-
Notifications
You must be signed in to change notification settings - Fork 25
/
json_convert.pl
681 lines (581 loc) · 21.5 KB
/
json_convert.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
/* Part of SWI-Prolog
Author: Jan Wielemaker
E-mail: [email protected]
WWW: http://www.swi-prolog.org
Copyright (c) 2007-2014, University of Amsterdam
VU University Amsterdam
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
:- module(json_convert,
[ prolog_to_json/2, % :Term, -JSON object
json_to_prolog/2, % +JSON, :Term
(json_object)/1, % +Definition
op(1150, fx, (json_object))
]).
:- use_module(library(error)).
:- use_module(library(pairs)).
:- use_module(library(apply)).
:- use_module(json).
:- meta_predicate
prolog_to_json(:, -),
json_to_prolog(+, :).
:- public
clear_cache/0,
prolog_list_to_json/3, % +ListIn, -ListOut, +Module
prolog_to_json/3, % +In, -Out, +Module
prolog_bool_to_json/2. % +In, -Boolean
/** <module> Convert between JSON terms and Prolog application terms
The idea behind this module is to provide a flexible high-level mapping
between Prolog terms as you would like to see them in your application
and the standard representation of a JSON object as a Prolog term. For
example, an X-Y point may be represented in JSON as =|{"x":25,
"y":50}|=. Represented in Prolog this becomes json([x=25,y=50]), but
this is a pretty non-natural representation from the Prolog point of
view.
This module allows for defining records (just like library(record)) that
provide transparent two-way transformation between the two
representations.
==
:- json_object
point(x:integer, y:integer).
==
This declaration causes prolog_to_json/2 to translate the native Prolog
representation into a JSON Term:
==
?- prolog_to_json(point(25,50), X).
X = json([x=25, y=50])
==
A json_object/1 declaration can define multiple objects separated by a
comma (,), similar to the dynamic/1 directive. Optionally, a declaration
can be qualified using a module. The conversion predicates
prolog_to_json/2 and json_to_prolog/2 first try a conversion associated
with the calling module. If not successful, they try conversions
associated with the module =user=.
JSON objects have no _type_. This can be solved by adding an extra field
to the JSON object, e.g. =|{"type":"point", "x":25, "y":50}|=. As Prolog
records are typed by their functor we need some notation to handle this
gracefully. This is achieved by adding +Fields to the declaration. I.e.
==
:- json_object
point(x:integer, y:integer) + [type=point].
==
Using this declaration, the conversion becomes:
==
?- prolog_to_json(point(25,50), X).
X = json([x=25, y=50, type=point])
==
The predicate json_to_prolog/2 is often used after http_read_json/2 and
prolog_to_json/2 before reply_json/1. For now we consider them separate
predicates because the transformation may be too general, too slow or
not needed for dedicated applications. Using a separate step also
simplifies debugging this rather complicated process.
@tbd Ignore extra fields. Using a partial list of _extra_?
@tbd Consider a sensible default for handling JSON =null=. Conversion
to Prolog could translate @null into a variable if the desired type
is not =any=. Conversion to JSON could map variables to =null=,
though this may be unsafe. If the Prolog term is known to be
non-ground and JSON @null is a sensible mapping, we can also use
this simple snippet to deal with that fact.
==
term_variables(Term, Vars),
maplist(=(@null), Vars).
==
*/
%! current_json_object(Term, Module, Fields)
%
% Multifile predicate computed from the json_object/1
% declarations. Term is the most general Prolog term representing
% the object. Module is the module in which the object is defined
% and Fields is a list of f(Name, Type, Default, Var), ordered by
% Name. Var is the corresponding variable in Term.
:- multifile
json_object_to_pairs/3, % Term, Module, Pairs
current_json_object/3. % Term, Module, Fields
%! json_object(+Declaration)
%
% Declare a JSON object. The declaration takes the same format as
% using in record/1 from library(record). E.g.
%
% ==
% ?- json_object
% point(x:int, y:int, z:int=0).
% ==
%
% The type arguments are either types as know to library(error) or
% functor names of other JSON objects. The constant =any=
% indicates an untyped argument. If this is a JSON term, it
% becomes subject to json_to_prolog/2. I.e., using the type
% list(any) causes the conversion to be executed on each element
% of the list.
%
% If a field has a default, the default is used if the field is
% not specified in the JSON object. Extending the record type
% definition, types can be of the form (Type1|Type2). The type
% =null= means that the field may _not_ be present.
%
% Conversion of JSON to Prolog applies if all non-defaulted
% arguments can be found in the JSON object. If multiple rules
% match, the term with the highest arity gets preference.
json_object(Declaration) :-
throw(error(context_error(nodirective, json_object(Declaration)), _)).
%! compile_json_objects(+Spec, -Clauses) is det.
%
% Compiles a :- json_object directive into Clauses. Clauses are of
% the form:
%
% ==
% json_object_to_pairs(Term, Module, Pairs) :-
% <type-checks on Term>,
% <make Pairs from Term>.
% ==
compile_json_objects(Spec, Clauses) :-
phrase(compile_objects(Spec), Clauses).
compile_objects(A) -->
{ var(A),
!,
instantiation_error(A)
}.
compile_objects((A,B)) -->
!,
compile_objects(A),
compile_objects(B).
compile_objects(Term) -->
compile_object(Term).
compile_object(ObjectDef) -->
{ prolog_load_context(module, CM),
strip_module(CM:ObjectDef, M, Def),
extra_defs(Def, Term, ExtraFields),
Term =.. [Constructor|Args],
defaults(Args, Defs, TypedArgs),
types(TypedArgs, Names, Types)
},
record_to_json_clause(Constructor, M, Types, Names, ExtraFields),
current_clause(Constructor, M, Types, Defs, Names, ExtraFields),
[ (:- json_convert:clear_cache) ].
extra_defs(Term+Extra0, Term, Extra) :-
!,
must_be(list, Extra0),
maplist(canonical_pair, Extra0, Extra).
extra_defs(Term, Term, []).
canonical_pair(Var, _) :-
var(Var),
!,
instantiation_error(Var).
canonical_pair(Name=Value, Name=Value) :-
!,
must_be(atom, Name).
canonical_pair(Name-Value, Name=Value) :-
!,
must_be(atom, Name).
canonical_pair(NameValue, Name=Value) :-
NameValue =.. [Name,Value],
!.
canonical_pair(Pair, _) :-
type_error(pair, Pair).
%! record_to_json_clause(+Constructor, +Module, +Type, +Names)
%
% Create a clause translating the record definition into a pairs
% representation.
record_to_json_clause(Constructor, Module, Types, Names, Extra) -->
{ type_checks(Types, VarsHead, VarsBody, Body0, Module),
clean_body(Body0, Body),
Term =.. [Constructor|VarsHead],
make_pairs(Names, VarsBody, Pairs, Extra),
Head =.. [json_object_to_pairs,Term,Module,json(Pairs)]
},
[ (json_convert:(Head :- Body)) ].
%! type_checks(+Types, -VarsIn, -VarsOut, -Goal, +Module) is det.
%
% Goal is a body-term that validates Vars satisfy Types. In
% addition to the types accepted by must_be/2, it accepts =any=
% and Name/Arity. The latter demands a json_object term of the
% given Name and Arity.
%
% @tbd Compile list(Type) specification. Currently Type is
% handled like =any=
type_checks([], [], [], true, _).
type_checks([Type|T], [IV|IVars], [OV|OVars], (Goal, Body), M) :-
!,
type_check(Type, IV, OV, M, Goal),
type_checks(T, IVars, OVars, Body, M).
type_check(any, IV, OV, M, prolog_to_json(IV, OV, M)) :- !.
type_check(Name/Arity, IV, OV, M, prolog_to_json(IV, OV, M)) :-
!,
functor(IV, Name, Arity).
type_check(boolean, IV, OV, _, prolog_bool_to_json(IV, OV)) :- !.
type_check(list, IV, OV, M, prolog_list_to_json(IV, OV, M)) :- !.
type_check(list(any), IV, OV, M, prolog_list_to_json(IV, OV, M)) :- !.
type_check(list(_Type), IV, OV, M, prolog_list_to_json(IV, OV, M)) :- !.
type_check(Type, V, V, _, Goal) :-
type_goal(Type, V, Goal).
%! prolog_bool_to_json(+Prolog, -JSON) is semidet.
%
% JSON is the JSON boolean for Prolog. It is a flexible the Prolog
% notation for truth-value, accepting one of =true=, =on= or =1=
% for @true and one of =false=, =fail=, =off= or =0= for @false.
%
% @error instantiation_error if Prolog is unbound.
prolog_bool_to_json(Var, _) :-
var(Var),
instantiation_error(Var).
prolog_bool_to_json(true, @(true)).
prolog_bool_to_json(false, @(false)).
prolog_bool_to_json(fail, @(false)).
prolog_bool_to_json(0, @(false)).
prolog_bool_to_json(on, @(true)).
prolog_bool_to_json(off, @(false)).
prolog_bool_to_json(1, @(false)).
prolog_bool_to_json(@(True), True) :-
prolog_bool_to_json(True, True).
%! type_goal(+Type, +Var, -BodyTerm) is det.
%
% Inline type checking calls.
type_goal(Type, Var, Body) :-
current_type(Type, Var, Body0),
primitive(Body0, Body),
!.
type_goal(Type, Var, is_of_type(Type, Var)).
primitive((A0,B0), (A,B)) :-
!,
primitive(A0, A),
primitive(B0, B).
primitive((A0;B0), (A,B)) :-
!,
primitive(A0, A),
primitive(B0, B).
primitive((A0->B0), (A,B)) :-
!,
primitive(A0, A),
primitive(B0, B).
primitive(_:G, G) :-
!,
predicate_property(system:G, built_in).
primitive(G, G) :-
predicate_property(system:G, built_in).
non_json_type(Type) :-
current_type(Type, _, _),
!.
%! clean_body(+BodyIn, -BodyOut) is det.
%
% Cleanup a body goal. Eliminate redundant =true= statements and
% perform partial evaluation on some commonly constructs that are
% generated from the has_type/2 clauses in library(error).
clean_body(Var, Var) :-
var(Var),
!.
clean_body((A0,B0), G) :-
!,
clean_body(A0, A),
clean_body(B0, B),
conj(A, B, G).
clean_body(ground(X), true) :- % Generated from checking extra fields.
ground(X),
!.
clean_body(memberchk(V, Values), true) :- % generated from oneof(List)
ground(V), ground(Values),
memberchk(V, Values),
!.
clean_body((integer(Low) -> If ; Then), Goal) :- % generated from between(Low,High)
number(Low),
!,
( integer(Low)
-> Goal = If
; Goal = Then
).
clean_body((A->true;fail), A) :- !. % nullable fields.
clean_body((fail->_;A), A) :- !.
clean_body(A, A).
conj(T, A, A) :- T == true, !.
conj(A, T, A) :- T == true, !.
conj(A, B, (A,B)).
make_pairs([], [], L, L).
make_pairs([N|TN], [V|TV], [N=V|T], Tail) :-
make_pairs(TN, TV, T, Tail).
%! current_clause(+Constructor, +Module, +Types, +Defs, +Names, +Extra)
%
% Create the clause current_json_object/3.
current_clause(Constructor, Module, Types, Defs, Names, Extra) -->
{ length(Types, Arity),
functor(Term, Constructor, Arity),
extra_fields(Extra, EF),
Term =.. [_|Vars],
mk_fields(Names, Types, Defs, Vars, Fields0, EF),
sort(Fields0, Fields),
Head =.. [current_json_object, Term, Module, Fields]
},
[ json_convert:Head ].
extra_fields([], []).
extra_fields([Name=Value|T0], [f(Name, oneof([Value]), _, Value)|T]) :-
extra_fields(T0, T).
mk_fields([], [], [], [], Fields, Fields).
mk_fields([Name|TN], [Type|TT], [Def|DT], [Var|VT],
[f(Name, Type, Def, Var)|T], Tail) :-
mk_fields(TN, TT, DT, VT, T, Tail).
/* The code below is copied from library(record) */
%! defaults(+ArgsSpecs, -Defaults, -Args)
%
% Strip the default specification from the argument specification.
defaults([], [], []).
defaults([Arg=Default|T0], [Default|TD], [Arg|TA]) :-
!,
defaults(T0, TD, TA).
defaults([Arg|T0], [NoDefault|TD], [Arg|TA]) :-
no_default(NoDefault),
defaults(T0, TD, TA).
no_default('$no-default$').
%! types(+ArgsSpecs, -Defaults, -Args)
%
% Strip the default specification from the argument specification.
types([], [], []).
types([Name:Type|T0], [Name|TN], [Type|TT]) :-
!,
must_be(atom, Name),
types(T0, TN, TT).
types([Name|T0], [Name|TN], [any|TT]) :-
must_be(atom, Name),
types(T0, TN, TT).
/*******************************
* PROLOG --> JSON *
*******************************/
%! prolog_to_json(:Term, -JSONObject) is det.
%
% Translate a Prolog application Term into a JSON object term.
% This transformation is based on :- json_object/1 declarations.
% If a json_object/1 declaration declares a field of type
% =boolean=, commonly used truth-values in Prolog are converted
% to JSON booleans. Boolean translation accepts one of =true=,
% =on=, =1=, @true, =false=, =fail=, =off= or =0=, @false.
%
% @error type_error(json_term, X)
% @error instantiation_error
prolog_to_json(Module:Term, JSON) :-
prolog_to_json(Term, JSON, Module).
prolog_to_json(Var, _, _) :-
var(Var),
!,
instantiation_error(Var).
prolog_to_json(Atomic, Atomic, _) :-
atomic(Atomic),
!.
prolog_to_json(List, JSON, Module) :-
is_list(List),
!,
prolog_list_to_json(List, JSON, Module).
prolog_to_json(Record, JSON, Module) :-
record_to_pairs(Record, JSON, Module),
!.
prolog_to_json(Term, Term, _) :-
is_json_term(Term),
!.
prolog_to_json(Term, _, _) :-
type_error(json_term, Term).
record_to_pairs(T, _, _) :-
var(T),
!,
instantiation_error(T).
record_to_pairs(T, JSON, M) :-
object_module(M, Module),
json_object_to_pairs(T, Module, JSON),
!.
object_module(user, user) :- !.
object_module(M, M).
object_module(_, user).
prolog_list_to_json([], [], _).
prolog_list_to_json([H0|T0], [H|T], M) :-
prolog_to_json(H0, H, M),
prolog_list_to_json(T0, T, M).
/*******************************
* JSON --> PROLOG *
*******************************/
:- dynamic
json_to_prolog_rule/3, % Module, Pairs, Term
created_rules_for_pairs/2. % Module, Pairs
clear_cache :-
retractall(json_to_prolog_rule(_,_,_)),
retractall(created_rules_for_pairs(_,_)).
:- clear_cache.
%! json_to_prolog(+JSON, -Term) is det.
%
% Translate a JSON term into an application term. This
% transformation is based on :- json_object/1 declarations. An
% efficient transformation is non-trivial, but we rely on the
% assumption that, although the order of fields in JSON terms is
% irrelevant and can therefore vary a lot, practical applications
% will normally generate the JSON objects in a consistent order.
%
% If a field in a json_object is declared of type =boolean=, @true
% and @false are translated to =true= or =false=, the most
% commonly used Prolog representation for truth-values.
json_to_prolog(JSON, Module:Term) :-
json_to_prolog(JSON, Term, Module).
json_to_prolog(json(Pairs), Term, Module) :-
!,
( pairs_to_term(Pairs, Term, Module)
-> true
; json_pairs_to_prolog(Pairs, Prolog, Module),
Term = json(Prolog)
).
json_to_prolog(List, Prolog, Module) :-
is_list(List),
!,
json_list_to_prolog(List, Prolog, Module).
json_to_prolog(@(Special), @(Special), _) :- !.
json_to_prolog(Atomic, Atomic, _).
json_pairs_to_prolog([], [], _).
json_pairs_to_prolog([Name=JSONValue|T0], [Name=PrologValue|T], Module) :-
json_to_prolog(JSONValue, PrologValue, Module),
json_pairs_to_prolog(T0, T, Module).
json_list_to_prolog([], [], _).
json_list_to_prolog([JSONValue|T0], [PrologValue|T], Module) :-
json_to_prolog(JSONValue, PrologValue, Module),
json_list_to_prolog(T0, T, Module).
%! pairs_to_term(+Pairs, ?Term, +Module) is semidet.
%
% Convert a Name=Value set into a Prolog application term based on
% json_object/1 declarations. If multiple rules can be created,
% make the one with the highest arity the preferred one.
%
% @tbd Ignore extra pairs if term is partially given?
pairs_to_term(Pairs, Term, Module) :-
object_module(Module, M),
( json_to_prolog_rule(M, Pairs, Term)
-> !
; created_rules_for_pairs(M, Pairs)
-> !, fail
; pairs_args(Pairs, PairArgs),
sort(PairArgs, SortedPairArgs),
findall(Q-Rule,
( create_rule(SortedPairArgs, Module, M, Term0, Body, Q),
Rule = (json_to_prolog_rule(M, PairArgs, Term0) :- Body)
),
RulePairs),
keysort(RulePairs, ByQuality),
pairs_values(ByQuality, Rules),
maplist(asserta, Rules),
asserta(created_rules_for_pairs(M, PairArgs)),
json_to_prolog_rule(M, Pairs, Term), !
).
pairs_args([], []).
pairs_args([Name=_Value|T0], [Name=_|T]) :-
pairs_args(T0, T).
%! create_rule(+PairArgs, +Module, -ObjectM, -Term, -Body,
%! -Quality) is det.
%
% Create a new rule for dealing with Pairs, a Name=Value list of a
% particular order. Here is an example rule:
%
% ==
% json_to_prolog_rule([x=X, y=Y], point(X,Y)) :-
% integer(X),
% integer(Y).
% ==
%
% @arg PairArgs is an ordered list of Name=Variable pairs
% @arg Module is the module requesting the conversion
% @arg ObjectM is the module where the object is defined
% @arg Term is the converted term (with variable arguments)
% @arg Body is a Prolog goal that validates the types and
% converts arguments.
% @arg Quality is a number that indicates the matching quality.
% Larger values are better. Max is 0. There is a penalty
% of 1 for applying a default value and a penalty of 2 for
% ignoring a value in the JSON term.
create_rule(PairArgs, Module, M, Term, Body, Quality) :-
current_json_object(Term, M, Fields),
match_fields(PairArgs, Fields, Body0, Module, 0, Quality),
clean_body(Body0, Body).
match_fields(Ignored, [], true, _, Q0, Q) :-
!,
length(Ignored, Len),
Q is Q0-2*Len.
match_fields([Name=JSON|TP], [f(Name, Type, _, Prolog)|TF], (Goal,Body),
M, Q0, Q) :-
!,
match_field(Type, JSON, Prolog, M, Goal),
match_fields(TP, TF, Body, M, Q0, Q).
match_fields([Name=JSON|TP], [f(OptName, Type, Def, Prolog)|TF], Body,
M, Q0, Q) :-
OptName @< Name,
!,
( nullable(Type)
-> true
; no_default(NoDef),
Def \== NoDef
-> Prolog = Def
),
Q1 is Q0-1,
match_fields([Name=JSON|TP], TF, Body, M, Q1, Q).
match_fields([], [f(_OptName, Type, Def, Prolog)|TF], Body,
M, Q0, Q) :-
!,
( nullable(Type)
-> true
; no_default(NoDef),
Def \== NoDef
-> Prolog = Def
),
Q1 is Q0-1,
match_fields([], TF, Body, M, Q1, Q).
match_fields([Name=_|TP], [F|TF], Body, M, Q0, Q) :-
arg(1, F, Next),
Name @< Next,
Q1 is Q0-2,
match_fields(TP, [F|TF], Body, M, Q1, Q).
nullable(null).
nullable((A|B)) :- ( nullable(A) -> true ; nullable(B) ).
match_field((A|B), JSON, Prolog, M, (BodyA->true;BodyB)) :-
!,
match_field(A, JSON, Prolog, M, BodyA),
match_field(B, JSON, Prolog, M, BodyB).
match_field(null, _, _, _, fail) :- !.
match_field(any, JSON, Prolog, M, json_to_prolog(JSON,Prolog,M)) :- !.
match_field(F/A, JSON, Prolog, M, json_to_prolog(JSON,Prolog,M)) :-
!,
functor(Prolog, F, A).
match_field(boolean, JSON, Prolog, _, json_bool_to_prolog(JSON, Prolog)) :- !.
match_field(list(Type), JSON, Prolog, M, json_list_to_prolog(JSON, Prolog, M)) :-
!,
( Type = _Funcor/_Arity
-> true
; non_json_type(Type)
-> true
; current_json_object(Term, M, _Fields),
functor(Term, Type, _)
).
match_field(list, JSON, Prolog, M, Goal) :-
!,
match_field(list(any), JSON, Prolog, M, Goal).
match_field(Type, Var, Var, _, Goal) :-
type_goal(Type, Var, Goal).
:- public json_bool_to_prolog/2.
json_bool_to_prolog(@(True), True).
/*******************************
* EXPANSION *
*******************************/
:- multifile
system:term_expansion/2.
:- dynamic
system:term_expansion/2.
system:term_expansion((:- json_object(Spec)), Clauses) :-
compile_json_objects(Spec, Clauses).