-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinitial_file.py
60 lines (49 loc) · 1.71 KB
/
initial_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import pickle
import numpy as np
from nltk import DefaultTagger, UnigramTagger, BigramTagger, TrigramTagger
print("Downloading...")
import nltk
nltk.download('punkt')
nltk.download('words')
nltk.download('wordnet')
nltk.download('chunk')
nltk.download('corpus')
nltk.download('brown')
nltk.download('averaged_perceptron_tagger')
nltk.download('maxent_ne_chunker')
nltk.download('treebank')
nltk.download('conll2000')
print("All external dependencies of nltk is downloaded..")
print()
print("Extracting Word Embeddings..")
def load_word_embeddings():
global word_embeddings
word_embeddings = {}
f = open(r'DataBase/glove.6B.100d.txt', encoding="utf-8")
for line in f:
values = line.split()
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
word_embeddings[word] = coefs
f.close()
load_word_embeddings()
pickle.dump(word_embeddings,open("word_embeddings.json","wb"))
print("Word Embeddings has been extracted, and saved to word_embeddings.json file..")
print()
def trained_tagger():
"""Returns a trained trigram tagger
existing : set to True if already trained tagger has been pickled
"""
# Aggregate trained sentences for N-Gram Taggers
train_sents = nltk.corpus.brown.tagged_sents()
train_sents += nltk.corpus.conll2000.tagged_sents()
train_sents += nltk.corpus.treebank.tagged_sents()
t0 = DefaultTagger('NN')
t1 = UnigramTagger(train_sents, backoff=t0)
t2 = BigramTagger(train_sents, backoff=t1)
trigram_tagger = TrigramTagger(train_sents, backoff=t2)
pickle.dump(trigram_tagger, open(r'DataBase/trained_tagger.pkl', 'wb'))
return trigram_tagger
print("Creating Tagger file...")
trained_tagger()
print("completed")