-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_virep.py
402 lines (355 loc) · 17.7 KB
/
train_virep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
"""
Copyright (c) 2024, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import os
import json
import argparse
import pickle
from typing import Optional, Union, List, Tuple
import datasets
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
# Trainer,
# TrainingArguments,
# StoppingCriteriaList
)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.cache_utils import Cache
from trl import (
SFTConfig,
SFTTrainer,
DataCollatorForCompletionOnlyLM
)
from peft import (
LoraConfig,
# get_peft_model,
# prepare_model_for_kbit_training,
PeftModel
)
# from transformers import BitsAndBytesConfig
import torch
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
from utils import extract_python_code
class LlamaForCausalLMWithReward(AutoModelForCausalLM):
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
rewards: Optional[torch.FloatTensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
if self.config.pretraining_tp > 1:
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
logits = torch.cat(logits, dim=-1)
else:
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(reduction='none' if rewards is not None else 'mean')
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if rewards is not None:
rewards = rewards.to(loss.device)
loss *= rewards
loss = loss.mean()
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class GemmaForCausalLMWithReward(AutoModelForCausalLM):
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
num_logits_to_keep: int = 0,
rewards: Optional[torch.FloatTensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
num_logits_to_keep (`int`, *optional*):
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, GemmaForCausalLM
>>> model = GemmaForCausalLM.from_pretrained("google/gemma-7b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
# if labels is None and not is_torchdynamo_compiling():
# logger.warning_once(
# "Starting from v4.46, the `logits` model output will have the same type as the model (except at train time, where it will always be FP32)"
# )
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
# TODO: remove the float() operation in v4.46
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]).float()
loss = None
if labels is not None:
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.float()
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(reduction='none' if rewards is not None else 'mean')
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if rewards is not None:
rewards = rewards.to(loss.device)
loss *= rewards
loss = loss.mean()
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# from pdb import set_trace; set_trace()
parser = argparse.ArgumentParser(description='Train a model for Visual Reasoning')
parser.add_argument('--model_name', type=str, default='')
parser.add_argument('--train_kwargs', type=str, default="{}")
parser.add_argument('--model_kwargs', type=str, default="{}")
parser.add_argument('--data_path', type=str, default='', help='Precomputed Data path')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--iter', type=int, default=0)
parser.add_argument('--output_dir', type=str, default='.')
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--num_improve_steps', type=int, default=1)
parser.add_argument('--train_prompt_file', type=str, default='.')
args = parser.parse_args()
output_dir = args.output_dir
data_path = args.data_path
os.makedirs(output_dir, exist_ok=True)
adapter_ckpt_dir = os.path.join(output_dir, 'adapter_ckpts')
os.makedirs(adapter_ckpt_dir, exist_ok=True)
# [{question, pred_code, unit_test_results:[{acc}]}]
input_dataset = pickle.load(open(os.path.join(args.data_path), 'rb'))
train_kwargs = json.loads(args.train_kwargs)
model_kwargs = json.loads(args.model_kwargs)
train_prompt = open(args.train_prompt_file).read()
def formatting_prompts_func(example):
output_texts = []
for i in range(len(example['label'])):
text = f"{train_prompt.replace('INSERT_QUERY_HERE',example['question'][i])}{extract_python_code(example['label'][i])}"
output_texts.append(text)
return output_texts
iter = args.iter
unit_test_reward = train_kwargs.get('unit_test_reward', 'ratio')
unit_test_reward_weight = train_kwargs.get('unit_test_reward_weight', 1.0)
only_correct = train_kwargs.get('only_correct', False)
if unit_test_reward!='none':
for d in input_dataset:
d['reward'] = 0.
if only_correct and d['true_accuracy'] < 1.:
continue
acc = float(d['unit_test_results']['acc'])
if unit_test_reward=='all' or 'all' in unit_test_reward:
d['reward'] = 1.0 if acc == 1.0 else d['reward']
if unit_test_reward=='ratio' or 'ratio' in unit_test_reward:
d['reward'] = acc
if unit_test_reward=='threshold' or 'threshold' in unit_test_reward:
d['reward'] = 1. if acc>=train_kwargs.get('threshold', 0.5) else d['reward']
if unit_test_reward == 'threshold_correct' or 'threshold_correct' in unit_test_reward:
d['reward'] = 1. if acc>=train_kwargs.get('threshold', 0.5) and acc==1. else d['reward']
else:
for d in input_dataset:
if only_correct and d['true_accuracy'] < 1.:
d['reward'] = 0.
continue
d['reward'] = 1.0
# from pdb import set_trace; set_trace()
questions, pred_codes, rewards = zip(*[(d['question'], d['pred_code'], d['reward']*unit_test_reward_weight) for d in input_dataset])
improve_dataset = datasets.Dataset.from_dict({'question':questions, 'label':pred_codes, 'reward': rewards})
improve_dataset = improve_dataset.filter(lambda x: x['reward']>0.)
print('Training dataset size:', len(improve_dataset))
# setup tokenizer
tokenizer = AutoTokenizer.from_pretrained(args.model_name,
padding='longest',
use_fast=True,
truncation=True,
trust_remote_code=True,
token=os.getenv('HF_ACCESS_TOKEN'))
tokenizer.pad_token = tokenizer.eos_token
response_template = "\nProgram:"
collator = DataCollatorForCompletionOnlyLM(response_template=tokenizer.encode(response_template, add_special_tokens = False)[-2:], tokenizer=tokenizer)
# from virep parameters
lora_kwargs = train_kwargs.get('lora_kwargs', {})
lora_config = LoraConfig(
r=lora_kwargs.get('r', 16),
target_modules = lora_kwargs.get('target_modules',
[
"k_proj",
"v_proj",
"q_proj",
"o_proj"
]),
lora_alpha=lora_kwargs.get('lora_alpha', 32),
lora_dropout=lora_kwargs.get('lora_dropout', 0.05),
bias=lora_kwargs.get('bias', 'none'),
task_type="CAUSAL_LM"
)
if iter>0:
if 'llama' in args.model_name.lower():
model = LlamaForCausalLMWithReward.from_pretrained(args.model_name,
torch_dtype=torch.bfloat16, # training in bfloat is more stable https://huggingface.co/docs/transformers/en/model_doc/llama2#usage-tips
# device_map="auto",
trust_remote_code=True,
token=os.getenv('HF_ACCESS_TOKEN'),
)
elif 'gemma' in args.model_name.lower():
model = GemmaForCausalLMWithReward.from_pretrained(args.model_name,
torch_dtype=torch.bfloat16, # training in bfloat is more stable https://huggingface.co/docs/transformers/en/model_doc/llama2#usage-tips
# device_map="auto",
trust_remote_code=True,
token=os.getenv('HF_ACCESS_TOKEN'),
)
model.enable_input_require_grads()
model = PeftModel.from_pretrained(model, os.path.join(adapter_ckpt_dir, f"model_{iter-1}"), is_trainable=True)
else:
max_steps = 0
if 'llama' in args.model_name.lower():
model = LlamaForCausalLMWithReward.from_pretrained(args.model_name,
torch_dtype=torch.bfloat16, # training in bfloat is more stable https://huggingface.co/docs/transformers/en/model_doc/llama2#usage-tips
# device_map="auto",
trust_remote_code=True,
token=os.getenv('HF_ACCESS_TOKEN'),
)
elif 'gemma' in args.model_name.lower():
model = GemmaForCausalLMWithReward.from_pretrained(args.model_name,
torch_dtype=torch.bfloat16, # training in bfloat is more stable https://huggingface.co/docs/transformers/en/model_doc/llama2#usage-tips
# device_map="auto",
trust_remote_code=True,
token=os.getenv('HF_ACCESS_TOKEN'),
)
num_devices = torch.cuda.device_count()
if iter>0:
last_model = os.path.join(adapter_ckpt_dir, f"model_{iter-1}")
model.load_adapter(last_model, adapter_name='model_adapter')
training_args = SFTConfig(
output_dir=os.path.join(output_dir, f'train'), # output directory
per_device_train_batch_size=args.batch_size, # batch size for training
logging_dir=os.path.join(output_dir, f'logs'), # directory for storing logs
logging_steps=1,
bf16=True,
# max_steps=max_steps,
# save_steps=max_steps,
seed=args.seed,
save_strategy='epoch',
report_to='tensorboard',
warmup_ratio=train_kwargs.get('warmup_ratio', 0.1),
max_grad_norm = train_kwargs.get('max_grad_norm', 1.0),
lr_scheduler_type=train_kwargs.get('lr_scheduler_type', 'constant'),
learning_rate=train_kwargs.get('learning_rate', 1e-4),
num_train_epochs=train_kwargs.get('num_improve_steps', 1)*(iter+1),
gradient_checkpointing=True,
gradient_checkpointing_kwargs={'use_reentrant':False},
max_seq_length=4096,
remove_unused_columns=True
)
tokenizer.padding_side='right' # for training
trainer = SFTTrainer(
model=model,
train_dataset=improve_dataset,
tokenizer=tokenizer,
formatting_func=formatting_prompts_func,
args=training_args,
data_collator=collator,
packing=False,
peft_config=lora_config if iter==0 else None,
)
print(f"Trainable parameters: {trainer.get_num_trainable_parameters()}")
trainer.train(resume_from_checkpoint=iter!=0)
trainer.model.save_pretrained(os.path.join(adapter_ckpt_dir, f'model_{iter}'))