-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpi_driver_on_pi.py
140 lines (122 loc) · 4.31 KB
/
pi_driver_on_pi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import io
import socket
import struct
import time
import picamera
import cv2
import numpy as np
import RPi.GPIO as GPIO
GPIO.setwarnings(False)
GPIO.cleanup()
GPIO.setmode(GPIO.BOARD)
GPIO.setup(7,GPIO.OUT)
GPIO.setup(11,GPIO.OUT)
GPIO.setup(13,GPIO.OUT)
GPIO.setup(12,GPIO.OUT)
#pwm = GPIO.PWM(13, 25)
GPIO.output(13,False)
GPIO.output(12,False)
GPIO.output(7,False)
GPIO.output(11,False)
print("about to connect")
client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client_socket.bind(('192.168.43.255',7000))
print("got socket")
client_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
client_socket.connect(('192.168.43.224', 8000))
print("finish connection")
connection = client_socket.makefile('wb')
class NeuralNetwork(object):
def __init__(self):
#self.model = cv2.ml.ANN_MLP_create()
self.model = cv2.ml.ANN_MLP_load('ann.xml')
#self.layer_sizes = np.int32([50400, 32, 3])
#self.model.setLaqerSizes(self.layer_sizes)
#self.model.load('ann_91.xml')
def predict(self, samples):
ret, resp = self.model.predict(samples)
return resp.argmax(-1)
ann = NeuralNetwork()
instruction_bit = 0
try:
with picamera.PiCamera() as camera:
camera.resolution = (420,240)
camera.framerate = 10
camera.rotation=180
time.sleep(2)
start = time.time()
stream = io.BytesIO()
instruct = 0
GPIO.output(7, False)
GPIO.output(11, False)
for foo in camera.capture_continuous(stream, 'jpeg', use_video_port=True):
connection.write(struct.pack('<L', stream.tell()))
connection.flush()
stream.seek(0)
streamValue = stream.read()
connection.write(streamValue)
image = cv2.imdecode(np.fromstring(streamValue, dtype=np.uint8), -1)
stream.seek(0)
stream.truncate()
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# gray_image = cv2.flip(gray_image, 1)
gray_image = gray_image[120:240, :]
# added6
gray_image = cv2.GaussianBlur(gray_image, (5, 5), 0)
gray_image = cv2.Laplacian(gray_image, cv2.CV_64F)
gray_image = cv2.erode(gray_image, kernel=(3, 3), iterations=3)
gray_image = cv2.erode(gray_image, kernel=(4, 4))
gray_image = cv2.dilate(gray_image, kernel=(2, 2), iterations=2)
gray_image = cv2.morphologyEx(gray_image, cv2.MORPH_CLOSE, kernel=(3, 3))
# done
temp_image_array = gray_image.reshape(1, 50400).astype(np.float32)
prediction = ann.predict(temp_image_array)
#if instruction_bit >=6:
#GPIO.output(7, False)
#GPIO.output(11, False)
#instruction_bit=0
if prediction == 0:
#pwm.ChangeDutyCycle(20)
GPIO.output(13, True)
GPIO.output(12, False)
GPIO.output(7, False)
GPIO.output(11, False)
print('forward')
elif prediction == 1:
#pwm.ChangeDutyCycle(10)
GPIO.output(13, True)
GPIO.output(12, False)
GPIO.output(7, False)
GPIO.output(11, True)
print('left')
time.sleep(0.06)
instruction_bit += 1
elif prediction == 2:
#pwm.ChangeDutyCycle(10)
GPIO.output(13, True)
GPIO.output(12, False)
GPIO.output(7, True)
GPIO.output(11, False)
print('right')
time.sleep(0.06)
instruction_bit += 1
#elif prediction == 3:
# urllib2.urlopen('http://192.168.43.141:5000/stop').read()
# print('pause')
time.sleep(0.06)
GPIO.output(7, False)
GPIO.output(11, False)
GPIO.output(13, False)
#pwm.ChangeDutyCycle(0)
GPIO.output(12, False)
time.sleep(0.16)
instruction_bit += 1
# only get the lower half image (cut the row num in half)
connection.write(struct.pack('<L', 0))
except (socket.error, e):
print(e)
finally:
connection.close()
client_socket.close()
print('connection closed')
GPIO.cleanup()