forked from AakashKumarNain/AugMix_TF2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_generator.py
210 lines (168 loc) · 7.47 KB
/
data_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import logging
import numpy as np
from PIL import Image
from PIL import ImageOps
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import tensorflow as tf
tf.get_logger().setLevel(logging.ERROR)
from tensorflow.keras.utils import Sequence, to_categorical
##########################################################################
class DataGenerator(Sequence):
def __init__(self,
data,
labels,
img_dim=(32, 32,3),
batch_size=32,
num_classes=10,
shuffle=True,
augment=False,
jsd=True):
self.data = data
self.labels = labels
self.img_dim = img_dim
self.IMAGE_SIZE = img_dim[0]
self.batch_size = batch_size
self.num_classes = num_classes
self.shuffle = shuffle
self.augment = augment
self.jsd = jsd
self.indices = np.arange(len(data))
self.on_epoch_end()
self.augmentations = [self.autocontrast,
self.equalize,
self.posterize,
self.rotate,
self.solarize,
self.shear_x,
self.shear_y,
self.translate_x,
self.translate_y]
self.counter = 1
self.total_steps = int(np.ceil(len(self.data) / self.batch_size))
def int_parameter(self, level, maxval):
"""Helper function to scale `val` between 0 and maxval .
Args:
level: Level of the operation that will be in [0, `PARAMETER_MAX`].
maxval: Maximum value that the operation can have. This will be
scaled to level/PARAMETER_MAX.
Returns:
An int that results from scaling `maxval` according to `level`.
"""
return int(level * maxval / 10)
def float_parameter(self, level, maxval):
"""Helper function to scale `val` between 0 and maxval.
Args:
level: Level of the operation that will be in [0, `PARAMETER_MAX`].
maxval: Maximum value that the operation can have. This will be
scaled to level/PARAMETER_MAX.
Returns:
A float that results from scaling `maxval` according to `level`.
"""
return float(level) * maxval / 10.
def sample_level(self, n):
return np.random.uniform(low=0.1, high=n)
def autocontrast(self, pil_img, _):
return ImageOps.autocontrast(pil_img)
def equalize(self, pil_img, _):
return ImageOps.equalize(pil_img)
def posterize(self, pil_img, level):
level = self.int_parameter(self.sample_level(level), 4)
return ImageOps.posterize(pil_img, 4 - level)
def rotate(self, pil_img, level):
degrees = self.int_parameter(self.sample_level(level), 30)
if np.random.uniform() > 0.5:
degrees = -degrees
return pil_img.rotate(degrees, resample=Image.BILINEAR)
def solarize(self, pil_img, level):
level = self.int_parameter(self.sample_level(level), 256)
return ImageOps.solarize(pil_img, 256 - level)
def shear_x(self, pil_img, level):
level = self.float_parameter(self.sample_level(level), 0.3)
if np.random.uniform() > 0.5:
level = -level
return pil_img.transform((self.IMAGE_SIZE, self.IMAGE_SIZE),
Image.AFFINE, (1, level, 0, 0, 1, 0),
resample=Image.BILINEAR)
def shear_y(self, pil_img, level):
level = self.float_parameter(self.sample_level(level), 0.3)
if np.random.uniform() > 0.5:
level = -level
return pil_img.transform((self.IMAGE_SIZE, self.IMAGE_SIZE),
Image.AFFINE, (1, 0, 0, level, 1, 0),
resample=Image.BILINEAR)
def translate_x(self, pil_img, level):
level = self.int_parameter(self.sample_level(level), self.IMAGE_SIZE / 3)
if np.random.random() > 0.5:
level = -level
return pil_img.transform((self.IMAGE_SIZE, self.IMAGE_SIZE),
Image.AFFINE, (1, 0, level, 0, 1, 0),
resample=Image.BILINEAR)
def translate_y(self, pil_img, level):
level = self.int_parameter(self.sample_level(level), self.IMAGE_SIZE / 3)
if np.random.random() > 0.5:
level = -level
return pil_img.transform((self.IMAGE_SIZE, self.IMAGE_SIZE),
Image.AFFINE, (1, 0, 0, 0, 1, level),
resample=Image.BILINEAR)
def on_epoch_end(self):
self.counter = 1
if self.shuffle:
np.random.shuffle(self.indices)
def apply_op(self, image, op, severity):
image = np.clip(image * 255., 0, 255).astype(np.uint8)
pil_img = Image.fromarray(image) # Convert to PIL.Image
pil_img = op(pil_img, severity)
return np.asarray(pil_img, dtype=np.float32) / 255.
def augment_and_mix(self, image, severity=3, width=3, depth=-1, alpha=1.):
"""Perform AugMix augmentations and compute mixture.
Args:
image: Raw input image as ndarray shape (h, w, c)
severity: Severity of underlying augmentation operators (1-10).
width: Width of augmentation chain
depth: Depth of augmentation chain. -1 or (1, 3)
alpha: Probability coefficient for Beta and Dirichlet distributions.
Returns:
mixed: Augmented and mixed image.
"""
ws = np.random.dirichlet([alpha] * width).astype(np.float32)
m = np.random.beta(alpha, alpha)
mix = np.zeros_like(image).astype(np.float32)
for i in range(width):
image_aug = image.copy()
depth = depth if depth > 0 else np.random.randint(1, 4)
for _ in range(depth):
op = np.random.choice(self.augmentations)
image_aug = self.apply_op(image_aug, op, severity)
# Preprocessing commutes since all coefficients are convex
mix += ws[i] * image_aug
# mix the image and return
mixed = (1 - m)*image + m*mix
return mixed
def __len__(self):
return self.total_steps
def __getitem__(self, idx):
curr_batch = self.indices[idx*self.batch_size:(idx+1)*self.batch_size]
batch_len = len(curr_batch)
if not self.jsd:
X_orig = np.zeros((batch_len, *self.img_dim), dtype=np.float32)
y = np.zeros((batch_len, 10), dtype=np.float32)
else:
X_orig = np.zeros((batch_len, *self.img_dim), dtype=np.float32)
X_aug1 = np.zeros((batch_len, *self.img_dim), dtype=np.float32)
X_aug2 = np.zeros((batch_len, *self.img_dim), dtype=np.float32)
y = np.zeros((batch_len, 10), dtype=np.float32)
for i, index in enumerate(curr_batch):
img = self.data[index]
X_orig[i] = self.augment_and_mix(img)
if self.jsd:
X_aug1[i] = self.augment_and_mix(img)
X_aug2[i] = self.augment_and_mix(img)
y[i] = self.labels[index]
self.counter +=1
if self.counter >=self.total_steps:
self.on_epoch_end()
if not self.jsd:
return X_orig, y
else:
return [X_orig, X_aug1, X_aug2], y