This directory contains a few useful example scripts for detrex.
train_net.py
A simpler training engine modified from lazyconfig_train_net.py.
analyze_model.py
Analyze FLOPs, parameters, activations of the detrex model modified from detectron2 analyze_model.py.
benchmark.py
Benchmark the training speed, inference speed or data loading speed of a given config, modified from benchmark.py
Usage:
python tools/benchmark.py --config-file /path/to/config.py --task train/eval/data
visualize_json_results.py
Visualize the json instance detection/segmentation results dumped by COCOEvaluator
modified from visualize_json_results.py
Usage:
python tools/visualize_json_results.py --input x.json \
--output dir/ \
--dataset coco_2017_val
If not using a builtin dataset, you'll need your own script or modify this script.
visualize_data.py
Visualize ground truth raw annotations or training data (after preprocessing/augmentations) modified from visualize_data.py
Usage:
python tools/visualize_data.py --config-file /path/to/config.py \
--source annotation/dataloader \
--output-dir dir/ \
[--show]
Notes: the script does not stop by itself when using --source dataloader
because a training dataloader is usually infinite.