-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsimulator.py
190 lines (163 loc) · 7.13 KB
/
simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import numpy as np
import torch
from copy import deepcopy
from torch.utils.data import DataLoader, Dataset
from typing import Union, Callable, Any, List
from utils.logger import Logger
from utils.utils import init_metrics_meter, update_metrics
from worker import TorchWorker
from server import TorchServer
from client_sampling.base import _ClientSampler
class DistributedSimulatorBase(object):
"""Simulate distributed programs with low memory usage.
This base class is used by both trainer and evaluator.
"""
def __init__(self, metrics: dict, device: str):
"""
Args:
metrics (dict): dict of metric names and their functions
device (bool): dpu, cuda or mps
"""
self.metrics = metrics
self.device = device
self.workers = []
self.logger = Logger.get()
class ParallelTrainer(DistributedSimulatorBase):
"""Synchronous and parallel training with specified aggregator."""
def __init__(
self,
server: TorchServer,
aggregator: Callable[[list], torch.Tensor],
client_sampler: _ClientSampler,
datasets: List[Dataset],
data_loader_kwargs: dict,
log_interval: int,
metrics: dict,
device: str,
):
"""
Args:
server (TorchServer)
aggregator (callable): A callable which takes a list of tensors and returns
an aggregated tensor.
client_sampler (_ClientSampler)
datasets (List[Dataset]): list of client data sets
data_loader_kwargs: params for data_loader
log_interval (int): Control the frequency of logging training batches
metrics (dict): dict of metric names and their functionality
device (str): cuda, cpu or mps
"""
self.aggregator = aggregator
self.client_sampler = client_sampler
self.datasets = datasets
self.data_loader_kwargs = data_loader_kwargs
self.server = server
self.log_interval = log_interval
self.random_states = {}
super().__init__(metrics, device)
def aggregation_and_update(self):
pseudo_gradients = self.parallel_get(lambda w: w.get_update())
aggregated_gradients = self.aggregator(pseudo_gradients)
# Assume that the model and optimizers are shared among workers.
self.server.set_gradient(aggregated_gradients)
self.server.apply_gradient()
# OPTIMIZERS STATES AGGREGATION
# local_optim_states = self.parallel_get(lambda w: w.get_optim_states())
# aggregated_optim_state = self.aggregator(local_optim_states)
# self.server.set_local_optimizer_dict(
# self.workers[0].optimizer.state_dict(), aggregated_optim_state)
def train(self, comm_round):
global_model_dict = deepcopy(self.server.global_model.state_dict())
# local_optimizer_state_dict = deepcopy(self.server.local_optimizer_state_dict)
self.set_data_loaders(comm_round)
self.parallel_call(lambda w: w.model.load_state_dict(global_model_dict))
# OPTIMIZERS STATES AGGREGATION
# # Avoid loading optimizer state dict in the first round
# if local_optimizer_state_dict is not None:
# self.parallel_call(lambda w: w.optimizer.load_state_dict(local_optimizer_state_dict))
self.parallel_call(lambda w: w.train_epoch_start())
metrics_meter = init_metrics_meter(self.metrics, comm_round)
self.parallel_get(lambda w: w.run_local_epochs(metrics_meter))
self.aggregation_and_update()
return metrics_meter
def add_worker(self, worker: TorchWorker):
worker.add_metrics(self.metrics)
self.workers.append(worker)
self.logger.info(f"=> Add worker {str(worker)}")
def parallel_call(self, f: Callable[[TorchWorker], None]) -> None:
for w in self.workers:
f(w)
def parallel_get(self, f: Callable[[TorchWorker], Any]) -> list:
results = []
for w in self.workers:
results.append(f(w))
return results
def set_data_loaders(self, comm_round) -> None:
for i, w in zip(self.client_sampler.get_sampled_clients(comm_round), self.workers):
w.assign_data_loader(i, DataLoader(self.datasets[i], **self.data_loader_kwargs))
def __str__(self):
return (
"ParallelTrainer("
f"aggregator={self.aggregator}, "
f"log_interval={self.log_interval}, "
f"metrics={list(self.metrics.keys())}"
")"
)
def log_train(self, metrics_meter, batch_idx, epoch):
# Output to console
self.logger.info(
f"Epoch: {epoch :2} Batch: {batch_idx}| {len(self.workers[0].data_loader)}|"
f" Loss: {metrics_meter['loss'].get_avg():.4f} "
+ " ".join(key + "=" + "{:>8.4f}".format(metrics_meter[key].get_avg()) for key in self.metrics)
)
class DistributedEvaluator(DistributedSimulatorBase):
def __init__(
self,
model: torch.nn.Module,
is_rnn: bool,
data_loader: torch.utils.data.DataLoader,
loss_func: torch.nn.modules.loss._Loss,
device: Union[torch.device, str],
metrics: dict,
log_interval: int,
log_identifier_type="Validation",
):
super().__init__(metrics, device)
self.model = model
self.is_rnn = is_rnn
self.data_loader = data_loader
self.loss_func = loss_func
self.device = device
self.log_identifier_type = log_identifier_type
self.log_interval = log_interval
def __str__(self):
return (
"DistributedEvaluator("
f"device={self.device}, "
")"
)
def evaluate(self, comm_round):
self.model.eval()
metrics_meter = init_metrics_meter(self.metrics, comm_round)
if self.is_rnn:
hidden = self.model.init_hidden(self.data_loader.batch_size, self.device)
with torch.no_grad():
for i, (data, target) in enumerate(self.data_loader):
batch_size = data.shape[0]
data, target = data.to(self.device), target.to(self.device)
if self.is_rnn:
output, hidden = self.model(data, hidden)
target = target.reshape(-1)
else:
output = self.model(data)
loss = self.loss_func(output, target).item()
update_metrics(metrics_meter, 'loss', loss, batch_size)
for key in self.metrics:
update_metrics(metrics_meter, key, self.metrics[key](output, target, self.model), batch_size)
if i % self.log_interval == 0 or i + 1 == len(self.data_loader):
self.logger.info(
f"{self.log_identifier_type} | {i+1}/{len(self.data_loader)} |"
f" loss = {metrics_meter['loss'].get_avg():.4f}; "
+ " ".join(key + " = " + "{:.4f}".format(metrics_meter[key].get_avg()) for key in self.metrics)
)
return metrics_meter