A0KdPH6xevRovvPACXFxc4O3tjc8++8zgGO0JEyYAAFxd\nXdG3b184Ojpi5cqViIqKgouLCzZs2IAxY8bUKi+V9z98+HAMHz4cPj4+UKlUaNGiBTw9PaXtc+bM\nQVRUFMLDw+Hs7IynnnoKhYWFyM/Px9NPPw0XFxeoVCq0bt0a//rXv2p1fCKyHDVe/Emr1WLgwIFI\nSUmBo6Mjxo4di5deegkvvvgiDhw4IM2eHhwcjFOnTlXdOS/+ZDNMec00Gg3PFE3E3JmmUV/8ycXF\nBf/4xz/g6emJdu3aQS6XIywsDDk5OVAqlQDKh6vl5OTUWaBERGRYjVOEnT17FsuXL0dGRgacnZ0x\nYcIEfP7553r3MfbV7djYWKhUKgDlXwCx9Uky79XixYuxZMmSKusfeughbNu2zQwRVa9i5ELFmZ+x\n5Yp1tb0/l/9aDg4Otqh4rGlZcv7uv50aZvl+4tdoNEhISAAAqV4aUmNLZOPGjdi9ezfWrFkDAFi/\nfj1SUlKwb98+7N+/H+7u7sjOzkZISAhbIjaOrxlZg0bdEvH19UVKSgoKCwshhMCePXvg5+eH0aNH\nQ61WAwDUajUiIyPrLFCyHRxLbDrmjgypsSXSq1cvTJ06FX379oWdnR169+6Np59+GgUFBYiKisLa\ntWuhUqmwadOmhoqXiKjR4hRhVCt8zcgaNOqWCBERWQ4WbCM444zp2Ic1HXNHhlhMwXaSO9XvFGFy\nJ5Pi4owzRGQpavzQsSEV5BXUa++pYIHpV6drTDPOlJaW1tl1RvhNPdMxd2SIxZxhWwpLn3Fm9+7d\n8PX1hVwux4svvoigoCCsXbsWAJCeno6goCDI5XK4ubkhOjpa2t/x48cRFhYGV1dXuLu7S1/WWbBg\nAcaPH48pU6bA2dlZGq5JRJaHBbsSS59x5tq1axg3bhwWL16M69evo0uXLvjxxx+lVsxrr72G4cOH\nQ6fTISsrCy+99BKA8qv8DR06FCNHjkR2djbS09MRGhoqHSspKQkTJkxAXl4eJk+eXGf5ZB/WdMwd\nGcKCXYmlzzizfft2PPjgg3j00UfRpEkTzJo1S2/mmKZNmyIjIwNZWVlo2rQpBg0aBKD8L4N27dph\n9uzZaNq0KVq1aoXAwEDpcYMGDUJERAQAoHnz5veQMSJqSCzYlVj6jDOXL19Ghw4d9NZ5eHhI/3/r\nrbcghEBgYCAefPBBrFu3DgBw6dIldO7cudr9/n2fdYV9WNMxd2QIC3Yllj7jTLt27XDp0iVpWQih\nt6xUKvHJJ58gKysLH3/8MWbMmIGzZ8/C09MT586dM7jP2o6CISLzY8GuxNJnnBk1ahSOHz+O//3v\nfygpKcHKlStx5coVafvmzZuRmZkJoPyDSplMhiZNmuCRRx5BdnY2VqxYgTt37qCgoACpqakA6ncE\nDPuwpmPuyBCLGdbn6Ox4X0PvarN/YypmnHnqqafw6quvYuTIkQZnnDlz5gxatGiBIUOGGPzTteIy\ntK6urujcuTMOHTokzThz584djB492qQZZ1xdXbF582a89NJLmDZtGqZMmYLBgwdL2w8dOoTZs2cj\nLy8PSqUSK1eulC7VuHv3bsycORMLFy5Es2bNMHv2bAQGBvIMm8iK8FoiVi4kJARTpkzB9OnT6/U4\nfM3IGvBaImTxWEiJGgcWbDNbvHgxHB0dq9xGjRpV631YakuDfVjTMXdkiMX0sBurl19+GS+//LLJ\nj9+/f38dRkNElow9bKoVvmZkDRp9D/v06dMICAiQbs7Ozli5ciW0Wi3CwsLg4+OD8PBw6HS6OguW\niIiqMlqwu3btisOHD+Pw4cP49ddf0bJlS4wdOxbx8fEICwtDWloaQkNDER8f3xDxkhVhH9Z0zB0Z\nck897D179sDLywseHh5ISkrCgQMHAAAxMTEIDg6uddFWKBQW+0EZGcZrcROZ3z0V7MTEREyaNAkA\nkJOTA6VSCaD8K9E5OTm13o9Wq72Xw5KV4vUwTMfckSG1LthFRUX49ttvsXTp0irbavq2XGxsrPRt\nO7lcDn9/f+nNWPFnH5e5zGUu19Wy5Pzdfzs1zPL9xK/RaJCQkAAAUr00pNajRL755ht89NFH2LFj\nBwDA19cXGo0G7u7uyM7ORkhICE6dOqW/cxsYWaDRaKQE071h7kzH3Jmm0Y8SqbBhwwapHQIAERER\n0uwkarUakZGRdRAmERFVp1Zn2Ddv3kTHjh1x/vx5ODqWX0RJq9UiKioKFy9ehEqlwqZNmyCXy/V3\nbgNn2ERkPWz9DNssX5whIqoPtl6weS0RI6p8kEG1xtyZjrkjQ1iwiYisBFsiRGQz2BIhIiKLwIJt\nBHuJpmPuTMfckSEs2EREVoI9bCKyGexhExGRRWDBNoK9RNMxd6Zj7sgQFmwiIivBHjYR2Qz2sImI\nyCKwYBvBXqLpmDvTMXdkCAs2EZGVYA+biGwGe9hERGQRalWwdTodxo8fj27dusHPzw8///wztFot\nwsLC4OPjg/DwcOh0uvqO1SzYSzQdc2c65o4MqVXBnjlzJkaOHImTJ0/i2LFj8PX1RXx8PMLCwpCW\nlobQ0FDEx8fXd6xERI2a0R52Xl4eAgICcO7cOb31vr6+OHDgAJRKJa5cuYLg4GCbnDWdiKxHo+9h\nnz9/Hm7aXKkYAAAYx0lEQVRubpg2bRp69+6Np556Cjdv3kROTg6USiUAQKlUIicnp86CJSKiquyN\n3aGkpAS//fYb3n//ffTr1w+zZs2q0v6QyWTlv9kMiI2NhUqlAgDI5XL4+/sjODgYwF99OktePnLk\nCGbNmmUx8VjT8vLly63u9baU5co9bEuIx5qWJefv/tupYZbv9/VOSEgAAKleGmK0JXLlyhUMHDgQ\n58+XR/f9999jyZIlOHfuHPbv3w93d3dkZ2cjJCTEJlsiGo1GSjDdG+bOdMydaRp9S8Td3R0eHh5I\nS0sDAOzZswfdu3fH6NGjoVarAQBqtRqRkZF1Fqwl4Q+N6Zg70zF3ZEitvjhz9OhRPPnkkygqKkKX\nLl2wbt06lJaWIioqChcvXoRKpcKmTZsgl8v1d24DZ9hEZD1s/Qyb33Q0gn+amo65Mx1zZxpbL9j8\npiMRkZXgGTYR2QyeYRMRkUVgwTaiythOqjXmznTMHRnCgk1EZCXYwyYim8EeNhERWQQWbCPYSzQd\nc2c65o4MYcEmIrIS7GETkc1gD5uIiCwCC7YR7CWajrkzHXNHhrBgExFZCfawichmsIdNREQWoVYF\nW6VSoWfPnggICEBgYCAAQKvVIiwsDD4+PggPD4dOp6vXQM2FvUTTMXemY+7IkFoVbJlMBo1Gg8OH\nDyM1NRUAEB8fj7CwMKSlpSE0NLTKxLxERFS3atXD7tSpEw4dOgRXV1dpna+vLw4cOAClUokrV64g\nODjYJifhJSLrwR723QcPHToUffv2xerVqwEAOTk5UCqVAAClUomcnJw6C5aIiKqqVcH+4YcfcPjw\nYSQnJ+ODDz7AwYMH9bbLZLLy32w2iL1E0zF3pmPuyBD72typbdu2AAA3NzeMHTsWqampUivE3d0d\n2dnZaNOmjcHHxsbGQqVSAQDkcjn8/f2lyUUr3pSWvHzkyBGLisealo8cOWJR8XC5cSxLzt/9t1PD\nLN9P/BqNBgkJCQAg1UtDjPawb926hdLSUjg6OuLmzZsIDw/H/PnzsWfPHri6umLevHmIj4+HTqer\n8sEje9hE1JBsvYdt9Aw7JycHY8eOBQCUlJTgscceQ3h4OPr27YuoqCisXbsWKpUKmzZtqrNgiYio\nKn7T0QiNRiP9CUP3hrkzHXNnGls/w+Y3HYmIrATPsInIZvAMm4iILAILthFVhgpRrTF3pmPuyBAW\nbCIiK8EeNhHZDPawiYjIIrBgG8FeoumYO9Mxd2QICzYRkZVgD5uIbAZ72EREZBFYsI1gL9F0zJ3p\nmDsyhAWbiMhKsIdNRDaDPWwiIrIILNhGsJdoOubOdMwdGVKrgl1aWoqAgACMHj0aAKDVahEWFgYf\nHx+Eh4dDp9PVa5BERFTLgr1ixQr4+flJM6PHx8cjLCwMaWlpCA0NrTKXoy3hrB+mY+5Mx9yRIUYL\ndmZmJrZv344nn3xSaoInJSUhJiYGABATE4MtW7bUb5RERGS8YM+ePRtvv/027Oz+umtOTg6USiUA\nQKlUIicnp/4iNDP2Ek3H3JmOuSNDapw1fevWrWjTpg0CAgKqfQPJZDKpVWJIbGwsVCoVAEAul8Pf\n31/6c69in5a8fOTIEYuKx5qWjxw5YlHxcLlxLEvO3/23U8Ms30/8Go0GCQkJACDVS0NqHIf98ssv\nY/369bC3t8ft27eRn5+PRx99FL/88gs0Gg3c3d2RnZ2NkJAQnDp1qurOOQ6biBpQox6HvXjxYly6\ndAnnz59HYmIiHn74Yaxfvx4RERFQq9UAALVajcjIyDoLlIiIDLuncdgVrY+4uDjs3r0bPj4+2Ldv\nH+Li4uolOEtQ5c8sqjXmznTMHRlSYw+7sqCgIAQFBQEAXFxcsGfPnnoLioiIquK1RIjIZjTqHjYR\nEVkOFmwj2Es0HXNnOuaODGHBJiKyEuxhE5HNYA+biIgsAgu2Eewlmo65Mx1zR4awYBMRWQn2sInI\nZrCHTUREFoEF2wj2Ek3H3JmOuSNDWLCJiKwEe9hEZDPYwyYiIovAgm0Ee4mmY+5Mx9yRISzYRERW\nosYe9u3btxEUFIQ7d+6gqKgIY8aMwZIlS6DVajFx4kRcuHABKpUKmzZtglwur7pz9rCJqAE16h52\n8+bNsX//fhw5cgTHjh3D/v378f333yM+Ph5hYWFIS0tDaGgo4uPj6yxQIiIyzGhLpGXLlgCAoqIi\nlJaWQqFQICkpCTExMQCAmJgYbNmypX6jNCP2Ek3H3JmOuSNDjBbssrIy+Pv7Q6lUIiQkBN27d0dO\nTg6USiUAQKlUIicnp94DJSJq7IxOwmtnZ4cjR44gLy8Pw4YNw/79+/W2y2QyaTZ1Q2JjY6FSqQAA\ncrkc/v7+CA4OBvDXWYSlL1ewlHisZblinaXEY03LwcHBFhWPNS1Lzt/9t1PDLN9P/BqNBgkJCQAg\n1UtD7umLM2+88QZatGiBNWvWQKPRwN3dHdnZ2QgJCcGpU6eq7pwfOhJRA2rUHzpeu3YNOp0OAFBY\nWIjdu3cjICAAERERUKvVAAC1Wo3IyMg6C9TSVPmtTbXG3JmOuSNDamyJZGdnIyYmBmVlZSgrK8OU\nKVMQGhqKgIAAREVFYe3atdKwPiIiql+8lggR2YxG3RIhIiLLwYJtBHuJpmPuTMfckSEs2EREVoI9\nbCKyGexhExGRRWDBNoK9RNMxd6Zj7sgQFmwiIivBHjYR2Qz2sImIyCKwYBvBXqLpmDvTMXdkCAs2\nEZGVYA+biGwGe9hERGQRWLCNYC/RdMyd6Zg7MoQFm4jISrCHTUQ2o9H3sC9duiTNlv7ggw9i5cqV\nAACtVouwsDD4+PggPDxcmkqMiIjqh9GC7eDggPfeew/Hjx9HSkoKPvjgA5w8eRLx8fEICwtDWloa\nQkNDER8f3xDxNjj2Ek3H3JmOuSNDjBZsd3d3+Pv7AwBatWqFbt26ISsrC0lJSYiJiQEAxMTEYMuW\nLfUbKRFRI3dPPeyMjAwEBQXhjz/+gKenJ3JzcwGU925cXFykZWnn7GETUQOy9R52jbOmV3bjxg2M\nGzcOK1asgKOjY5Wdy2Qyg4+LjY2FSqUCAMjlcvj7+yM4OBjAX3/2cZnLXOZyXS1Lzt/9t1PDLN9P\n/BqNBgkJCQAg1UtDanWGXVxcjEceeQQjRozArFmzAAC+vr7QaDRwd3dHdnY2QkJCcOrUKf2d28AZ\ntkajkRJM94a5Mx1zZxpbP8M22sMWQuCJJ56An5+fVKwBICIiAmq1GgCgVqsRGRlZZ8ESEVFVRs+w\nv//+ezz00EPo2bOn1PZYsmQJAgMDERUVhYsXL0KlUmHTpk2Qy+X6O7eBM2wish62fobNL84Qkc2w\n9YLNr6YbUeWDDKo15s50zB0ZwoJNRGQl2BIhIpvBlggREVkEFmwj2Es0HXNnOuaODGHBJiKyEuxh\nE5HNYA+biIgsAgu2Eewlmo65Mx1zR4awYBMRWQn2sInIZrCHTUREFoEF2wj2Ek3H3JnOFnLn5OQi\nTW7SUDdbV+sZZ4iI7kVBQS6Ahm6J2nbRZg+biOpF+RmvGQr2ggY+JMAeNhER6TNasKdPnw6lUoke\nPXpI67RaLcLCwuDj44Pw8HDodLp6DdKcbKGXaC7MnelatmrZ4P1fJ7mTuZ82GWG0hz1t2jS8+OKL\nmDp1qrQuPj4eYWFhmDt3LpYuXYr4+HjEx8fXa6BEjUnhzcIG/9O+YEFBwx6Q7pnRM+whQ4ZAoVDo\nrUtKSkJMTAwAICYmBlu2bKmf6CwAZ642HXNHVLdM6mHn5ORAqVQCAJRKJXJycuo0KCIiquq+h/UZ\nG/8YGxsLlUoFAJDL5fD395fOvCp6nJa8fOTIEcyaNcti4rGm5eXLl1vd621Jyzhf/g86oWGW78ZQ\nZ/GXrwUQXOn/aIDluxo4f/eTL41Gg4SEBACQ6qUhtRrWl5GRgdGjR+P3338HAPj6+kKj0cDd3R3Z\n2dkICQnBqVOnqu7cBob1VX4D071h7kxnlq9YL6j7oWkc1meaOh3WFxERAbVaDQBQq9WIjIy8v+gs\nGAuO6Zg7orpltGBPmjQJgwYNwunTp+Hh4YF169YhLi4Ou3fvho+PD/bt24e4uLiGiJWIqFEz2sPe\nsGGDwfV79uyp82AsEf+sNx1zR1S3+E1HIiIrwYJtBM8QTcfcEdUtFmwiIivBgm1ExVhJunfMHVHd\nYsEmIrISLNhGsA9rOuaOqG6xYBMRWQkWbCPYhzUdc0dUt1iwiYisBAu2EezDmo65I6pbLNhERFaC\nBdsI9mFNx9wR1S0WbCIiK8GCbQT7sKZj7ojqFgs2EZGVuK+CvWPHDvj6+sLb2xtLly6tq5gsCvuw\nprOF3Dk5uUjzljbkjcgQkwt2aWkpXnjhBezYsQMnTpzAhg0bcPLkybqMzSIcOXLE3CFYLVvIXUFB\nLsrnJWzoG1FVJhfs1NRUeHl5QaVSwcHBAdHR0fjmm2/qMjaLoNPpzB2C1WLuiOqWyQU7KysLHh4e\n0nKHDh2QlZVVJ0EREVFVJhfsxtJnW7R4kVl6mE5ypzp7Dubqwy5cuNCq80ZkaYxOwlud9u3b49Kl\nS9LypUuX0KFDB7379OrVq9EU9rpWkFfA3JmgfvJmptdhQcMf0iZyt6DhDwnUbe569epl+BhCCJM+\n4SgpKUHXrl2xd+9etGvXDoGBgdiwYQO6det2X4ESEZFhJp9h29vb4/3338ewYcNQWlqKJ554gsWa\niKgemXyGTUREDYvfdCQishIs2EREVsLkHrYtKisrQ2pqKrKysiCTydC+fXsEBgZytEYt7NixA1u2\nbJHG4rdv3x6RkZEYPny4mSOzbMXFxVi7dq3B3D3xxBNwcHAwc4SWLScnB5mZmdLPq1KpNHdI9Yo9\n7Lt27dqFGTNmwMvLSxqemJmZiTNnzuDDDz/EsGHDzByh5Zo5cybOnDmDqVOnon379gDKc7d+/Xp4\neXlh5cqVZo7QckVHR0OhUCAmJkYvd2q1Grm5udi4caOZI7RMhw8fxnPPPQedTqf38yqXy/Hhhx+i\nd+/eZo6wnggSQgjRtWtXcf78+Srrz507J7p27drwAVkRLy8vg+vLyspEly5dGjga61Jd7oxta+x6\n9uwpUlJSqqz/6aefRM+ePc0QUcNgD/uu0tJS6Qynsvbt26OkpMQMEVmP5s2bIzU1tcr61NRUtGjR\nwgwRWQ8XFxds2rQJZWVl0rqysjJs3LgRLi4uZozMst26dQv9+/evsn7AgAG4efOmGSJqGOxh3zV9\n+nT069cPkyZNkv7EunTpEhITEzF9+nQzR2fZEhIS8Nxzz6GgoEDvz1MnJyckJCSYNzgLl5iYiHnz\n5uH555+HXC4HUH7RrJCQECQmJpo5Oss1YsQIjBw5EjExMfDw8IAQApcuXcJnn31m05+bsIddyYkT\nJ/DNN9/g8uXLAMrPriMiIuDn52fmyKxDdna2Xu7c3d3NHJH1EEJAq9UCKD/r5gfdxm3fvt3gz+vI\nkSPNHFn9YcGmOiGEwM8//yyNdOjQoQNH2NRSXl4ekpOT9UYnDRs2TDrjJqrAHvZdOp0OcXFx8PX1\nhUKhgIuLC3x9fREXF8frOhuxa9cueHt7Y8GCBUhOTkZycjLmz58PLy8v7Ny509zhWbTPPvsMvXv3\nhkajQWFhIW7duoV9+/ahd+/eUKvV5g7PYhUXF2PVqlUYPnw4evTogR49emD48OFYtWoViouLzR1e\nveEZ9l3h4eEIDQ1FTEwMlEolZDIZsrOzoVarsW/fPuzatcvcIVosX19f7NixAyqVSm/9+fPnMWLE\nCJw6dco8gVkBHx8fpKamVjmbzs3NRWBgIM6cOWOmyCxbYx0OyQ8d78rIyMC8efP01rVt2xZxcXH4\n9NNPzRSVdeAIm7rHVlLNfv311yq/zDw8PDBw4EB4e3ubKar6x4J9V8eOHfHWW29JZ9gAcOXKFajV\nanh6epo5OsvGETame+WVV9CnTx+Eh4fr5W7Xrl147bXXzByd5aoYDjl+/HjY2ZV3dsvKyrB582ab\nHg7JlshdWq0W8fHxSEpKQk5ODgBAqVQiIiICcXFxNv0mqAscYWM6rVaLnTt36uUuPDyc77kanD9/\nHvPmzcP+/furDIdcunQpOnXqZOYI6wcLdi2sW7cO06ZNM3cYZOOuX78OAHB1dTVzJNajsQ2HZMGu\nBQ8PD73p0EifTqdDfHw8tmzZgpycHMhkMrRp0waRkZGIi4vj8LQaXLhwAfPmzcPevXvh7OwMoHyY\nX2hoKOLj46t8kEt/aYzDITms766KoUGGbhUtEjIsKioKCoUCGo0GWq0WWq1W+lM1KirK3OFZtIkT\nJ2Ls2LHIzs5Geno60tPTkZ2djcjISERHR5s7PIvVWIdD8gz7LqVSiR07dkChUFTZNmjQIKm/SFX5\n+PggLS3tnrcR4O3tXe3QvZq2NXaNdTgkR4ncNWrUKNy4cQMBAQFVtgUFBZkhIuvBETam6927N2bM\nmCFdEwMALl68CLVabfC9SDVjD5vICI6wMd2dO3ewdu1aJCUl6U1gEBERgSeeeALNmjUzc4SWSa1W\n4/XXX692OKStDhJgwaZ6xRE2VF8a43BIFmyqVxxhY9zfp1fr0KEDxowZY9OXCa1LjWk4JAs23bce\nPXpUu+306dMoKipqwGisC6dXM01jHQ7Jgk33jSNsTFfdSBAhBLy9vZGenm6GqCzfgAEDMHv2bIwb\nNw729uVjJ0pKSvDf//4Xy5cvR0pKipkjrB8ch033rWKEjUqlqnLjCJuacXo101y/fh0TJ06UijUA\n2NvbIzo6WmqR2CKeYROZ0a+//lrt9Goffvgh+vTpY+YILdPEiRPh6upqcDjk9evXsWnTJjNHWD9Y\nsIksAKdXuzeNdTgkCzaRmXF6NaotftORyIx27dqFGTNmwMvLS68lcubMGXz44YcYNmyYmSO0XI1x\nOCTPsInMiNOrmaaxDodkwSYyI29vb5w4cQIODg5664uKiuDn58dhfdVorMMh2RIhMiNOr2aaiuGQ\ngYGBeuttfTgkz7CJzIzTq927xjockgWbiKxWYxsOyW86EpmRTqdDXFwcfH19oVAo4OLiAl9fX8TF\nxUGn05k7PIsmhMCFCxeQkZGBjIwMXLhwAbZ+/smCTWRGnF7NNLt27YK3tzcWLFiA5ORkJCcnY/78\n+fDy8sLOnTvNHV69YUuEyIw4vZppGutwSJ5hE5lRxfRqlSd6vnLlCpYuXcrp1WpQWloqjb+urH37\n9igpKTFDRA2Dw/qIzGjjxo2Ij49HUFBQlenVbPUCRnWhsQ6HZEuEyEJxerWaNcbhkCzYRBaK06vR\n37ElQmRGNU2vVrmvTfp0Oh3i4+OxZcsW5OTkQCaToU2bNoiMjERcXBzkcrm5Q6wXLNhEZvTnn3/W\nOL0aGRYVFYXQ0FBoNBoolUrIZDJkZ2dDrVYjKioKu3btMneI9YItESIzmj59OqZNm4YhQ4ZU2TZp\n0iRs2LDBDFFZvsY6HJIFm4isTlhYGMLCwhATEwOlUgmgfDikWq3G7t27sWfPHjNHWD84DpuIrM7G\njRtx7do1BAUFQaFQQKFQIDg42KbncwR4hk1ENsaWh0OyYBORTbHl4ZAcJUJEVqexDodkwSYiq9NY\nh0OyYBOR1Rk1ahRu3LiBgICAKtuCgoLMEFHDYA+biMhKcFgfEZGVYMEmIrISLNhERFaCBZuokoSE\nBLz44ovmDoPIIBZssilCCJufOZsaLxZssnoZGRno2rUrYmJi0KNHD7zxxhsIDAxEr169sGDBAul+\nY8eORd++ffHggw9i9erV0vp169aha9eu6N+/P3788Udp/ebNm9GjRw/4+/vb9FAxsh4c1kdWLyMj\nA126dMFPP/2EvLw8/Pe//8XHH3+MsrIyjBkzBnPnzsWQIUOQm5sLhUKBwsJCBAYG4rvvvsPt27cx\nYMAA/Pbbb3ByckJISAh69+6NlStXomfPnti5cyfatm2L/Px8ODk5mfupUiPHM2yyCR07dkRgYCB2\n7tyJXbt2ISAgAH369MHp06eRnp4OAFixYgX8/f0xcOBAZGZmIi0tDT///DOCg4Ph6uoKBwcHTJw4\nUWqpDB48GDExMVizZo1Nz8RN1oPfdCSb8MADD0j///e//42nn35ab7tGo8HevXuRkpKC5s2bIyQk\nBLdv34ZMJtO7X+U/OD/66COkpqZi27Zt6NOnD3799Ve4uLjU7xMhqgHPsMmmDBs2DJ9++ilu3rwJ\nAMjKysLVq1eRn58PhUKB5s2b49SpU0hJSYFMJkP//v1x4MABaLVaFBcXY/PmzVIRP3v2LAIDA7Fw\n4UK4ubkhMzPTnE+NiGfYZBsqimxYWBhOnjyJgQMHAgAcHR3x+eefY/jw4Vi1ahX8/PzQtWtXabu7\nuzsWLFiAgQMHQi6X612bYu7cuThz5gyEEBg6dCh69uzZ8E+MqBJ+6EhEZCXYEiEishIs2EREVoIF\nm4jISrBgExFZCRZsIiIrwYJNRGQlWLCJiKzE/wf1OT0p5kwU2wAAAABJRU5ErkJggg==\n"
-      },
-      {
-       "output_type": "display_data",
-       "png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAFACAYAAAChlvevAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVHXbP/DPsLik7OqgLKKiIre4i2K3CimomERpuIW4\npHWrZbZJlkmbYsudUZmlhqiPa4v6uJILZb9SM0xzC1EhQcAFEHBhvX5/kOcBYQCPwCx+3q/XvPSc\nM3PONdecueZwzffM0YiIgIiIjJaZvgMgIqL7w0JORGTkWMiJiIwcCzkRkZFjISciMnIs5ERERs4k\nCvnEiRMxb968Oln3ypUr0b9/f2XaysoKSUlJdbItImNw4MABeHh46DsMnDp1Cr1791am3dzcsHfv\nXj1GVDN315SqvPzyy1i6dGm19zOJQq7RaKDRaHQuFxFERUXBy8sLTZs2hYuLC0JCQnDixIl73lZu\nbi7c3NyqvM/dHywnT55Ey5Yt8d///hcA8Nlnn6FXr15o1KgRJk2aVO6xBw8ehL+/PxwcHNCiRQuE\nhIQgPT1d57Z8fX3RuHFjWFlZKbdDhw4BAPLy8tC0aVMEBgZWeFxBQQEiIiLQoUMHNG3aFG3atMGU\nKVOQnJysxBwQEAAHBwfY2dmhV69e2LlzZ41ypJaZmRmaNm2qPA97e3vV64qIiEBoaGgtRvfgMjMz\nw/nz55Xp/v3748yZM3qMqNS8efPwyiuvKNPV1QFj9PLLL2PBggUoLCys8n4mUcirM2vWLERFReHT\nTz9FVlYWEhISEBwcjO3bt9fJ9sruUEePHsUjjzyCN998Ey+++CIAwMnJCfPmzcPkyZMrPDY7OxvP\nPvsskpOTkZycDCsrqwrF/u5tff7558jNzVVuffr0AQB8++23cHV1RVxcHDIyMso9btSoUdi2bRvW\nrVuHnJwcHDt2DL169cK+ffsAACNGjMCQIUOQkZGBy5cvIyoqCtbW1rWSn6ocP35ceR6ZmZl1vr36\nUFRUZPTbNrTzBtPS0hAXF4fg4GB9h1KnHB0d4eHhga1bt1Z9R9GD1NRUeeKJJ6R58+bSpk0biYqK\nUpYdOnRIevbsKdbW1qLVauXFF19Ulh04cEB8fHzE1tZWXFxcJCYmRkREJk6cKDNmzJDhw4eLlZWV\n9OnTR86dOyciIgkJCWJubi6//fabzniys7MlNDRUmjdvLq1bt5Z3331XSkpKREQkOjpa/v3vfyv3\n1Wg0yrp1mThxorzxxhty6NAhadasmaxYsaLS+73xxhsyceLEKtf1+++/i5WVlc7lvr6+Otfv5+cn\nH330kQwePFg+/PBDZf4PP/wgjRs3lpSUlEofd+XKFdFoNHL9+vUqYxMRuX37ttjY2MiJEyeUeZcv\nX5bGjRvLlStX5MqVKzJ8+HCxtbUVe3t76d+/v5Lbu1WW28TERPHz8xMHBwdp1qyZjB8/XrKzs5Xl\nkZGR4uTkJFZWVtKxY0fZu3ev7Ny5Uxo0aCCWlpbStGlT6datm4iInD9/XgYMGCBWVlbi7+8vM2bM\nkKeeeqrK53fr1i0ZP368ODg4iK2trfTu3VsyMjJEROTatWsyceJEadWqldjZ2UlwcLCIiOzfv1+c\nnJxk0aJF4ujoKBMmTJCSkhJZuHChtGvXThwcHCQkJEQyMzOV7fz666/Kvt21a1eJi4tTlg0cOFDm\nzZsnDz/8sFhZWUlAQIBcvXq10njv3nZoaKisXLmy3D58d67DwsJk+vTplb5/+vfvLxqNRpo0aSJN\nmzaVjRs3yv79+8XZ2VlZV+vWreWDDz4QLy8vadq0qUyePFnS09Nl6NChYm1tLYMHD5asrKwaPdfo\n6Ghp27atWFlZSZs2beR//ud/Kn2eMTEx4u/vX26em5ub7N27V0RK98tZs2ZJq1atpFWrVvLCCy9I\nfn6+ct9FixZJy5YtxcnJSZYtW1bl+7qqmL766ivp1KmTWFlZiaenp8THx4uIKK/1nfnff/99ufWV\nfT1Onz4tgwcPFnt7e+nYsaNs3Lix3Pbfe+89mTRpUqWx3VHvhby4uFh69Ogh77zzjhQWFsr58+el\nbdu2snv3bhER6du3r6xZs0ZERG7cuCEHDx4UEZGkpCSxsrKS9evXS1FRkVy7dk3++OMPESndER0c\nHOS3336ToqIiGT9+vIwZM0ZERL744gtxc3OrMqbQ0FAJDg6WvLw8SUpKkg4dOijFUW0h9/f3F3t7\ne+W5VOb111+vtpB//PHH4uPjo3O5r6+vLF++vML8pKQkMTc3l4sXL8pXX30lXbp0UZbNmTNHfH19\nda6zpKRE2rdvL48++qhs3rxZ0tPTq4xx8uTJ8vrrryvTn332mQwbNkxERMLDw+XZZ5+VoqIiKSoq\nkp9//lnnejQajSQmJpabl5iYKHv27JGCggK5cuWKDBgwQF544QURETlz5oy4uLhIWlqaiIgkJycr\nr01ERISEhoaWW1ffvn3lpZdekoKCAvnpp5/Eysqqwn3utnTpUhkxYoTcunVLSkpKJD4+XnJyckRE\nJDAwUMaMGSPZ2dlSWFgoP/30k4iUFlMLCwsJDw+XgoICuXXrlixevFh8fHwkNTVVCgoK5JlnnpGx\nY8eKiEhKSoo4ODjIzp07RaT0g9bBwUEp1gMHDhR3d3c5e/as3Lp1S3x9fSU8PLzSeCvb9t378J1c\nly3kut4/d9/3zjbKFnI3Nzfx8fGRy5cvS2pqqrRo0UK6d+8uf/zxh9y+fVseeeQReeutt6p9rnl5\neWJtbS0JCQkiIpKeni4nT56s9Hm+/PLLMnPmzHLzyhbyefPmiY+Pj3Iw0a9fP5k3b56IiOzcuVMc\nHR3l1KlTcvPmTRk/fryYmZlV+r6uKqaNGzeKk5OTHDlyRERK99Xk5GQREdm0aZOyX27YsEGaNGmi\nvI/Kvh55eXni7OwsK1eulOLiYjl69Kg0a9ZMTp06pcTw7bffSo8ePSrNwx31XsgPHjworq6u5eYt\nWLBA+cQZMGCAzJ8/X65cuVLhPk888USl65w4caJMnTpVmd6xY4d4eHiIiMi7774rffv21RlPUVGR\nNGjQQE6fPq3M+/LLL5VCp6aQh4WFibW1tbRt21bnkZNI9Ufkx44dE3t7+yqL38CBA+Whhx4SW1tb\nsbW1lZ49e4qIyDvvvKN8AFy9elUsLCyUD76nn3663Bu1MikpKTJz5kxp166dmJmZyYABA+Ts2bOV\n3nfPnj3Srl07Zbpfv36yevVqERF588035bHHHqtQoCuj0WjE2tpaeS6zZs2qcJ/vv/9eunfvLiIi\nZ8+elRYtWiiFvqz58+eXO9pOTk4WCwsLuXnzpjJv3Lhx1R6Rf/3119KvXz85fvx4ufmXLl0SMzOz\ncn8d3LF//35p0KBBuSPATp06KUXmzuMtLS2lqKhIIiMjK3ygDBkyRPmL09fXV9577z1l2ZIlS2To\n0KGVxlvZtqsr5FW9f+6+751t3F3I165dq0yPHDlSpk+frkx/+umnyl8rVT3XGzduiK2trXz77bfl\nXqfKTJ06tcKHWdlC3q5dO+XDQkRk9+7dygHdpEmTZO7cucqyxMREne/rvLw8nTEFBASU6yZUpVu3\nbrJlyxYRKf96rF+/Xvr371/uvtOmTVM++EREYmNjpW3btlWuv9575MnJybh06RLs7OyU28KFC3H5\n8mUAwIoVK5CQkIBOnTrB29tb6WOnpKSgbdu2Oter1WqV/zdu3Bh5eXkAAAcHB6Slpel83NWrV1FY\nWIjWrVsr81xdXZGamqr6OWo0GsyYMQM9e/aEv78/srOzK72fVNF3TExMRGBgIKKiovDwww9Xua07\nvf+srCwcOXIEALBq1So8+eSTAEpz4Ovri5UrVwIAmjVrVmVOgNI+/qefforExEQkJyejSZMmmDBh\nQqX39fX1xc2bN3H48GEkJSXh2LFjePzxxwEAr7zyCtzd3REQEIB27dph0aJFVW736NGjynNZvHgx\nMjIyMGbMGDg7O8PGxgahoaG4du0aAMDd3R2LFy9GREQEtFotxo4dq/N53dnnGjdurMwr+5rrEhoa\niiFDhmDMmDFwcnLCnDlzUFRUhIsXL8Le3h42NjaVPq558+Zo0KCBMp2UlITHH39c2ec9PT1hYWGB\njIwMJCcnY9OmTeXeE//v//2/cl9yOzo6Kv8vu3/XZNs1oev9o/bxZacbNWqkrK+q5/rQQw9hw4YN\nWLp0KVq1aoVHH30Uf/31V6Xbs7OzQ25urs54Ll26VOE9fenSJQCl/XUXFxdlmbOzs871NGnSRGdM\nKSkpaNeuXaWPW7VqFbp37648xxMnTij7bVnJyck4dOhQuXysXbu23Hdaubm5sLW11RkjoIcvO11d\nXdGmTRvlzZqVlYWcnBxs27YNQOmbc+3atbhy5QrmzJmDUaNG4ebNm3BxccG5c+fueXuDBg1CSkoK\nfv/990qXN2vWDJaWluWGFP79999Vvrg1YWFhgbVr18LV1RVDhgypdKfT9Q17cnIy/P398eabb2L8\n+PH3vO1ffvkFiYmJePfdd9GyZUu0bNkSv/76K9auXYvi4mIMGjQIhw8frvGHlbOzM6ZPn65zlI+5\nuTlCQkKwbt06rFu3DiNGjECTJk0AAE2bNsWHH36Ic+fOYevWrfjvf/+rfKFaE3PnzoW5uTlOnDiB\n69evY/Xq1SgpKVGWjx07FgcOHEBycjI0Gg3mzJkDoGJuW7ZsiaysLNy8eVOZd2eETlUsLCzw5ptv\n4uTJk/jll1+wbds2rFq1Cq6ursjMzMT169crfdzd23d1dcWuXbvK7fc3b95Eq1at4OrqitDQ0HLL\ncnNz8eqrr9Y4T1Vtu0mTJuWed1WjoGqLroOU6p5rQEAAYmNjkZ6eDg8PD0ydOrXS9XTp0gUJCQk6\nt9+qVasK72knJycApfvCxYsXlWVl/18ZXTG5uLggMTGxwv2Tk5Mxbdo0fP7558jMzERWVhY6d+5c\naU5cXV0xcODACvn4/PPPlfucPn0a3bp1qzLGei/k3t7esLKywvvvv49bt26huLgYJ06cUI4k16xZ\ngytXrgAAbGxsoNFoYG5ujnHjxmHPnj3YtGkTioqKcO3aNRw7dgxA1Ue27du3x/Tp0zF27Fj8+OOP\nKCgowO3bt7F+/XosWrRIKUKvv/468vLykJycjI8//hhPPfWU6ucopS0rWFhYYNOmTWjWrBkCAwOV\nN1NxcTFu376NoqIiFBcXIz8/H8XFxQCA1NRUPPLII5g5cyamTZtW4+2VFRMTg4CAAJw+fRrHjh3D\nsWPHcOLECdy6dQs7d+7E4MGD4e/vj8cffxzx8fEoKipCbm4uli5diujoaGRnZ2P+/Pk4d+4cSkpK\ncPXqVXz99dfw8fHRGcO4ceOwfv16rF27FuPGjVPmb9++HYmJiRARWFtbw9zcHObm5jXOZV5eHpo0\naQJra2ukpqbigw8+UJYlJCRg3759yM/PR8OGDdGoUSNl3Y6OjkhKSlJy07p1a/Tq1Qvz589HYWEh\nfv75Z2zbtq3a4WpxcXH4888/UVxcDCsrK1haWsLc3ByOjo4YNmwYpk+fjuzsbBQWFuKnn37SuZ5n\nn30Wc+fOxd9//w0AuHLlijIS4amnnsL//u//IjY2Vtk34uLiyn3QVrWPV6dr1644efIkjh07htu3\nbyMiIqLc8urWrdVqVR1EVaaq53r58mVs2bIFN27cgKWlJZo0aaJzXxk8eDDi4+NRUFBQ6fKxY8fi\n3XffxdWrV3H16lW8/fbbyns6JCQE0dHROHPmDG7evIl33nlHZ7xVxfT000/jww8/RHx8PEQEiYmJ\n+Pvvv3Hjxg1oNBo0a9YMJSUliI6O1nkQNHz4cCQkJGDNmjUoLCxEYWEhfvvtt3LDO3/88UcMGzas\nyrzWeyE3MzPDtm3b8Mcff6Bt27Zo3rw5pk2bhpycHADA7t270blzZ1hZWWH27NlYv349GjZsCFdX\nV+zYsQMfffQRHBwc0L17dxw/fhxA5eNHy05HRUVh5syZmDFjBuzs7ODu7o4tW7YgKCgIAPDpp5+i\nSZMmaNu2Lfr374/x48crQ/7uXndNxqmWfYylpSW+++47NGrUCEFBQbh9+zbeeecdPPTQQ1i0aBHW\nrFmDxo0b47333gMALF++HBcuXEBERIQynrq6YX9lY7p9+zY2bdqE5557Di1atFBubm5uCA0NxapV\nqwAA33zzDQIDAzF69GjY2trCy8sL8fHx8Pf3R4MGDZCcnIzBgwfDxsYGXl5eaNy4sdKaqYy3tzea\nNm2KtLS0cjvd2bNn4e/vDysrK/Tr1w8zZszAwIEDq30ed8yfPx/x8fGwsbHBiBEjMHLkSOV++fn5\neO2119C8eXO0bNkSV69excKFCwGgXFupV69eAIC1a9fi0KFDsLe3x9tvv40JEyZUW8TS09Px5JNP\nwsbGBp6envD19VXGp69evRqWlpbw8PCAVqtFVFSUzucya9YsBAUFISAgANbW1vDx8cHhw4cBlP7F\ns2XLFixYsAAtWrSAq6srPvroo3Kx3b0PVrUf3r2sQ4cOePPNNzF48GB07NgR/fv3r3Z9ZacjIiIQ\nFhYGOzs7fPPNNzUar61r/VU915KSEnz88cdwcnKCg4MDDhw4gC+++KLS9Wu1WjzyyCPYvHlzpcvf\neOMN9OrVC126dEGXLl3Qq1cvvPHGGwCAoUOH4vnnn4efnx86dOigHKA0bNiwwnqqimnUqFF4/fXX\nMW7cOFhbW+OJJ55AVlYWPD098dJLL8HHxweOjo44ceIE/v3vf1eaDysrK8TGxmL9+vVwcnJCy5Yt\n8dprrykfUGlpaTh9+nT1wyyraqBPmjRJWrRoIZ07d1bmXbt2TQYPHizt27cXf3//csOKFixYIO7u\n7tKxY0dlFAqRoYqIiKj2y04yXKdOnZLevXvXynrMzc2luLi4FqKqXS+99JJ88cUX1d6vyiPySZMm\nYdeuXeXmRUZGwt/fHwkJCRg0aBAiIyMBlJ4uu2HDBpw6dQq7du3C9OnTy/UyiQyNGNhJLnRvOnXq\npPxVc6++//575OfnIysrC3PmzEFQUBDMzAzv/MgPP/wQzz77bLX3qzLy/v37w87Orty8rVu3Iiws\nDAAQFham/GmzZcsWjB07FpaWlnBzc4O7u7vqJBuDf/3rX+VOi79zW7dunb5Doxq68yfu2rVrK30t\nvby89B0i1ZGvvvoKWq0W7u7usLS01NnCMRYW9/qAjIwMZWiRVqtVhslcunQJffv2Ve7n7Ox8X0P4\nDN3Jkyf1HQLdp/nz5yv/L/sFLZm+uv7doPp2z4W8rHv90gUoHV5YW9+AExE9KLp27Yo//vij0mX3\n3BTSarXKONS0tDS0aNECQOkJJGXHY6akpCjjNss6d+6cMjzPmG/z58/XewzGeGPemDvmTt3tznDr\nWinkQUFBiImJAVA6XvnOsJigoCCsX78eBQUFuHDhAs6ePQtvb+97XT0REd2jKlsrd06iuXr1Klxc\nXPD2228jPDwcISEhWLFiBdzc3LBx40YAgKenJ0JCQpRTj5csWWJyvw1cFi8uoQ7zph5zp56p567K\nQq5rBMaePXsqnT937lzMnTv3/qMyAtWdMkuVY97UY+7UM/XcaUSkXgfTajQa1PMmiYiMXlW1875G\nrdQme3t7ZGVl6TsMugd2dnYmcxUfImNmMKcyZWVl6f1bYd7u7abmgzcuLq72d54HBHOnnqnnzmAK\nORERqWMwPXL2zo0PXzOi+lPV+41H5ERERo6FnOqVqfcq6xJzp56p546FnIjIyBl0Ibe2tld+mKsu\nbtbW9qpjmzhxIubNm1ft/dzc3LB3717V29Hliy++gFarhbW1tVEN2/T19dV3CEaLuVPP1HNn0IU8\nNzcLgNTZrXT96tTkcld33y8iIkK5TNj9KCwsxEsvvYS9e/ciJyenwm/GE9GDxaALuaHT14iN9PR0\n3L59G506ddLL9u+Hqfcq6xJzp56p546FvIaOHj2KHj16wNraGmPGjMHt27eVZdu2bUO3bt1gZ2eH\nhx9+GH/++WeFx+/atQsLFy7Ehg0bYGVlhe7duwMAoqOj4enpCWtra7Rr1w5fffVVlXEkJCQoBdzW\n1haDBw8GUHpxX1dXV9jY2KBXr174+eeflceUlJRgwYIFcHd3h7W1NXr16oWUlBQAwOzZs6HVamFj\nY4MuXbrwghlExkjqma5NVjYfgABSh7eaPf38/HxxdXWVxYsXS1FRkXzzzTdiaWkp8+bNk/j4eGnR\nooUcPnxYSkpKJCYmRtzc3KSgoEBERNzc3GTv3r0iUnqx39DQ0HLr3r59u5w/f15ERH788Ud56KGH\nJD4+vsp4kpKSRKPRlLtY7Jo1ayQzM1OKi4vlo48+EkdHR8nPzxcRkffff1+8vLwkISFBRESOHz8u\n165dk127dknPnj3l+vXrIiJy5swZSUtLq1FORGqePyK6f1W933hEXgMHDx5EUVERZs2aBXNzc4wc\nORK9e/eGiGDZsmV45pln0Lt3b2g0GkyYMAENGzbEwYMHK6xH/jm1vazAwEC0adMGADBgwAAEBATg\nwIEDVcZz9zoAYPz48bCzs4OZmRlefPFF5Ofn46+//gIALF++HO+99x7at28PAPDy8oK9vT0aNGiA\n3NxcnD59GiUlJejYsSMcHR1V5YiI9IeFvAYuXbpU4WpHrVu3BgAkJyfjo48+gp2dnXJLSUnBpUuX\narTunTt3om/fvnBwcICdnR127NiBa9eu3XOMH374ITw9PWFraws7Oztcv34dV69eBVB6taZ27dpV\neIyfnx9mzpyJGTNmQKvV4plnnkFubu49b/temHqvsi4xd+qZeu5YyGugZcuWFS4knZycDABwcXHB\n66+/jqysLOWWl5eH0aNHV1jP3aNc8vPzMXLkSLz66qu4fPkysrKyEBgYeM9foh44cAAffPABNm3a\nhOzsbGRlZcHGxkZZj4uLCxITEyt97HPPPYcjR47g1KlTSEhIwAcffHBP2yYi/TPoQm5lZQdAU2e3\n0vVXr1+/frCwsEBUVBQKCwvx3Xff4bfffoNGo8HUqVOxdOlSHD58GCKCGzduYPv27cjLy6uwHkdH\nRyQlJSkFtqCgAAUFBWjWrBnMzMywc+dOxMbG3nOecnNzYWFhgWbNmqGgoABvv/02cnJylOVPP/00\n5s2bh8TERIgIjh8/jszMTBw5cgSHDh1CYWEhHnroITRq1Ajm5ub3vP17YerjeesSc6deUHBQnZ6T\novNcFVvrenl+BvN75JXJyTGM37q2tLTEd999h6lTp+KNN95AYGAgRo4cCQDo2bMnli1bhpkzZ+Ls\n2bNo3Lgx+vfvX+mb7sknn8SaNWvg4OCAtm3b4siRI4iKikJISAjy8/MxYsQIPPbYYzWKqezR/dCh\nQzF06FB06NABTZo0wezZs+Hq6qosv9MzDwgIwNWrV9GpUyd89913yMnJwezZs3H+/Hk0atQIQ4cO\nxSuvvHJ/ySIyQLnXc4EIPWw3om5blXfw1w9JNTWvWVxcHI8sVWLu1NNoNHop5IiovfNN+OuHREQm\njIXcQC1YsABWVlYVbsOHD9d3aPeFR5TqMXekC1srpBpfMzIWbK0Q1SJTH89bl5g70oWFnIjIyLG1\nQqrxNSNjwdYKEREZNBZylXiFIHXY51WPuSNdDLqQW9taG+zps7xCEBEZCoM+Rb+uT6u939Nn9dUf\n1scVgoqLi2vld1g4Flo95o50MegjckNi6FcI+uGHH+Dh4QFbW1s899xzGDhwIFasWAEASExMxMCB\nA2Fra4vmzZtjzJgxyvpOnjwJf39/ODg4wNHREQsXLgRQ+tfDqFGjEBoaChsbG8TExNxH9oioLrGQ\n10BBQQGCg4MRFhaGrKwsPPnkk/j222+h0Whw9OhRTJkyBcuWLUNmZiaeeeYZBAUFobCwsNw6hg4d\nirlz52LMmDHIzc3F0aNHAQBarRbbt29HTk4OoqOjMXv2bGVZZTp06KBcju369evYs2cPrl69ipEj\nR2LBggW4du0a2rVrh19++UVp6cybNw9Dhw5FdnY2UlNT8fzzzwMo/dXEwYMHIzAwEGlpaUhMTMSg\nQYOUbW3duhVPPvkkrl+/jnHjxtVKLtnnVY+5I11YyGvA0K8QtGPHDnTu3BlPPPEEzM3N8cILL5S7\n0k+DBg2QlJSE1NRUNGjQAP369QNQ+pdEq1atMHv2bDRo0ABNmzaFt7e38rh+/fohKCgIANCoUaN7\nyBgR1ScW8how9CsEXbp0Cc7OzuXmubi4KP9///33ISLw9vZG586dER0dDQC4ePEi2rZtq3O9d6+z\nNrDPqx5zR7qwkNeAoV8hqFWrVrh48aIyLSLlprVaLb766iukpqbiyy+/xPTp03Hu3Dm4urri/Pnz\nla6zpqNyiEj/WMhrwNCvEDR8+HCcPHkS33//PYqKihAVFYX09HRl+aZNm5CSkgKg9AtSjUYDc3Nz\nPProo0hLS8Mnn3yC/Px85Obm4vDhwwDqbkQO+7zqMXeki0EPP7SysarTK2xY2VjV6H6GfoUgBwcH\nbNq0Cc8//zwmTZqE0NBQPPzww8ryI0eOYPbs2bh+/Tq0Wi2ioqLg5uYGoHS0y6xZs/DWW2+hYcOG\nmD17Nry9vXlETmREVP/WysKFC7FmzRqYmZnBy8sL0dHRuHHjBkaPHo3k5GS4ublh48aNsLW1Lb9B\n/tZKvfDz80NoaCgmT55cZ9vga0bGgr+1UomkpCQsW7YM8fHx+PPPP1FcXIz169cjMjIS/v7+SEhI\nwKBBgxAZGXlfgdP9YZElejCoKuTW1tawtLTEzZs3UVRUhJs3b6JVq1bYunUrwsLCAABhYWHYvHlz\nrQb7IKmNKwQZYmuEfV71mDvSRVWP3N7eHi+99BJcXV3RuHFjDBkyBP7+/sjIyIBWqwVQOlIiIyOj\nVoN9kMydOxdz585V/fj9+/fXYjREZMhUFfJz585h8eLFSEpKgo2NjfIlXllVfVk2ceJE5cs2W1tb\ndOvWTU0YZADuHCXe+XK3uuk782p6f07/37Svr69BxWNM04oL//zbpp6moX5/j4uLw8qVKwFAqZe6\nqPqyc8PgTythAAAWzUlEQVSGDfjhhx+wfPlyAMDq1atx8OBB7Nu3D/v374ejoyPS0tLg5+eHM2fO\nlN8gv+w0GXzNyFjwy85KeHh44ODBg7h16xZEBHv27IGnpydGjBih/LhSTEwMgoOD1UdNJol9XvWY\nO9JFVWula9eumDBhAnr16gUzMzP06NED06ZNQ25uLkJCQrBixQpl+GFN2dnZGeSXc6QbfwedyDAY\nzDU7iYjqClsrRERk0FjIVWK/Uh3mTT3mjnRhISciMnLskRORyWOPnIiIDBoLuUrsV6rDvKnH3JEu\nLOREREaOPXIiMnnskRMRkUFjIVeJ/Up1mDf1mDvShYWciMjIsUdORCaPPXIiIjJoLOQqsV+pDvOm\nHnNHurCQExEZOfbIicjksUdOREQGjYVcJfYr1WHe1GPuSBcWciIiI8ceORGZPPbIiYjIoLGQq8R+\npTrMm3rMHenCQk5EZOTYIycik8ceORERGTQWcpXYr1SHeVOPuSNdWMiJiIwce+REZPLYIyciIoPG\nQq4S+5XqMG/qMXekCws5EZGRY4+ciEwee+RERGTQWMhVYr9SHeZNPeaOdGEhJyIycqp75NnZ2Xj6\n6adx8uRJaDQaREdHo3379hg9ejSSk5Ph5uaGjRs3wtbWtvwG2SMnonrGHrkOs2bNQmBgIE6fPo3j\nx4/Dw8MDkZGR8Pf3R0JCAgYNGoTIyEjVQRMRUc2oKuTXr1/HgQMHMHnyZACAhYUFbGxssHXrVoSF\nhQEAwsLCsHnz5tqL1MCwX6kO86Yec0e6qCrkFy5cQPPmzTFp0iT06NEDU6dOxY0bN5CRkQGtVgsA\n0Gq1yMjIqNVgiYioIlWFvKioCPHx8Zg+fTri4+PRpEmTCm0UjUZT2pcyUb6+vvoOwSgxb+oxd6SL\nhZoHOTs7w9nZGb179wYAjBo1CgsXLoSjoyPS09Ph6OiItLQ0tGjRotLHT5w4EW5ubgAAW1tbdOvW\nTdlJ7/z5yGlOc5rTtTWtuPDPv23qafqfGNTEHxcXh5UrVwKAUi91UT1qZcCAAVi+fDk6dOiAiIgI\n3Lx5EwDg4OCAOXPmIDIyEtnZ2ZUeqZvCqJWyLw7VHPOmHnOnnqmPWlF1RA4An376KcaPH4+CggK0\na9cO0dHRKC4uRkhICFasWKEMPyQiorrF31ohIpNn6kfkPLOTiMjIsZCrVOFLFKoR5k095o50YSEn\nIjJy7JETkcljj5yIiAwaC7lK7Feqw7ypx9yRLizkRERGjj1yIjJ57JETEZFBYyFXif1KdZg39Zg7\n0oWFnIjIyLFHTkQmjz1yIiIyaCzkKrFfqQ7zph5zR7qwkBMRGTn2yInI5LFHTkREBo2FXCX2K9Vh\n3tRj7kgXFnIiIiPHHjkRmTz2yImIyKCxkKvEfqU6zJt6zB3pwkJORGTk2CMnIpPHHjkRERk0FnKV\n2K9Uh3lTj7kjXVjIiYiMHHvkRGTy2CMnIiKDxkKuEvuV6jBv6jF3pAsLORGRkWOPnIhMHnvkRERk\n0FjIVWK/Uh3mTT3mjnRhISciMnLskRORyWOPvArFxcXo3r07RowYAQDIzMyEv78/OnTogICAAGRn\nZ9/P6omIqAbuq5B/8skn8PT0LP20AxAZGQl/f38kJCRg0KBBiIyMrJUgDRH7leowb+oxd6SL6kKe\nkpKCHTt24Omnn1YO97du3YqwsDAAQFhYGDZv3lw7URIRkU6qC/ns2bPxwQcfwMzs/1aRkZEBrVYL\nANBqtcjIyLj/CA2Ur6+vvkMwSsybeswd6WKh5kHbtm1DixYt0L17d51/7mk0GqXlcreJEyfCzc0N\nAGBra4tu3bopO+md9XGa05zmdG1NKy7882+bepr+JwY18cfFxWHlypUAoNRLXVSNWpk7dy5Wr14N\nCwsL3L59Gzk5OXjiiSfw22+/IS4uDo6OjkhLS4Ofnx/OnDlTfoMmMmql7ItDNce8qcfcqcdRK5VY\nsGABLl68iAsXLmD9+vV45JFHsHr1agQFBSEmJgYAEBMTg+DgYPVRExFRjdTKCUF3Wijh4eH44Ycf\n0KFDB+zbtw/h4eG1sXqDxCMjdZg39Zg70oUnBBGRyWNrhSpV4UsUqhHmTT3mjnRhISciMnJsrRCR\nyWNrhYiIDBoLuUrsV6rDvKnH3JEuLOREREaOPXIiMnnskRMRkUFjIVeJ/Up1mDf1mDvShYWciMjI\nsUdORPXG2toeublZ+tl4hH62WR89clW/R05EpEZpEdfHgVzl10YwFWytqMR+pTrMm3rMHenCQk5E\nZOTYIyeielN67QI9tVYi9LDZCI4jJyKiGmAhV4n9SnWYN/WYO9KFhZyIyMixR05E9YY9cvXYIyci\nMmEs5CqxX6kO86Yec0e6sJATERk59siJqN6wR64ee+RERCaMhVwl9ivVYd7UY+5IFxZyIiIjxx45\nEdUb9sjVY4+ciMiEsZCrxH6lOsybeswd6cJCTkRk5NgjJ6J6wx65euyRExGZMBZyldivVId5U4+5\nI11YyImIjBx75ERUb9gjV489ciIiE6aqkF+8eBF+fn7417/+hc6dOyMqKgoAkJmZCX9/f3To0AEB\nAQHIzs6u1WANCfuV6jBv6jF3pIuqQm5paYmPP/4YJ0+exMGDB/H555/j9OnTiIyMhL+/PxISEjBo\n0CBERkbWdrxERHSXWumRBwcHY+bMmZg5cyZ+/PFHaLVapKenw9fXF2fOnCm/QfbIiR5Y7JGrV6c9\n8qSkJBw9ehR9+vRBRkYGtFotAECr1SIjI+N+V09ERNWwuJ8H5+XlYeTIkfjkk09gZWVVbplGo/nn\n07eiiRMnws3NDQBga2uLbt26wdfXF8D/9QENffrOPEOJx1imFy9ebJSvtyFM373v6TseNdOl4gD4\nlvk/6mH6Hxf++bdNPU2jNAdqX++VK1cCgFIvdVHdWiksLMSjjz6KYcOG4YUXXgAAeHh4IC4uDo6O\njkhLS4Ofn5/JtlbKvjhUc8ybeqaQO7ZW1Kv11oqIYMqUKfD09FSKOAAEBQUhJiYGABATE4Pg4GA1\nqzcKxv6G0hfmTT3mjnRRdUT+888/Y8CAAejSpYvSPlm4cCG8vb0REhKCv//+G25ubti4cSNsbW3L\nb9BEjsiJ6N7xiFy9qmonz+xUyRT+zNUH5k09U8gdC7l6PLOTiMiE8YiciOoNj8jV4xE5EZEJYyFX\nqeyYXqo55k095o50YSEnIjJy7JETUb1hj1w99siJiEwYC7lK7Feqw7ypx9yRLizkRERGjj1yIqo3\n7JGrxx45EZEJYyFXif1KdZg39Zg70uW+LixBRPUn8NFA3Lpxq963a2VjhZzsnHrfLtUce+RERkKj\nMY0+L3vk6rBHTkRkwljIVWK/Uh3mjaj2sZATERk5FnKVjP1KLfrCvBHVPhZyIiIjx0KuEnu96jBv\nRLWPhZyIyMixkKvEXq86zBtR7WMhJyIycizkKrHXqw7zRlT7WMiJiIwcC7lK7PWqw7wR1T4WciIi\nI8dCrhJ7veowb0S1j4WciMjIsZCrxF6vOswbUe3jFYKIVLC2tkdubpa+wyACwCNy1djrVcdU8lZa\nxKWeb0SVYyEnIjJyLOQqsderDvNGVPtYyImIjFytF/Jdu3bBw8MD7du3x6JFi2p79QbDVHq99Y15\nI6p9tVrIi4uLMXPmTOzatQunTp3CunXrcPr06drchMH4448/9B2CUWLeiGpfrRbyw4cPw93dHW5u\nbrC0tMSYMWOwZcuW2tyEwcjOztZ3CEaJeSOqfbVayFNTU+Hi4qJMOzs7IzU1tTY3QUREd6nVQq7R\naGpzdQbtvQXvQaPR1OvN2tZa30/7vukjb6aSOyJdavXMTicnJ1y8eFGZvnjxIpydncvdp2vXrg9U\nwa9NuddzmTuV6iZ3engtIup/k0BtH6TpaR+O0M9mayt3Xbt21b0NEam1U8aKiorQsWNH7N27F61a\ntYK3tzfWrVuHTp061dYmiIjoLrV6RG5hYYHPPvsMQ4YMQXFxMaZMmcIiTkRUx2r1iJyIiOofz+wk\nIjJyLOREREaOv0deAyUlJTh8+DBSU1Oh0Wjg5OQEb29vjiCpxq5du7B582blXAInJycEBwdj6NCh\neo7MsBUWFmLFihWV5m7KlCmwtLTUc4SGLyMjAykpKcr7VavV6jukOsUeeTViY2Mxffp0uLu7K0Mp\nU1JScPbsWSxZsgRDhgzRc4SGadasWTh79iwmTJgAJycnAKV5W716Ndzd3REVFaXnCA3XmDFjYGdn\nh7CwsHK5i4mJQVZWFjZs2KDnCA3X0aNH8Z///AfZ2dnl3q+2trZYsmQJevTooecI64hQlTp27CgX\nLlyoMP/8+fPSsWPH+g/ISLi7u1c6v6SkRNq1a1fP0RgXXbmrbhmJdOnSRQ4ePFhh/q+//ipdunTR\nQ0T1gz3yahQXFytHRWU5OTmhqKhIDxEZh0aNGuHw4cMV5h8+fBiNGzfWQ0TGw97eHhs3bkRJSYky\nr6SkBBs2bIC9vb0eIzN8N2/eRJ8+fSrM79u3L27cuKGHiOoHe+TVmDx5Mnr37o2xY8cqf6pdvHgR\n69evx+TJk/UcneFauXIl/vOf/yA3N7fcn7jW1tZYuXKlfoMzcOvXr8ecOXMwY8YM2NraAij9sTE/\nPz+sX79ez9EZtmHDhiEwMBBhYWFwcXGBiODixYtYtWqVSX83wx55DZw6dQpbtmzBpUuXAJQejQcF\nBcHT01PPkRm+tLS0cnlzdHTUc0TGQ0SQmZkJoPQonV+u18yOHTsqfb8GBgbqObK6w0JOdUZEcOjQ\nIWXkhbOzM0f71ND169exc+fOciOlhgwZohyhE5XFHnk1srOzER4eDg8PD9jZ2cHe3h4eHh4IDw/n\nb2tXITY2Fu3bt0dERAR27tyJnTt3Yv78+XB3d8fu3bv1HZ5BW7VqFXr06IG4uDjcunULN2/exL59\n+9CjRw/ExMToOzyDVlhYiKVLl2Lo0KHw8vKCl5cXhg4diqVLl6KwsFDf4dUZHpFXIyAgAIMGDUJY\nWBi0Wi00Gg3S0tIQExODffv2ITY2Vt8hGiQPDw/s2rULbm5u5eZfuHABw4YNw5kzZ/QTmBHo0KED\nDh8+XOHoOysrC97e3jh79qyeIjN8D+rQTX7ZWY2kpCTMmTOn3LyWLVsiPDwcX3/9tZ6iMnwc7VP7\n2JKq3u+//17hg87FxQU+Pj5o3769nqKqeyzk1WjdujXef/995YgcANLT0xETEwNXV1c9R2e4ONpH\nvddffx09e/ZEQEBAudzFxsZi3rx5eo7OsN0Zujlq1CiYmZV2jktKSrBp0yaTHrrJ1ko1MjMzERkZ\nia1btyIjIwMAoNVqERQUhPDwcJPeOe4XR/uol5mZid27d5fLXUBAAPe3aly4cAFz5szB/v37Kwzd\nXLRoEdq0aaPnCOsGC/l9iI6OxqRJk/QdBpmwa9euAQAcHBz0HIlxedCGbrKQ3wcXF5dyl7aj/5Od\nnY3IyEhs3rwZGRkZ0Gg0aNGiBYKDgxEeHs5hdFVITk7GnDlzsHfvXtjY2AAoHY44aNAgREZGVvgC\nmcp7EIducvhhNe4MYarsdqfVQhWFhITAzs4OcXFxyMzMRGZmpvLnbkhIiL7DM2ijR4/G448/jrS0\nNCQmJiIxMRFpaWkIDg7GmDFj9B2eQXtQh27yiLwaWq0Wu3btgp2dXYVl/fr1U3qYVF6HDh2QkJBw\nz8sIaN++vc4hhlUtowd36CZHrVRj+PDhyMvLQ/fu3SssGzhwoB4iMg4c7aNejx49MH36dOX3QgDg\n77//RkxMTKX7IVWPPXIiFTjaR738/HysWLECW7duLXdhiaCgIEyZMgUNGzbUc4SGKyYmBm+//bbO\noZumOjiBhZzqHUf7UF16EIduspBTveNon+rdfZk8Z2dnPPbYYyb9U6y17UEauslCTnXCy8tL57K/\n/voLBQUF9RiNceFl8tR7UIduspBTneBoH/V0jUwREbRv3x6JiYl6iMo49O3bF7Nnz8bIkSNhYVE6\nlqOoqAjffPMNFi9ejIMHD+o5wrrBceRUJ+6M9nFzc6tw42ifqvEyeepdu3YNo0ePVoo4AFhYWGDM\nmDFKq8UU8YicyMD8/vvvOi+Tt2TJEvTs2VPPERqu0aNHw8HBodKhm9euXcPGjRv1HGHdYCEnMlC8\nTN69e1CHbrKQExkgXiaP7gXP7CQyMLGxsZg+fTrc3d3LtVbOnj2LJUuWYMiQIXqO0LA9iEM3eURO\nZGB4mTz1HtShmyzkRAamffv2OHXqFCwtLcvNLygogKenJ4cfVuFBHbrJ1gqRgeFl8tS7M3TT29u7\n3HxTH7rJI3IiA8TL5KnzoA7dZCEnIpPzoA3d5JmdRAYmOzsb4eHh8PDwgJ2dHezt7eHh4YHw8HBk\nZ2frOzyDJyJITk5GUlISkpKSkJycDFM/XmUhJzIwvEyeerGxsWjfvj0iIiKwc+dO7Ny5E/Pnz4e7\nuzt2796t7/DqDFsrRAaGl8lT70EduskjciIDc+cyeWUv7p2eno5FixbxMnnVKC4uVsaPl+Xk5ISi\noiI9RFQ/OPyQyMBs2LABkZGRGDhwYIXL5Jnqjz7Vlgd16CZbK0RGhJfJq96DOHSThZzIiPAyeVQZ\ntlaIDExVl8kr2zenirKzsxEZGYnNmzcjIyMDGo0GLVq0QHBwMMLDw2Fra6vvEOsECzmRgbl8+XKV\nl8kj3UJCQjBo0CDExcVBq9VCo9EgLS0NMTExCAkJQWxsrL5DrBNsrRAZmMmTJ2PSpEno379/hWVj\nx47FunXr9BCVcXhQh26ykBORyfD394e/vz/CwsKg1WoBlA7djImJwQ8//IA9e/boOcK6wXHkRGQy\nNmzYgKtXr2LgwIGws7ODnZ0dfH19Tfp6nQCPyInoAWHKQzdZyInogWDKQzc5aoWITMaDOnSThZyI\nTMaDOnSThZyITMbw4cORl5eH7t27V1g2cOBAPURUP9gjJyIychx+SERk5FjIiYiMHAs5EZGRYyEn\nqoGVK1fiueee03cYRJViIacHgoiY/JXU6cHFQk4mKykpCR07dkRYWBi8vLzwzjvvwNvbG127dkVE\nRIRyv8cffxy9evVC586dsWzZMmV+dHQ0OnbsiD59+uCXX35R5m/atAleXl7o1q2bSQ9pI+PB4Ydk\nspKSktCuXTv8+uuvuH79Or755ht8+eWXKCkpwWOPPYZXX30V/fv3R1ZWFuzs7HDr1i14e3vjp59+\nwu3bt9G3b1/Ex8fD2toafn5+6NGjB6KiotClSxfs3r0bLVu2RE5ODqytrfX9VOkBxyNyMmmtW7eG\nt7c3du/ejdjYWHTv3h09e/bEX3/9hcTERADAJ598gm7dusHHxwcpKSlISEjAoUOH4OvrCwcHB1ha\nWmL06NFKa+bhhx9GWFgYli9fbtJXZifjwTM7yaQ1adJE+f9rr72GadOmlVseFxeHvXv34uDBg2jU\nqBH8/Pxw+/ZtaDSacvcr+4frF198gcOHD2P79u3o2bMnfv/9d9jb29ftEyGqAo/I6YEwZMgQfP31\n17hx4wYAIDU1FVeuXEFOTg7s7OzQqFEjnDlzBgcPHoRGo0GfPn3w448/IjMzE4WFhdi0aZNS3M+d\nOwdvb2+89dZbaN68OVJSUvT51Ih4RE6m7U7x9ff3x+nTp+Hj4wMAsLKywpo1azB06FAsXboUnp6e\n6Nixo7Lc0dERERER8PHxga2tbbnf7nj11Vdx9uxZiAgGDx6MLl261P8TIyqDX3YSERk5tlaIiIwc\nCzkRkZFjISciMnIs5ERERo6FnIjIyLGQExEZORZyIiIj9/8BPW+E4/Jqf2MAAAAASUVORK5CYII=\n"
-      }
-     ],
-     "prompt_number": 91
+     "outputs": []
     }
    ],
    "metadata": {}
diff --git a/facs/utils/performance.py b/facs/utils/performance.py
index 8c763cc..e1bf580 100644
--- a/facs/utils/performance.py
+++ b/facs/utils/performance.py
@@ -108,7 +108,8 @@ def facs_vs_fastq_screen():
                 facs_filt_name, _ = os.path.splitext(os.path.basename(fcs['bloom_filter']))
                 if facs_filt_name == fqscr['fastq_screen_index']:
                     # Do not assume the test run went well
-                    if len(fqscr['organisms']) > 0:
+                    if len(fqscr['organisms']) > 0 and fqscr.get('memory_usage', None) and \
+                            fcs.get('memory_usage', None):
                         if fqscr.get('begin_timestamp') and fcs.get('begin_timestamp'):
                         # Fetch timing info for each program
                             begin = fqscr['begin_timestamp']
@@ -138,6 +139,10 @@ def facs_vs_fastq_screen():
                             contam_fcs = fcs.get('contamination_rate')
                             contam_fqscr = fqscr.get('contamination_rate')
 
+                            # Memory usage
+                            mem_facs = fcs.get('memory_usage')
+                            mem_fqscr = fqscr.get('memory_usage')
+
                             results[run] = dict(delta = delta.total_seconds(),
                                                 contam_fqscr = contam_fqscr,
                                                 delta_facs = delta_fcs.total_seconds(),
@@ -147,7 +152,9 @@ def facs_vs_fastq_screen():
                                                 filter_fqscr = fqscr.get('fastq_screen_index'),
                                                 filter_facs = fcs.get('bloom_filter'),
                                                 threads_facs = fcs.get('threads'),
-                                                threads_fqscr = fqscr.get('threads'))
+                                                threads_fqscr = fqscr.get('threads'),
+                                                mem_facs = mem_facs,
+                                                mem_fqscr = mem_fqscr)
 
 
     return json.dumps(results)