-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path01_download_completions.py
150 lines (120 loc) · 4.34 KB
/
01_download_completions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import pandas as pd
import openai
import json
from tqdm import tqdm
import argparse
from prompts import prompt_templates
import os
import time
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
import transformers
from multiprocessing.managers import BaseManager
parser = argparse.ArgumentParser()
parser.add_argument('--data-path', help='input-data')
parser.add_argument('--output-path', help='input-data')
parser.add_argument('--prompt-strategy', help='input-data')
parser.add_argument('--prompt-path', help='input-data')
parser.add_argument('--word', help='input-data')
parser.add_argument('--model', default="text-davinci-002")
parser.add_argument('--cot', action='store_true')
parser.add_argument('--limit', help='input-data', type=int)
parser.set_defaults(cot=False)
args = parser.parse_args()
limit = args.limit
data = args.data_path
outputs = args.output_path
prompt_strategy = args.prompt_strategy
cot_mode = args.cot
word = args.word
prompt_path = args.prompt_path
model = args.model
prompt_template = prompt_templates[prompt_strategy]
flan_model = None
tokenizer = None
def get_completion(
templated_prompt,
temp=0.7,
max_tokens=256,
n=1,
model = "text-davinci-002"
):
global flan_model
global tokenizer
if "flan" in model:
if flan_model is None:
print("LOADING FLAN FROM MANAGER")
tokenizer = T5Tokenizer.from_pretrained(f"google/{model}")
manager = BaseManager(('', 37844), b'flanserver')
manager.register('get_connection')
manager.register('get_name')
manager.connect()
flan_model = manager.get_connection()
name = manager.get_name()
name = str(name)[1:-1]
print("MANAGER NAME")
print(name)
print(model)
if name != model:
raise Exception("Model mismatch")
input_ids = tokenizer(templated_prompt, return_tensors="pt").input_ids.to("cuda")
output_ids = flan_model.generate(input_ids.repeat(5, 1), max_new_tokens=256, do_sample=True, temperature=0.7, use_cache=True)
return tokenizer.batch_decode(output_ids, skip_special_tokens=True)
while True:
try:
response = openai.Completion.create(
model=model,
prompt=templated_prompt,
temperature=temp,
max_tokens=max_tokens,
n=n,
)
return [choice["text"] for choice in response["choices"]]
except:
print("sad")
time.sleep(15)
continue
open_mode = 'r' if os.path.exists(outputs) else 'w+'
with open(outputs, open_mode) as f:
try:
out_map = json.load(f)
except: out_map = {}
open_mode = 'r' if os.path.exists(prompt_path) else 'w+'
with open(prompt_path, open_mode) as f:
try:
prompt_map = json.load(f)
except: prompt_map = {}
df = pd.read_csv(data)
if limit:
df = df[:limit]
for i, row in tqdm(df.iterrows(), total=len(df)):
all_choices = [
row["a"],
row["b"],
row["c"]
]
if "context" in row and (not pd.isna(row["context"])):
for ix, choice in enumerate(all_choices):
if row["sent_more"] in choice or row["sent_less"] in choice:
all_choices[ix] = row["context"] + " " + all_choices[ix]
question = None
if "ctx" in row and (not pd.isna(row["ctx"])) and "q_text" in row and (not pd.isna(row["q_text"])):
question = row["ctx"] + " " + row["q_text"]
prompt = prompt_template["template"](all_choices, word, question=question)
if cot_mode:
prompt += prompt_template["cot_initial"]
else: prompt += prompt_template["final"]
prompt_map[str(i)] = prompt
with open(prompt_path, 'w', encoding='utf-8') as f:
json.dump(prompt_map, f, ensure_ascii=False, indent=4)
if str(i) in out_map:
continue
if i not in out_map:
out_map[str(i)] = []
out_map[str(i)].extend(get_completion(prompt, n=5, model=model))
with open(outputs, 'w', encoding='utf-8') as f:
json.dump(out_map, f, ensure_ascii=False, indent=4)
with open(outputs, 'w', encoding='utf-8') as f:
json.dump(out_map, f, ensure_ascii=False, indent=4)
with open(prompt_path, 'w', encoding='utf-8') as f:
json.dump(prompt_map, f, ensure_ascii=False, indent=4)