-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_myadaptor.py
934 lines (779 loc) · 39.5 KB
/
train_myadaptor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
import torch
from torch.utils.data import DataLoader
from torch import nn
from mytransformers import AdamW, WEIGHTS_NAME, HoulsbyConfig, get_constant_schedule_with_warmup
import csv
import random
import numpy as np
import os
import copy
import logging
from fp16 import FP16_Module, FP16_Optimizer
from parallel import DataParallelModel, DataParallelCriterion
from collections import OrderedDict
from utils_myadaptor import *
from settings_myadaptor import args, TASK_DICT, init_logging, MODEL_CONFIG, MODEL_CLASS, SPECIAL_TOKENS, CONFIG_CLASS
from settings_myadaptor import TOKENIZER, SPECIAL_TOKEN_IDS, FILL_VAL, SAVE_NAME, FINAL_SAVE_NAME, TOKENS_WEIGHT, CONFIG_NAME
from scheduler import AnnealingLR
from regularizers_myadaptor import REG_TYPES, REG_TYPE_KEYS, Weight_Regularized_AdamW, Weight_Regularized_SGD
from torch.nn import CrossEntropyLoss
logger = logging.getLogger(__name__)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
def load_old_adapter(model, newname, oldname):
state_dict = model.state_dict()
new_state_dict = OrderedDict()
for i in state_dict:
if oldname in i:
new_i = i.replace(oldname, newname)
new_state_dict[new_i] = state_dict[i].clone().detach()
m, n = model.load_state_dict(new_state_dict, strict=False)
logger.info("Load old adapter weight to new adapter weight, Unexpected: {}".format(n))
# Load pretrained adapters, not used in this paper
def load_pre_adapter(model, newname):
pre_state_dict = torch.load(os.path.join('./PModel/model-pretrain'))
new_state_dict = OrderedDict()
for i in pre_state_dict:
if "pretrain" in i:
new_i = i.replace("pretrain", newname)
new_state_dict[new_i] = pre_state_dict[i].clone().detach()
logger.info("Load from {} to {}".format(i, new_i))
m, n = model.load_state_dict(new_state_dict, strict=False)
logger.info("Load old adapter weight to new adapter weight, Unexpected: {}".format(n))
# Calculate the entropy for weight coefficient
def cal_entropy_loss(ita):
entropy_loss = torch.tensor(0.0, device="cuda")
for item in ita:
# temperature, not used
item = item / args.select_temp
dis = torch.nn.functional.softmax(item, dim=0)
# regularization on the last coefficient, not used
entropy_loss += args.last_dim_coe * (dis[-1][0] - 0.0) ** 2
log_dis = torch.log(dis)
entropy_loss += - torch.sum(dis * log_dis)
return entropy_loss
def freeze_for_mix(model):
for name, param in model.named_parameters():
if "ita" not in name:
param.requires_grad = False
else:
param.requires_grad = True
def learnable_para_calculate(model, note, printname=False):
learn_sum = 0
else_sum = 0
logger.info("Para requries gradient...")
param_opt = []
for name, param in model.named_parameters():
if param.requires_grad:
param_opt.append((name, param))
if printname:
logger.info(name)
learn_sum += param.nelement()
else:
else_sum += param.nelement()
# """
if "ita" in name:
param_opt.append((name, param))
# """
logger.info(note + " Number of learned parameter: %.2fM" % (learn_sum/1e6))
logger.info(note + " Number of else parameter: %.2fM" % (else_sum/1e6))
logger.info(note + " Ratio: {}".format(1.0 * (learn_sum + else_sum) / else_sum))
return param_opt
def print_para(model):
logger.info("Print para")
printted = [False, False, False, False, False]
for name, param in model.named_parameters():
for i in range(5):
if "adapters." + str(i) in name and not printted[i]:
logger.info(name)
logger.info(param)
printted[i] = True
def swap_name(org_name, seq_distil, ref1):
# swap_name(TASK_DICT[t]["train"], args.seq_distil, args.ref1)
if not seq_distil and not ref1:
return org_name
if seq_distil:
return org_name.replace("train", "distil")
if ref1:
return org_name.replace("train", "ref1")
def validation(model, valid_dataloader, train_loss_fct):
cum_loss = 0.0
cum_qa_loss = 0.0
cum_lm_loss = 0.0
cur_n_inputs = 0
with torch.no_grad():
model.eval()
for (_, _, cqa, _, Y, gen_X, gen_Y, task_id, idx) in valid_dataloader:
torch.cuda.empty_cache()
n_inputs = cqa[0].shape[0]
model.config.batch_task_id = task_id[0][0].item()
qa_loss, lm_loss = get_losses(model, cqa[0].cuda(), Y[0].cuda(), gen_X[0].cuda(), gen_Y[0].cuda(), train_loss_fct)
cum_loss += (qa_loss + lm_loss) * n_inputs
cum_qa_loss += qa_loss * n_inputs
cum_lm_loss += lm_loss * n_inputs
cur_n_inputs += n_inputs
return cum_loss / cur_n_inputs, cum_qa_loss / cur_n_inputs, cum_lm_loss / cur_n_inputs
# Clear model gradient
def clear(model):
old = model
model = copy.deepcopy(old)
del old
torch.cuda.empty_cache()
return model
def load_model(model_dir):
from mytransformers import GPT2LMHeadModel, GPT2Config
model_config = GPT2Config.from_json_file(os.path.join(model_dir, "config.json"))
model = GPT2LMHeadModel(model_config)
model.resize_token_embeddings(50260 + len(args.tasks))
adapter_list = np.load(os.path.join(model_dir, "adapter_list.npy"))
model.add_adapter_by_list(adapter_list, config=args.adapt_type)
state_dict = torch.load(os.path.join(model_dir, "model-finish"), map_location='cuda:0')
m, n = model.load_state_dict(state_dict, strict=False)
logger.info("Missing : {}, Unexpected: {}".format(m, n))
model.cuda()
return model
# Decision stage
def Mix(task_ids, model):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
tasks = [args.tasks[task_id] for task_id in task_ids]
logger.info("start to Mix { task: %s, seq train type: %s }" % (tasks, args.seq_train_type))
model_dir = get_model_dir(tasks)
make_dir(model_dir)
train_dataset = [swap_name(TASK_DICT[t]["train"], args.seq_distil, args.ref1) for t in tasks]
valid_dataset = [TASK_DICT[t]["test"] for t in tasks]
if args.load_model_for_stage:
prev_tasks = [args.tasks[task_ids[0]-1]]
prev_model_dir = get_model_dir(prev_tasks)
model = load_model(prev_model_dir)
else:
prev_tasks = [args.tasks[task_ids[0]-1]]
prev_model_dir = get_model_dir(prev_tasks)
load_model(prev_model_dir)
model.config.forward_mode = 'Mix'
model.config.testing = False
model.config.mix_ini = args.mix_ini
model.add_adapter(str(task_ids[0]), config=args.adapt_type)
if args.pretrain_adapter:
load_pre_adapter(model, str(task_ids[0]))
model.train_adapter(str(task_ids[0]))
model.cuda()
if args.clear_model:
model = clear(model)
param_opt = learnable_para_calculate(model, "whole", True)
gen_token = get_gen_token(tasks[0])
TOKENIZER.add_tokens([gen_token])
TOKENIZER.save_pretrained(model_dir)
SPECIAL_TOKENS[tasks[0]] = gen_token
SPECIAL_TOKEN_IDS[tasks[0]] = TOKENIZER.convert_tokens_to_ids(gen_token)
logger.info('gen token = {} , gen token id = {}'.format(gen_token, SPECIAL_TOKEN_IDS[tasks[0]]))
MODEL_CONFIG.vocab_size = len(TOKENIZER)
MODEL_CONFIG.to_json_file(os.path.join(model_dir,CONFIG_NAME))
global TOKENS_WEIGHT
while 50260 + len(args.tasks) != TOKENS_WEIGHT.shape[0]:
TOKENS_WEIGHT = torch.cat((TOKENS_WEIGHT, torch.ones([1]).cuda()))
logger.info("Add one dim weight!")
if not args.fp32: # again because resize_token_embeddings makes embedding layer fp32
model = FP16_Module(model)
logger.warning("Adapter Mix test, not using extra data now...")
train_qadata = QADataset(train_dataset, "train", SPECIAL_TOKEN_IDS[tasks[0]])
valid_qadata = QADataset(valid_dataset, "train", SPECIAL_TOKEN_IDS[tasks[0]])
# max_train_batch_size = max(len(train_qadata) // args.min_n_steps, args.min_batch_size)
max_train_batch_size = args.z_max_batch_size
train_dataloader = create_dataloader(train_qadata, "train", max_train_batch_size)
valid_dataloader = create_dataloader(valid_qadata, "test")
n_train_epochs = args.whole_mix_step
n_train_optimization_steps = len(train_qadata) * n_train_epochs
logger.info('len of train dataset: {} , max train batch size {} , num of opt steps: {}'.format(
len(train_qadata), max_train_batch_size, n_train_optimization_steps))
if args.whole_optim:
param_optimizer = list(model.named_parameters())
else:
param_optimizer = param_opt
# logger.info(param_optimizer)
no_decay = ['bias', 'ln_1', 'ln_2', 'ln_f']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
logger.info("USE ARGS.ADAM_EPSILON NOW.....")
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_constant_schedule_with_warmup(optimizer, args.z_warmup_step)
train_loss_fct = CrossEntropyLoss(ignore_index=FILL_VAL, weight=TOKENS_WEIGHT.type(torch.float if args.fp32 else torch.half))
ita = None
tot_n_steps = 0
train_once = TrainStep(model, optimizer, scheduler)
mix_flag = 0
for ep in range(n_train_epochs):
model.train()
cum_loss, cum_qa_loss, cum_lm_loss, cur_n_inputs = 0, 0, 0, 0
cum_en_loss = 0
# learnable_para_calculate(model, "whole")
for n_steps, (_, _, cqa, _, Y, gen_X, gen_Y, task_id, idx) in enumerate(train_dataloader):
n_inputs = cqa[0].shape[0]
lens = cqa[0].shape[1]
if lens > 500:
# too long will cause memory error! (This should rarely happen, so the influence is trivial)
logger.info(cqa[0].shape)
continue
model.config.batch_task_id = task_id[0][0].item()
losses = get_losses(model, cqa[0].cuda(), Y[0].cuda(), gen_X[0].cuda(), gen_Y[0].cuda(), train_loss_fct, True)
if losses[1].item() == 0:
loss = losses[0]
else:
loss = losses[0] + losses[1]
# normalized mixed score? not used
if args.mix_loss_norm and model.config.forward_mode == 'Mix':
loss /= loss.item()
loss *= args.mix_loss_coe
ita = losses[2]
en_loss = torch.tensor(0.)
if task_ids[0] > 0 and model.config.forward_mode == 'Mix':
en_loss = cal_entropy_loss(ita)
loss += en_loss * args.entropy_coe
train_once(loss, n_inputs)
qa_loss = losses[0].item() * n_inputs
lm_loss = losses[1].item() * n_inputs
cum_loss += loss.item() * n_inputs
cum_en_loss += en_loss.item() * args.entropy_coe * n_inputs
cum_qa_loss += qa_loss
cum_lm_loss += lm_loss
cur_n_inputs += n_inputs
if args.constant_sch or task_ids[0] > 0:
lr = scheduler.get_lr()[0]
else:
lr = scheduler.get_lr()
if (n_steps + 1) % args.logging_steps == 0:
logger.info('progress {:.3f} , lr {:.1E} , loss {:.3f} , qa loss {:.3f} , lm loss {:.3f} , en loss {:.3f}, avg batch size {:.1f}'
.format(ep + cur_n_inputs/len(train_qadata),
lr, cum_loss/cur_n_inputs,
cum_qa_loss/cur_n_inputs, cum_lm_loss/cur_n_inputs,
cum_en_loss/cur_n_inputs, cur_n_inputs/(n_steps + 1)))
if not args.gradient_debug:
tot_n_steps += (n_steps + 1)
val_loss, val_qa_loss, val_lm_loss = validation(model, valid_dataloader, train_loss_fct)
logger.info('epoch {}/{} done , tot steps {} , loss {:.2f} , qa loss {:.2f} , lm loss {:.2f}, val loss {:.2f}, vqa loss {:.2f}, vlm loss {:.2f}, avg batch size {:.1f}'.format(
ep+1, n_train_epochs, tot_n_steps,
cum_loss/cur_n_inputs, cum_qa_loss/cur_n_inputs,
cum_lm_loss/cur_n_inputs, val_loss,
val_qa_loss, val_lm_loss, cur_n_inputs/(n_steps+1)
))
logger.info("ITA:")
logger.info(ita)
print_para(model)
if args.gradient_debug:
exit(0)
if ep == args.warm_mix_step - 1:
model.config.forward_mode = 'Mix'
for name, param in model.named_parameters():
if "ita" in name:
param.requires_grad = True
if args.layer_debug:
for i, layer_ita in enumerate(ita):
if i == args.layer_debug_cnt:
layer_ita[1] = 1.0
# Make decision on which adapter to use for the new task (in each layer)
cnt_true = model.setup_task_adapter(task_ids[0])
if cnt_true > 0:
fit_or_not = True
else:
fit_or_not = False
# Not using Fit stage now
current_fit_epoch = None
trans = True
torch.save(model.state_dict(), os.path.join(model_dir, SAVE_NAME+"finish"))
adapter_list = model.get_adapter_list()
np.save(os.path.join(model_dir, "adapter_list.npy"), adapter_list)
logger.info("MODEL SAVED!")
del optimizer
del scheduler
torch.cuda.empty_cache()
return model, fit_or_not, trans, current_fit_epoch
# An extra phase to train newly added modules and reused modules on the new task only, not used
def Fit(task_ids, model, current_fit_epoch=None):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
tasks = [args.tasks[task_id] for task_id in task_ids]
logger.info("start to Fit { task: %s, seq train type: %s }" % (tasks, args.seq_train_type))
model_dir = get_model_dir(tasks)
train_dataset = [swap_name(TASK_DICT[t]["train"], args.seq_distil, args.ref1) for t in tasks]
valid_dataset = [TASK_DICT[t]["test"] for t in tasks]
if args.load_model_for_stage:
model = load_model(model_dir)
else:
load_model(model_dir)
# Fit preparation
model.config.forward_mode = 'Fit'
model.config.testing = False
model.train_adapter(str(task_ids[0]))
# model.train_adapter_subname([str(task_ids[0])])
model.cuda()
if args.clear_model:
model = clear(model)
param_opt = learnable_para_calculate(model, "whole", True)
gen_token = get_gen_token(tasks[0])
TOKENIZER.add_tokens([gen_token])
TOKENIZER.save_pretrained(model_dir)
SPECIAL_TOKENS[tasks[0]] = gen_token
SPECIAL_TOKEN_IDS[tasks[0]] = TOKENIZER.convert_tokens_to_ids(gen_token)
logger.info('gen token = {} , gen token id = {}'.format(gen_token, SPECIAL_TOKEN_IDS[tasks[0]]))
MODEL_CONFIG.vocab_size = len(TOKENIZER)
MODEL_CONFIG.to_json_file(os.path.join(model_dir,CONFIG_NAME))
global TOKENS_WEIGHT
while 50260 + len(args.tasks) != TOKENS_WEIGHT.shape[0]:
TOKENS_WEIGHT = torch.cat((TOKENS_WEIGHT, torch.ones([1]).cuda()))
logger.info("Add one dim weight!")
if not args.fp32: # again because resize_token_embeddings makes embedding layer fp32
model = FP16_Module(model)
logger.warning("In Fit, not using extra data now...")
# train_qadata = QADataset(train_dataset, "train", SPECIAL_TOKEN_IDS[tasks[0]], train_extra_data)
train_qadata = QADataset(train_dataset, "train", SPECIAL_TOKEN_IDS[tasks[0]])
valid_qadata = QADataset(valid_dataset, "train", SPECIAL_TOKEN_IDS[tasks[0]])
max_train_batch_size = args.z_max_batch_size
train_dataloader = create_dataloader(train_qadata, "train", max_train_batch_size)
valid_dataloader = create_dataloader(valid_qadata, "test")
n_train_epochs = args.fit_epoch
if current_fit_epoch is not None:
n_train_epochs = current_fit_epoch
n_train_optimization_steps = len(train_qadata) * n_train_epochs
logger.info('len of train dataset: {} , max train batch size {} , num of opt steps: {}'.format(
len(train_qadata), max_train_batch_size, n_train_optimization_steps))
if args.whole_optim:
param_optimizer = list(model.named_parameters())
else:
param_optimizer = param_opt
# logger.info(param_optimizer)
no_decay = ['bias', 'ln_1', 'ln_2', 'ln_f']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
logger.info("USE ARGS.ADAM_EPSILON NOW.....")
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_constant_schedule_with_warmup(optimizer, args.z_warmup_step)
train_loss_fct = CrossEntropyLoss(ignore_index=FILL_VAL, weight=TOKENS_WEIGHT.type(torch.float if args.fp32 else torch.half))
tot_n_steps = 0
train_once = TrainStep(model, optimizer, scheduler)
# model.config.batch_task_id = task_ids[0]
for ep in range(n_train_epochs):
model.train()
cum_loss, cum_qa_loss, cum_lm_loss, cur_n_inputs = 0, 0, 0, 0
# learnable_para_calculate(model, "whole")
for n_steps, (_, _, cqa, _, Y, gen_X, gen_Y, task_id, idx) in enumerate(train_dataloader):
# logger.info("One step!!!")
n_inputs = cqa[0].shape[0]
lens = cqa[0].shape[1]
if lens > 500:
logger.info(cqa[0].shape)
continue
model.config.batch_task_id = task_id[0][0].item()
losses = get_losses(model, cqa[0].cuda(), Y[0].cuda(), gen_X[0].cuda(), gen_Y[0].cuda(), train_loss_fct)
if losses[1].item() == 0:
loss = losses[0]
else:
loss = losses[0] + losses[1]
train_once(loss, n_inputs)
qa_loss = losses[0].item() * n_inputs
lm_loss = losses[1].item() * n_inputs
cum_loss += (qa_loss + lm_loss)
cum_qa_loss += qa_loss
cum_lm_loss += lm_loss
cur_n_inputs += n_inputs
if args.constant_sch or task_ids[0] > 0:
lr = scheduler.get_lr()[0]
else:
lr = scheduler.get_lr()
if (n_steps + 1) % args.logging_steps == 0:
logger.info('progress {:.3f} , lr {:.1E} , loss {:.3f} , qa loss {:.3f} , lm loss {:.3f}, avg batch size {:.1f}'
.format(ep + cur_n_inputs/len(train_qadata),
lr, cum_loss/cur_n_inputs,
cum_qa_loss/cur_n_inputs, cum_lm_loss/cur_n_inputs,
cur_n_inputs/(n_steps + 1)))
if not args.gradient_debug:
tot_n_steps += (n_steps + 1)
val_loss, val_qa_loss, val_lm_loss = validation(model, valid_dataloader, train_loss_fct)
logger.info('epoch {}/{} done , tot steps {} , loss {:.2f} , qa loss {:.2f} , lm loss {:.2f}, val loss {:.2f}, vqa loss {:.2f}, vlm loss {:.2f}, avg batch size {:.1f}'.format(
ep+1, n_train_epochs, tot_n_steps,
cum_loss/cur_n_inputs, cum_qa_loss/cur_n_inputs,
cum_lm_loss/cur_n_inputs, val_loss,
val_qa_loss, val_lm_loss, cur_n_inputs/(n_steps+1)
))
print_para(model)
torch.save(model.state_dict(), os.path.join(model_dir, SAVE_NAME+"finish"))
adapter_list = model.get_adapter_list()
np.save(os.path.join(model_dir, "adapter_list.npy"), adapter_list)
logger.info("MODEL SAVED!")
del optimizer
del scheduler
torch.cuda.empty_cache()
return model
# Training stage
def Transfer(task_ids, model, fit_bonus=0):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
tasks = [args.tasks[task_id] for task_id in task_ids]
logger.info("start to transfer { task: %s, seq train type: %s }" % (tasks, args.seq_train_type))
model_dir = get_model_dir(tasks)
train_dataset = [swap_name(TASK_DICT[t]["train"], args.seq_distil, args.ref1) for t in tasks]
valid_dataset = [TASK_DICT[t]["test"] for t in tasks]
train_extra_data = []
if not args.generate_after:
if ("lll" in args.seq_train_type or "llewc" in args.seq_train_type) and task_ids[0] > 0 and not args.pseudo_ablation:
adapter_list = np.load(os.path.join(model_dir, "adapter_list.npy"))
replay = []
for layer_list in adapter_list:
c_module = layer_list[task_ids[0]]
for i in range(task_ids[0]):
if layer_list[i] == c_module:
if i not in replay:
replay.append(i)
# only replay those tasks which share modules with the current task
logger.info("replay tasks: {}".format(replay))
if len(replay) > 0:
prev_task = args.tasks[task_ids[0]-1]
model.config.forward_mode = 'Transfer'
model.config.testing = False
with torch.no_grad():
create_extra_data(tasks[0], prev_task, model, train_extra_data, None, None, replay)
logger.info('extra training data size: {}'.format(len(train_extra_data)))
# prepare for transfer
if not model:
# this is for the first task!
# which_model_to_load = model_dir if os.path.isfile(os.path.join(model_dir, FINAL_SAVE_NAME)) else args.model_name
# You can use pre-downloaded pretrained model, or download it from the internet
model = MODEL_CLASS.from_pretrained('./PModel')
# Initialize special generation tokens (for every task) IN ONE TIME!
# DON'T add a special token everytime we have a new task (as LAMOL original implementation did)
# This design will make the training process more stable!
torch.manual_seed(42)
model.resize_token_embeddings(50260 + len(args.tasks))
logger.info(model.transformer.wte.weight)
torch.manual_seed(args.seed)
model.config.forward_mode = 'Transfer'
model.config.testing = False
model.add_adapter(str(task_ids[0]), config=args.adapt_type)
if args.pretrain_adapter:
load_pre_adapter(model, str(task_ids[0]))
if not args.adapterdrop:
model.train_adapter(str(task_ids[0]))
else:
model.train_adapter(str(task_ids[0]), [0, 1, 2])
model.cuda()
if args.clear_model:
model = clear(model)
param_opt = learnable_para_calculate(model, "whole", True)
if not args.fp32:
logger.info("Not support fp32 on mytransformers/adapters now...")
exit(0)
# model = FP16_Module(model)
else:
if args.load_model_for_stage:
prev_tasks = [args.tasks[task_ids[0]-1]]
prev_model_dir = get_model_dir(prev_tasks)
model = load_model(prev_model_dir)
adapter_list = np.load(os.path.join(model_dir, "adapter_list.npy"))
model.update_adapter_list(adapter_list)
else:
load_model(model_dir)
model.config.forward_mode = 'Transfer'
model.config.testing = False
if args.partial_learn:
model.train_adapter(str(task_ids[0]))
elif args.partial_transfer:
model.adapter_transfer()
else:
adapter_list = np.load(os.path.join(model_dir, "adapter_list.npy"))
adapter_names = np.unique(adapter_list)
model.train_adapter([str(i) for i in adapter_names])
model.cuda()
if args.clear_model:
model = clear(model)
param_opt = learnable_para_calculate(model, "whole", True)
if args.generate_after:
if ("lll" in args.seq_train_type or "llewc" in args.seq_train_type) and task_ids[0] > 0 and not args.pseudo_ablation:
prev_task = args.tasks[task_ids[0]-1]
model.config.forward_mode = 'Transfer'
model.config.testing = False
with torch.no_grad():
create_extra_data(tasks[0], prev_task, model, train_extra_data)
logger.info('extra training data size: {}'.format(len(train_extra_data)))
gen_token = get_gen_token(tasks[0])
TOKENIZER.add_tokens([gen_token])
TOKENIZER.save_pretrained(model_dir)
SPECIAL_TOKENS[tasks[0]] = gen_token
SPECIAL_TOKEN_IDS[tasks[0]] = TOKENIZER.convert_tokens_to_ids(gen_token)
logger.info('gen token = {} , gen token id = {}'.format(gen_token, SPECIAL_TOKEN_IDS[tasks[0]]))
MODEL_CONFIG.vocab_size = len(TOKENIZER)
MODEL_CONFIG.to_json_file(os.path.join(model_dir,CONFIG_NAME))
global TOKENS_WEIGHT
while 50260 + len(args.tasks) != TOKENS_WEIGHT.shape[0]:
TOKENS_WEIGHT = torch.cat((TOKENS_WEIGHT, torch.ones([1]).cuda()))
logger.info("Add one dim weight!")
if not args.fp32: # again because resize_token_embeddings makes embedding layer fp32
model = FP16_Module(model)
logger.warning("Transfer, using extra data now...")
train_qadata = QADataset(train_dataset, "train", SPECIAL_TOKEN_IDS[tasks[0]], train_extra_data)
valid_qadata = QADataset(valid_dataset, "train", SPECIAL_TOKEN_IDS[tasks[0]])
max_train_batch_size = args.z_max_batch_size
train_dataloader = create_dataloader(train_qadata, "train", max_train_batch_size)
valid_dataloader = create_dataloader(valid_qadata, "test")
if args.gradient_debug:
n_train_epochs = 1
elif task_ids[0] == 0:
n_train_epochs = args.z_train_epochs[task_ids[0]]
else:
n_train_epochs = args.z_train_epochs[task_ids[0]] - fit_bonus
n_train_optimization_steps = len(train_qadata) * n_train_epochs
logger.info('len of train dataset: {} , max train batch size {} , num of opt steps: {}'.format(
len(train_qadata), max_train_batch_size, n_train_optimization_steps))
if args.whole_optim:
param_optimizer = list(model.named_parameters())
else:
param_optimizer = param_opt
no_decay = ['bias', 'ln_1', 'ln_2', 'ln_f']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer_grouped_names = [
[n for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
[n for n, p in param_optimizer if any(nd in n for nd in no_decay)]
]
logger.info("name group")
logger.info(optimizer_grouped_names)
logger.info("USE ARGS.ADAM_EPSILON NOW.....")
optimizer = AdamW(optimizer_grouped_parameters, lr=args.z_train_lrs[task_ids[0]], eps=args.adam_epsilon)
if args.constant_sch:
logger.info("Start to use constant scheduler!")
scheduler = get_constant_schedule_with_warmup(optimizer, args.z_warmup_step)
elif not args.constant_sch and (not args.lamaml or (args.lamaml and task_ids[0] == 0)):
logger.info("Start to use Annealling scheduler!")
scheduler = AnnealingLR(optimizer, start_lr=args.z_train_lrs[task_ids[0]], warmup_iter=int(args.n_warmup_ratio*len(train_qadata)),
num_iters=int(n_train_optimization_steps), decay_style=args.decay_style)
elif not args.constant_sch:
logger.info("Start to use Annealling scheduler!")
scheduler = AnnealingLR(optimizer, start_lr=args.z_train_lrs[task_ids[0]], warmup_iter=int(args.n_warmup_ratio*len(train_qadata)),
num_iters=int(train_qadata.get_c_len() * 2 * n_train_epochs) + 100, decay_style=args.decay_style)
train_loss_fct = CrossEntropyLoss(ignore_index=FILL_VAL, weight=TOKENS_WEIGHT.type(torch.float if args.fp32 else torch.half))
tot_n_steps = 0
train_once = TrainStep(model, optimizer, scheduler)
# The reason why we use "path" variable: (path is passed to AdamW, modified in mytransformers/optimization.py)
# The calculation path in this stage is different for different tasks in this stage
# since we are using AdamW,
# (!!!) a zero gradient cannot gaurantee that the parameter is not changed, it might be changed by the state of optimizers (!!!)
# thus we need to keep the track of calculation path for each task manually and pass it to optimizer to avoid such strange behaviors
# Attention!
path = [None for i in range(task_ids[0] + 1)]
if task_ids[0] > 0:
path = []
o_path = model.get_path()
for i in range(task_ids[0] + 1):
c_name = []
for layer, j in enumerate(o_path):
c_layer_name = j[i]
c_name.append('.' + str(layer) + '.attention_adapters.adapters.' + c_layer_name + '.')
c_name.append('.' + str(layer) + '.output_adapters.adapters.' + c_layer_name + '.')
path_one = []
path_two = []
for n, p in param_optimizer:
if not any(nd in n for nd in no_decay):
flag = 0
for name in c_name:
if name in n:
flag = 1
path_one.append(True)
break
if flag == 0:
path_one.append(False)
else:
flag = 0
for name in c_name:
if name in n:
flag = 1
path_two.append(True)
break
if flag == 0:
path_two.append(False)
path.append([path_one, path_two])
logger.info(path)
shared = []
for i, c_path in enumerate(path):
if True in c_path[0] or True in c_path[1]:
shared.append(True)
else:
shared.append(False)
logger.info("shared: {}".format(shared))
for ep in range(n_train_epochs):
model.train()
cum_loss, cum_qa_loss, cum_lm_loss, cur_n_inputs = 0, 0, 0, 0
for n_steps, (_, _, cqa, _, Y, gen_X, gen_Y, task_id, idx) in enumerate(train_dataloader):
if cqa is None:
continue
n_inputs = cqa[0].shape[0]
lens = cqa[0].shape[1]
# Consider to add this when you have memory error, this should be rarely happened on datasets used by our paper!
"""
if lens > 500:
logger.info(cqa[0].shape)
continue
"""
if task_ids[0] > 0:
if not shared[task_id[0][0].item()]:
continue
# For forward calculation, we make sure all examples from one batch is from the same task
# and set the config to this task id every time (also need to do this for inference and generation)
model.config.batch_task_id = task_id[0][0].item()
losses = get_losses(model, cqa[0].cuda(), Y[0].cuda(), gen_X[0].cuda(), gen_Y[0].cuda(), train_loss_fct)
if losses[1].item() == 0:
loss = losses[0]
else:
loss = losses[0] + losses[1]
train_once(loss, n_inputs, path[model.config.batch_task_id])
qa_loss = losses[0].item() * n_inputs
lm_loss = losses[1].item() * n_inputs
cum_loss += (qa_loss + lm_loss)
cum_qa_loss += qa_loss
cum_lm_loss += lm_loss
cur_n_inputs += n_inputs
if args.gradient_debug and task_ids[0] == 0:
break
if args.constant_sch:
lr = scheduler.get_lr()[0]
else:
lr = scheduler.get_lr()
if (n_steps + 1) % args.logging_steps == 0:
logger.info('progress {:.3f} , lr {:.1E} , loss {:.3f} , qa loss {:.3f} , lm loss {:.3f}, avg batch size {:.1f}'
.format(ep + cur_n_inputs/len(train_qadata),
lr, cum_loss/cur_n_inputs,
cum_qa_loss/cur_n_inputs, cum_lm_loss/cur_n_inputs,
cur_n_inputs/(n_steps + 1)))
if not args.gradient_debug:
tot_n_steps += (n_steps + 1)
val_loss, val_qa_loss, val_lm_loss = validation(model, valid_dataloader, train_loss_fct)
logger.info('epoch {}/{} done , tot steps {} , loss {:.2f} , qa loss {:.2f} , lm loss {:.2f}, val loss {:.2f}, vqa loss {:.2f}, vlm loss {:.2f}, avg batch size {:.1f}'.format(
ep+1, n_train_epochs, tot_n_steps,
cum_loss/cur_n_inputs, cum_qa_loss/cur_n_inputs,
cum_lm_loss/cur_n_inputs, val_loss,
val_qa_loss, val_lm_loss, cur_n_inputs/(n_steps+1)
))
print_para(model)
if args.gradient_debug and task_ids[0] > 0:
exit(0)
torch.save(model.state_dict(), os.path.join(model_dir, SAVE_NAME+"finish"))
adapter_list = model.get_adapter_list()
np.save(os.path.join(model_dir, "adapter_list.npy"), adapter_list)
logger.info("MODEL SAVED!")
del optimizer
del scheduler
torch.cuda.empty_cache()
if args.layer_debug and task_ids[0] == len(args.tasks) - 1:
model.config.forward_mode = 'Transfer'
model.config.testing = False
gen_path = os.path.join(model_dir, "lm-origin-{}-{}.csv".format(args.layer_debug_cnt, args.partial_learn))
holder = []
with torch.no_grad():
create_extra_data(tasks[0], tasks[0], model, holder, None, gen_path, [1])
logger.info("Modifying list")
model.modify_list(args.layer_debug_cnt, 0, 1)
gen_path = os.path.join(model_dir, "lm-modified-{}-{}.csv".format(args.layer_debug_cnt, args.partial_learn))
holder = []
with torch.no_grad():
create_extra_data(tasks[0], tasks[0], model, holder, None, gen_path, [1])
exit(0)
return model
if __name__ == '__main__':
if not args.debug:
logging.getLogger("pytorch_transformers").setLevel(logging.WARNING)
logging.getLogger("pytorch_transformers.tokenization_utils").setLevel(logging.CRITICAL)
if not args.z_debug:
make_dir(args.model_dir_root)
init_logging(os.path.join(args.model_dir_root, 'log_train.txt'))
logger.info('args = {}'.format(str(args)))
model = None
if args.seq_train_type in ["multitask", "multilm"]:
model = train(list(range(len(args.tasks))), model)
else:
if args.unbound:
TASK_DICT = lll_unbound_setting(split_size=args.unbound)
for task_id in range(len(args.tasks)):
if task_id == 0:
model = Transfer([task_id], model)
else:
if not args.fake_mix_debug:
model, Fit_or_Not, trans, current_fit_epoch = Mix([task_id], model)
fit_bonus = 0
if Fit_or_Not:
model = Fit([task_id], model, current_fit_epoch)
fit_bonus = 0
if trans:
model = Transfer([task_id], model, fit_bonus)
else:
logger.info("In fake mix debug!")
tmp_model = copy.deepcopy(model)
tmp_model, Fit_or_Not, trans, current_fit_epoch = Mix([task_id], tmp_model)
del tmp_model
tasks = [args.tasks[task_id]]
model_dir = get_model_dir(tasks)
adapter_list = np.load(os.path.join(model_dir, "adapter_list.npy"))
model.update_adapter_list(adapter_list)
model = Transfer([task_id], model, 0)
else:
init_logging(os.path.join(args.model_dir_root, 'log_train_debug.txt'))
logger.info('args = {}'.format(str(args)))
model = None
if args.z_debug_tsk_num >= 1:
from mytransformers import GPT2LMHeadModel, GPT2Config
tasks = [args.tasks[args.z_debug_tsk_num - 1]]
if args.z_debug_start_from_trans:
tasks = [args.tasks[args.z_debug_tsk_num]]
model_dir = get_model_dir(tasks)
model_config = GPT2Config.from_json_file(os.path.join(model_dir, "config.json"))
model = GPT2LMHeadModel(model_config)
model.resize_token_embeddings(50260 + len(args.tasks))
adapter_list = np.load(os.path.join(model_dir, "adapter_list.npy"))
model.add_adapter_by_list(adapter_list, config=args.adapt_type)
state_dict = torch.load(os.path.join(model_dir, "model-finish"), map_location='cuda:0')
m, n = model.load_state_dict(state_dict, strict=False)
logger.info("Missing : {}, Unexpected: {}".format(m, n))
model.cuda()
global TOKENS_WEIGHT
tsk_cnt = 0
while tsk_cnt < args.z_debug_tsk_num:
TOKENS_WEIGHT = torch.cat((TOKENS_WEIGHT, torch.ones([1]).cuda()))
gen_token = get_gen_token(args.tasks[tsk_cnt])
TOKENIZER.add_tokens([gen_token])
SPECIAL_TOKENS[args.tasks[tsk_cnt]] = gen_token
SPECIAL_TOKEN_IDS[args.tasks[tsk_cnt]] = TOKENIZER.convert_tokens_to_ids(gen_token)
tsk_cnt += 1
# model.resize_token_embeddings(len(TOKENIZER))
if not args.fp32:
model = FP16_Module(model)
while 50260 + len(args.tasks) != TOKENS_WEIGHT.shape[0]:
TOKENS_WEIGHT = torch.cat((TOKENS_WEIGHT, torch.ones([1]).cuda()))
logger.info("Add one dim weight!")
for task_id in range(args.z_debug_tsk_num, len(args.tasks)):
# First task
if task_id == 0:
model = Transfer([task_id], model)
# Recover training from one task
elif task_id == args.z_debug_tsk_num and args.z_debug_start_from_trans:
fit_bonus = 0
model.config.forward_mode = 'Transfer'
model.config.testing = False
adapter_names = np.unique(adapter_list)
model.train_adapter([str(i) for i in adapter_names])
model = Transfer([task_id], model, fit_bonus)
# not the first task
else:
model, Fit_or_Not, trans, current_fit_epoch = Mix([task_id], model)
fit_bonus = 0
# Fit stage is not used in this paper, args.fit_epoch is set to 0 by default
if Fit_or_Not:
model = Fit([task_id], model, current_fit_epoch)
fit_bonus = 0
if trans:
model = Transfer([task_id], model, fit_bonus)