-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path11-FD&FR using multiplecameras.py
227 lines (219 loc) · 7.87 KB
/
11-FD&FR using multiplecameras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import urllib.request
import cv2
import numpy as np
import pandas as pd
from datetime import date
from datetime import datetime
import dlib
#importing the data into an excel sheet for attendance-for multiple students at a time
def markattendance(Name,ID):
with open('Dataforattendance.csv','r+') as f:
myDatalist = f.readlines()
namelist=[]
for line in myDatalist:
entry=line.split(',')
namelist.append(entry[0])
current_date = date.today()
now = datetime.now()
current_time = now.strftime("%H:%M:%S")
timestring=current_time
pt = datetime.strptime(timestring,'%H:%M:%S')
total_seconds = pt.second + pt.minute*60 + pt.hour*3600
f.writelines(f'\n{ID},{Name},{current_date},{now},{total_seconds}')
#haarcasacade classsifer being used and the trainer being called
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('trainer/trainer.yml')
cascadePath = "haarcascade/haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascadePath)
font = cv2.FONT_HERSHEY_SIMPLEX
# internal camera
cap = cv2.VideoCapture(0)
cap.set(3,640) # set Width
cap.set(4,480) # set Height
#connecting to external camera
url='http://192.168.1.7:8080/shot.jpg'#change the url according to the one on the device
# Define min window size to be recognized as a face
minW = 0.1*cap.get(3)
minH = 0.1*cap.get(4)
# Detect the coordinates
detector = dlib.get_frontal_face_detector()
#connecting to the extrenal camera for data input and web cam - as two cameras at a time
while True:
imgResp=urllib.request.urlopen(url)
imgNp=np.array(bytearray(imgResp.read()),dtype=np.uint8)
img=cv2.imdecode(imgNp,1)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret, frame = cap.read()
frame = cv2.flip(frame,1)
gray1 = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces_external=detector(gray)
faces1 = faceCascade.detectMultiScale(
gray,
scaleFactor=1.2,
minNeighbors=5,
minSize=(70,70)
)
faces_internal=detector(gray1)
faces11 = faceCascade.detectMultiScale(
gray1,
scaleFactor=1.2,
minNeighbors=5,
minSize = (int(minW), int(minH)),
)
name_external=[]
id_external=[]
name_internal=[]
id_internal=[]
# Iterator to count faces
#for external camera
i1 = 0
for face in faces_external:
# Get the coordinates of faces
x, y = face.left(), face.top()#gives the left and the top point from the detector
x1, y1 = face.right(), face.bottom()#gives the right and the bottom point from the detector
#to print the rectangle on the face
for (x,y,x1,y1) in faces1:
cv2.rectangle(img,(x,y),(x+x1,y+y1),(255,0,0),2)
id1, confidence1 = recognizer.predict(gray[y:y+y1,x:x+x1])
# If confidence is less them 100 ==> "0" : perfect match
if (confidence1 < 100):
Check1 = pd.read_csv("RegisterDetails.csv")
Name_List=Check1.Name
N=len(Name_List)
j=0
while(j<=N):
if(j==id1):
Name=Name_List[j]
name_external.append(Name)
id_external.append(id1)
break
j=j+1
i11=Name
confidence1 = " {0}%".format(round(100-confidence1))
else:
i11= "unknown"
confidence1 = " {0}%".format(round(100-confidence1))
cv2.putText(
img,
str(i11),
(x+5,y-5),
font,
2,
(255,255,255),
2
)
cv2.putText(
img,
str(confidence1),
(x+5,y+y1-5),
font,
2,
(255,255,0),
2
)
# Increment iterator for each face in faces
i1 = i1+1
# Iterator to count faces
#for internal camera
i2 = 0
for face1 in faces_internal:
# Get the coordinates of faces
x11, y11 = face1.left(), face1.top()#gives the left and the top point from the detector
x111, y111 = face1.right(), face1.bottom()#gives the right and the bottom point from the detector
#to print the rectangle on the face
for (x11,y11,x111,y111) in faces11:
cv2.rectangle(frame,(x11,y11),(x11+x111,y11+y111),(255,0,0),2)
id1, confidence = recognizer.predict(gray1[y11:y11+y111,x11:x11+x111])
# If confidence is less them 100 ==> "0" : perfect match
if (confidence < 100):
Check1 = pd.read_csv("RegisterDetails.csv")
Name_List=Check1.Name
N=len(Name_List)
j=0
while(j<=N):
if(j==id1):
Name=Name_List[j]
name_internal.append(Name)
id_internal.append(id1)
break
j=j+1
i22=Name
confidence = " {0}%".format(round(100-confidence))
else:
i22= "unknown"
confidence = " {0}%".format(round(100-confidence))
cv2.putText(
frame,
str(i22),
(x11+5,y11-5),
font,
2,
(255,255,255),
2
)
cv2.putText(
frame,
str(confidence),
(x11+5,y11+y111-5),
font,
2,
(255,255,0),
2
)
# Increment iterator for each face in faces
i2 = i2+1
print("the total number of faces seen on the external camera right now is ",i1)
print("the total number of faces seen on the internal camera right now is ",i2)
width = 640
height = 380
dim = (width, height)
resized = cv2.resize(img, dim, interpolation = cv2.INTER_AREA)
#showing the resized image
cv2.imshow("Resized image", resized)
cv2.imshow('frame', frame)
k = cv2.waitKey(30) & 0xff
if k == 27: # press 'ESC' to quit
break
cv2.waitKey(30)
cv2.destroyAllWindows()
#printing the names and corresponding ids - for checking ; to see the names that are going to be transferred to the datforattendance.csv
print("People seen on the external camera \t",name_external,"\n People seen on the internal camera \t",name_internal)
print("People's Id seen on the external camera \t",id_external,"\n People's Id seen on the internal camera \t",id_internal)
Id_total=[]
Id_total=id_external+id_internal #joins both the lists
print(Id_total)#for a confirmation on the joining of two lists
#in order to remove the repeated ids from the list
res = []
for i in Id_total:
if i not in res:
res.append(i)
# printing list after removal
print ("The Ids after removing duplicates : " + str(res))
#now getting the names from the ids
#using register details Csv
Check4 = pd.read_csv("RegisterDetails.csv")
Name22=Check4.Name
Id22=Check4.No
N1=len(Name22)
fin_name=[]
fin_id=[]
N2=len(res)
b=0
while(b<N2):
m=0
while(m<N1):
if(res[b]==Id22[m]):
fin_name.append(Name22[m])
fin_id.append(Id22[m])
m=m+1
b=b+1
print("final name list",fin_name)
print("final id list ",fin_id)
N3=len(fin_name)
#calling the attendance function to write the data into the dataforattendance csv
#loop for entery of data in the excel sheet
#calling the function
k=0
while (k<N3):
markattendance(fin_name[k],fin_id[k])
k=k+1