-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsequential_predictions.jl
170 lines (129 loc) · 5.42 KB
/
sequential_predictions.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
using Distributions, StatsBase, StatsPlots, Plots.PlotMeasures
using LinearAlgebra, RecursiveArrayTools, CSV
using OrdinaryDiffEq, ApproxBayes, DataFrames
using JLD2, MCMCChains, ProgressMeter
using MpoxUK
using ColorSchemes, Dates
using Latexify
## MSM data with data inference
past_mpxv_data_inferred =
CSV.File("data/weekly_data_imputation_2022-09-30.csv", missingstring = "NA") |>
DataFrame
wks = Date.(past_mpxv_data_inferred.week, DateFormat("dd/mm/yyyy"))
include("setup_model.jl");
## Format case data into expected (over GBDT inference) case incidence
colname = "seqn_fit5"
inferred_prop_na_msm = past_mpxv_data_inferred[:, colname] |> x -> x[.~ismissing.(x)]
inferred_prop_na_msm_lwr =
past_mpxv_data_inferred[:, "lower_"*colname] |> x -> x[.~ismissing.(x)]
inferred_prop_na_msm_upr =
past_mpxv_data_inferred[:, "upper_"*colname] |> x -> x[.~ismissing.(x)]
mpxv_wkly =
past_mpxv_data_inferred[1:size(inferred_prop_na_msm, 1), ["gbmsm", "nongbmsm"]] .+
past_mpxv_data_inferred[1:size(inferred_prop_na_msm, 1), "na_gbmsm"] .*
hcat(inferred_prop_na_msm, 1.0 .- inferred_prop_na_msm) |> Matrix
lwr_mpxv_wkly =
past_mpxv_data_inferred[1:size(inferred_prop_na_msm, 1), ["gbmsm", "nongbmsm"]] .+
past_mpxv_data_inferred[1:size(inferred_prop_na_msm, 1), "na_gbmsm"] .*
hcat(inferred_prop_na_msm_lwr, 1.0 .- inferred_prop_na_msm_lwr) |> Matrix
upr_mpxv_wkly =
past_mpxv_data_inferred[1:size(inferred_prop_na_msm, 1), ["gbmsm", "nongbmsm"]] .+
past_mpxv_data_inferred[1:size(inferred_prop_na_msm, 1), "na_gbmsm"] .*
hcat(inferred_prop_na_msm_upr, 1.0 .- inferred_prop_na_msm_upr) |> Matrix
##
wks = Date.(past_mpxv_data_inferred.week[1:size(mpxv_wkly, 1)], DateFormat("dd/mm/yyyy"))
ts = wks .|> d -> d - Date(2021, 12, 31) .|> t -> t.value
wkly_vaccinations = [
[zeros(12); 1000; 2000; fill(5000, 4)] * 1.675
fill(650, 18)
]
## Generate an ensemble of forecasts
seq_wks = [wks[1:4], wks[1:8], wks[1:12], wks[1:16], wks[1:20]]
seq_mpxv_wklys = [
mpxv_wkly[1:4, :],
mpxv_wkly[1:8, :],
mpxv_wkly[1:12, :],
mpxv_wkly[1:16, :],
mpxv_wkly[1:20, :],
# mpxv_wkly,
]
## Include useful functions for projections
include("projection_functions.jl");
##
description_strs = ["no_ngbmsm_chg", "", "no_bv_cng", "one_metapop"]
description_labs = ["Main model", "Also non-GBMSM behaviour change", "No behaviour change", "One metapopulation"]
clrs = 1:4
errs_by_data = map(1:5) do n
n_vac = (length(seq_wks[n])+1)
proj_weeks = seq_wks[n]
start_wk = proj_weeks[end]
plt_gbmsm = plot(;
ylabel = "Weekly cases",
legend = :topright,
left_margin = 5mm,
right_margin = 5mm,
size = (800, 600),
dpi = 250,
ytickfont = 18,
xtickfont = 12,
titlefont = 20,
guidefont = 24,
legendfont = 12)
plt_nongbmsm = deepcopy(plt_gbmsm)
if n >= 4
plot!(plt_gbmsm; ylims = (0,650))
plot!(plt_nongbmsm; ylims = (0,65))
end
err_by_model = map((description_str, clr, description_lab) -> load_data_and_make_proj(start_wk, description_str, plt_gbmsm, plt_nongbmsm, clr, description_lab, n_vac; pheic_effect = n > 2),
description_strs,
clrs,
description_labs)
scatter!(plt_gbmsm, wks, mpxv_wkly[:,1],
lab = "Data available (6th Oct 2022)",
ms = 6,
color = :black,
yerrors = (
mpxv_wkly[:, 1] .- lwr_mpxv_wkly[:, 1],
upr_mpxv_wkly[:, 1] .- mpxv_wkly[:, 1],
),)
scatter!(plt_nongbmsm, wks, mpxv_wkly[:,2],
lab = "Data available (6th Oct 2022)",
ms = 6,
color = :black,
yerrors = (
mpxv_wkly[:, 2] .- lwr_mpxv_wkly[:, 2],
upr_mpxv_wkly[:, 2] .- mpxv_wkly[:, 2],
),)
plt = plot(plt_gbmsm, plt_nongbmsm,
size = (1500,600),
dpi = 250,
left_margin = 10mm,
right_margin = 0mm,
bottom_margin = 5mm)
savefig(plt, "plots/proj_plot_" * string(start_wk) * ".png")
return err_by_model
end
## Past fits
##
df_errors = DataFrame(date = String[],
main_model_median_error = String[],
full_model_median_error = String[],
no_behaviour_change_median_error = String[],
one_metapopulation_median_error = String[],
main_model_forecast_err = Number[],
full_model_forecast_err = Number[],
no_behaviour_change_forecast_err = Number[],
one_metapopulation_forecast_err = Number[])
for k = 1:4
push!(df_errors,
[string(seq_wks[k][end]);
[string(errs_by_data[k][n][1])[2:(end-1)] for n = 1:4];
[errs_by_data[k][n][2] for n = 1:4]],
)
end
CSV.write("projections/forecast_errors.csv", df_errors)
# project_errors_tex = latexify(df_errors, env = :table)
# output_tex = raw"\newcommand{\projectiontable}{" * project_errors_tex * raw"}"
# open("model_output.tex"; append = true) do io
# write(io, output_tex)
# end;