forked from lzjjeff/TCSP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathread_data.py
45 lines (38 loc) · 2.12 KB
/
read_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import yaml
import pickle
import copy
from tqdm import tqdm
import numpy as np
import torch
import torch.utils.data as Data
from dataset import MoseiDataset, collate_fn
from dataset_splits import mosei_folds, mosi_folds
def get_dataloader(config):
if config["general"]["dataset"] == "mosi":
with open('./data/MOSI/mosi.dataset', 'rb') as f:
data_dic = pickle.load(f)
data_folds = mosi_folds
train_fold = data_folds['train'] + data_folds['valid']
train_keys = [key for key in data_dic.keys() if "_".join(key.split("_")[:-1]) in train_fold]
else:
with open('./data/MOSEI/mosei.dataset', 'rb') as f:
data_dic = pickle.load(f)
data_folds = mosei_folds
train_fold = data_folds['train'] + data_folds['valid']
train_keys = [key for key in data_dic.keys() if key.split('[')[0] in train_fold]
# normalize
v_max = np.max(np.array([np.max(np.abs(data_dic[key]['v']), axis=0) for key in train_keys]), axis=0)
a_max = np.max(np.array([np.max(np.abs(data_dic[key]['a']), axis=0) for key in train_keys]), axis=0)
v_max[v_max == 0] = 1
a_max[a_max == 0] = 1
train_dataset = MoseiDataset(data_dic, config["general"]["dataset"], 'train', v_max, a_max)
valid_dataset = MoseiDataset(data_dic, config["general"]["dataset"], 'valid', v_max, a_max)
test_dataset = MoseiDataset(data_dic, config["general"]["dataset"], 'test', v_max, a_max)
print("\tNumber of train samples: %d\n\tNumber of valid samples: %d\n\tNumber of test samples: %d"
% (len(train_dataset), len(valid_dataset), len(test_dataset)))
train_loader = Data.DataLoader(train_dataset, batch_size=config["general"]["batch_size"], collate_fn=collate_fn,
shuffle=True)
valid_loader = Data.DataLoader(valid_dataset, batch_size=config["general"]["batch_size"], collate_fn=collate_fn,
shuffle=True)
test_loader = Data.DataLoader(test_dataset, batch_size=config["general"]["batch_size"], collate_fn=collate_fn)
return train_loader, valid_loader, test_loader