-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvgg_cifar.py
91 lines (66 loc) · 2.77 KB
/
vgg_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
"""
VGG11/13/16/19 in Pytorch.
"""
import torch.nn as nn
cfg = {
'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M',
512, 512, 'M', 512, 512, 'M'],
'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M',
512, 512, 512, 'M', 512, 512, 512, 'M'],
'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256,
'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
GROUP_NORM_LOOKUP = {
16: 2, # -> channels per group: 8
32: 4, # -> channels per group: 8
64: 8, # -> channels per group: 8
128: 8, # -> channels per group: 16
256: 16, # -> channels per group: 16
512: 32, # -> channels per group: 16
1024: 32, # -> channels per group: 32
2048: 32, # -> channels per group: 64
}
def create_norm_layer(num_channels, batch_norm=True):
if batch_norm:
return nn.BatchNorm2d(num_channels)
return nn.GroupNorm(GROUP_NORM_LOOKUP[num_channels], num_channels)
class VGG(nn.Module):
def __init__(self, vgg_name, num_classes=10, batch_norm=True):
super(VGG, self).__init__()
self.features = self._make_layers(cfg[vgg_name], batch_norm)
self.classifier = nn.Linear(512, num_classes)
def forward(self, x):
out = self.features(x)
out = out.view(out.size(0), -1)
out = self.classifier(out)
return out
def _make_layers(self, cfg, batch_norm):
layers = []
in_channels = 3
for x in cfg:
if x == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
create_norm_layer(x, batch_norm),
nn.ReLU(inplace=True)]
in_channels = x
layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
return nn.Sequential(*layers)
def vgg11(pretrained=False, num_classes=10):
return VGG('VGG11', num_classes=num_classes)
def vgg13(pretrained=False, num_classes=10):
return VGG('VGG13', num_classes=num_classes)
def vgg16(pretrained=False, num_classes=10):
return VGG('VGG16', num_classes=num_classes)
def vgg19(pretrained=False, num_classes=10):
return VGG('VGG19', num_classes=num_classes)
def vgg11gn(pretrained=False, num_classes=10):
return VGG('VGG11', num_classes=num_classes, batch_norm=False)
def vgg13gn(pretrained=False, num_classes=10):
return VGG('VGG13', num_classes=num_classes, batch_norm=False)
def vgg16gn(pretrained=False, num_classes=10):
return VGG('VGG16', num_classes=num_classes, batch_norm=False)
def vgg19gn(pretrained=False, num_classes=10):
return VGG('VGG19', num_classes=num_classes, batch_norm=False)