-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdataset.py
251 lines (215 loc) · 9.34 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
"""
This code is modified from Hengyuan Hu's repository.
https://github.com/hengyuan-hu/bottom-up-attention-vqa
"""
from __future__ import print_function
import _pickle as cPickle
import os
import json
import warnings
with warnings.catch_warnings():
warnings.filterwarnings("ignore",category=FutureWarning)
import h5py
import numpy as np
import torch
from torch.utils.data import Dataset
from konlpy.tag import Mecab, Kkma
from pytorch_pretrained_bert import BertTokenizer
import utils
class Dictionary(object):
def __init__(self, word2idx=None, idx2word=None):
if word2idx is None:
word2idx = {}
if idx2word is None:
idx2word = []
self.word2idx = word2idx
self.idx2word = idx2word
@property
def ntoken(self):
return len(self.word2idx)
@property
def padding_idx(self):
return len(self.word2idx)
def tokenize(self, sentence, add_word, sp=None):
if sp is None:
sentence = sentence.lower()
sentence = sentence.replace(',', '').replace('?', '').replace('\'s', ' \'s')
words = sentence.split()
else:
words = sp(sentence)
tokens = []
if add_word:
for w in words:
tokens.append(self.add_word(w))
else:
for w in words:
# the least frequent word (`bebe`) as UNK for Visual Genome dataset
tokens.append(self.word2idx.get(w, self.padding_idx-1))
return tokens
def dump_to_file(self, path):
cPickle.dump([self.word2idx, self.idx2word], open(path, 'wb'))
print('dictionary dumped to %s' % path)
@classmethod
def load_from_file(cls, path):
print('loading dictionary from %s' % path)
word2idx, idx2word = cPickle.load(open(path, 'rb'))
d = cls(word2idx, idx2word)
return d
def add_word(self, word):
if word not in self.word2idx:
self.idx2word.append(word)
self.word2idx[word] = len(self.idx2word) - 1
return self.word2idx[word]
def __len__(self):
return len(self.idx2word)
def _create_entry(img, question, answer):
if None!=answer:
answer.pop('image_id')
answer.pop('question_id')
entry = {
'question_id' : question['question_id'],
'image_id' : question['image_id'],
'image' : img,
'question' : question['question'],
'answer' : answer}
return entry
def _load_kvqa(dataroot, name, img_id2val):
"""Load entries
img_id2val: dict {img_id -> val} val can be used to retrieve image or features
dataroot: root path of dataset
name: 'train', 'val', 'test'
"""
question_path = os.path.join(
os.path.join(dataroot, 'KVQA_annotations_%s.json' % name))
questions = sorted(json.load(open(question_path, encoding='utf-8')), key=lambda x: x['image'])
idx2type = None
type2idx = None
if 'test'!=name[:4]: # train, val
answer_path = os.path.join(dataroot, 'cache', '%s_target.kvqa.pkl' % name)
answers = cPickle.load(open(answer_path, 'rb'))
answers = sorted(answers, key=lambda x: x['question_id'])
utils.assert_eq(len(questions), len(answers))
type2idx = {}
idx2type = []
entries = []
for question, answer in zip(questions, answers):
q_id, _ = os.path.splitext(question['image'])
question['question_id'] = q_id
question['image_id'] = q_id
utils.assert_eq(q_id, answer['question_id'])
img_id = q_id
image_index = img_id2val[img_id]
entry = _create_entry(image_index, question, answer)
entry['answerable'] = int(question['answerable'])
if question['answer_type'] not in type2idx:
type2idx[question['answer_type']] = len(idx2type)
idx2type.append(question['answer_type'])
entry['answer_type'] = type2idx[question['answer_type']]
entries.append(entry)
else: # test
entries = []
for question in questions:
img_id, _ = os.path.splitext(question['image'])
q_id = img_id
question['question_id'] = q_id
question['image_id'] = q_id
entry = _create_entry(img_id2val[img_id], question, None)
entries.append(entry)
return entries, type2idx, idx2type
class KvqaFeatureDataset(Dataset):
def __init__(self, split, dictionary, dataroot='data', tokenizer='sp'):
super(KvqaFeatureDataset, self).__init__()
assert split in ['train', 'val', 'test']
self.dataroot = dataroot
ans2label_path = os.path.join(dataroot, 'cache', 'trainval_ans2label.kvqa.pkl')
label2ans_path = os.path.join(dataroot, 'cache', 'trainval_label2ans.kvqa.pkl')
self.ans2label = cPickle.load(open(ans2label_path, 'rb'))
self.label2ans = cPickle.load(open(label2ans_path, 'rb'))
self.num_ans_candidates = len(self.ans2label)
self.dictionary = dictionary
self.img_id2idx = cPickle.load(
open(os.path.join(dataroot, '%s_imgid2idx.kvqa.pkl' % split),
'rb'))
h5_path = os.path.join(dataroot, '%s_kvqa.hdf5' % split)
print('loading features from h5 file')
with h5py.File(h5_path, 'r') as hf:
self.features = np.array(hf.get('image_features'))
self.spatials = np.array(hf.get('spatial_features'))
self.pos_boxes = np.array(hf.get('pos_boxes'))
self.entries, self.type2idx, self.idx2type = _load_kvqa(dataroot, split, self.img_id2idx)
if tokenizer == 'sp':
self.tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased', do_lower_case=False)
self.dictionary = self.tokenizer.vocab
elif tokenizer == 'mecab':
self.tokenizer = Mecab()
elif tokenizer == 'kkma':
self.tokenizer = Kkma()
self.tokenize()
self.tensorize()
self.v_dim = self.features.size(1)
self.s_dim = self.spatials.size(1)
def tokenize(self, max_length=14):
"""Tokenizes the questions.
This will add q_token in each entry of the dataset.
-1 represent nil, and should be treated as padding_idx in embedding
"""
for entry in self.entries:
if hasattr(self.tokenizer, 'morphs'):
tokens = self.tokenizer.morphs(entry['question'].replace('.', ''))
tokens = [self.dictionary.word2idx[token] for token in tokens[:max_length]]
if len(tokens) < max_length:
# Note here we pad in front of the sentence
padding = [self.dictionary.padding_idx] * (max_length - len(tokens))
tokens = tokens + padding
elif hasattr(self.tokenizer, 'tokenize'):
tokens = self.tokenizer.tokenize(entry['question'])
tokens = [self.dictionary[token] for token in tokens[:max_length]]
if len(tokens) < max_length:
# Note here we pad in front of the sentence
padding = [self.dictionary['[PAD]']] * (max_length - len(tokens))
tokens = tokens + padding
else:
tokens = self.tokenizer(entry['question'])
tokens = [self.dictionary(token) for token in tokens[:max_length]]
if len(tokens) < max_length:
# Note here we pad in front of the sentence
padding = [self.dictionary('[PAD]')] * (max_length - len(tokens))
tokens = tokens + padding
utils.assert_eq(len(tokens), max_length)
entry['q_token'] = tokens
def tensorize(self):
self.features = torch.from_numpy(self.features)
self.spatials = torch.from_numpy(self.spatials)
for entry in self.entries:
question = torch.from_numpy(np.array(entry['q_token']))
entry['q_token'] = question
answer = entry['answer']
if None!=answer:
labels = np.array(answer['labels'])
scores = np.array(answer['scores'], dtype=np.float32)
if len(labels):
labels = torch.from_numpy(labels)
scores = torch.from_numpy(scores)
entry['answer']['labels'] = labels
entry['answer']['scores'] = scores
else:
entry['answer']['labels'] = None
entry['answer']['scores'] = None
def __getitem__(self, index):
entry = self.entries[index]
features = self.features[self.pos_boxes[entry['image']][0]:self.pos_boxes[entry['image']][1], :]
spatials = self.spatials[self.pos_boxes[entry['image']][0]:self.pos_boxes[entry['image']][1], :]
question = entry['q_token']
question_id = entry['question_id']
answer = entry['answer']
if None != answer:
labels = answer['labels']
scores = answer['scores']
target = torch.zeros(self.num_ans_candidates)
if labels is not None:
target.scatter_(0, labels, scores)
return features, spatials, question, target, entry['answerable'], entry['answer_type']
else:
return features, spatials, question, question_id, 0., -1
def __len__(self):
return len(self.entries)