-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhw8_bidirectionalgru.py
265 lines (220 loc) · 9.56 KB
/
hw8_bidirectionalgru.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# -*- coding: utf-8 -*-
"""hw8_bidirectionalGRU.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/15zOwcC8WiAndCzp6W5mB9Cv-Irb3sLoG
"""
#Import the libraries necessary
import gzip as gzip
import numpy as np
import torch
import torch.utils.data
import torchvision.transforms as tvt
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import seaborn
import copy as copy
import os
import pickle as pkl
import gensim.downloader as GENAPI
from gensim.models import KeyedVectors as kv
# # import os
# data_path = '/content/drive/MyDrive/BME 64600/hw8/data/'
# file_name = 'sentiment_dataset_train_400.tar.gz'
# print(os.listdir(data_path))
# full_path = os.path.join(data_path, file_name)
# print("Checking if file exists:", os.path.exists(full_path))
#Defining namespace function for creating lightweight objects to hold data
class Namespace:
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
#Defining custom dataset loader class
class Dataset(torch.utils.data.Dataset):
def __init__(self, args):
super().__init__()
self.args = args
self.install()
self.load_data()
self.preprocess()
#Install pre-trained word2vec model from disk or download
def install(self):
path = self.args.path + "/vectors.kv"
if os.path.exists(path):
self.wordVectors = kv.load(path)
else:
self.wordVectors = GENAPI.load('word2vec-google-news-300')
self.wordVectors.save(path)
#Load data from .tar.gz file
def load_data(self):
#Initialize maxlength definition and empty list for data
self.maxLen = 0
data = []
mydata = gzip.open(self.args.path + "/" + self.args.data, 'rb').read()
#Split text data into positive and negative dictionary samples & vocab list
positive, negative, vocab = pkl.loads(mydata, encoding = 'latin1')
#Sort list of category labels
self.categories = sorted(list(positive.keys()))
if self.args.types == 'test': #Sort vocab list if test
vocab = sorted (vocab)
#Create list of training samples
self.data = [[review, category, 1] for category in positive for review in positive[category]] #1 if positive
self.data += [[review, category, 0] for category in negative for review in negative[category]] #0 if negative
#Tokenize review text into individual words
for ii in self.data:
words = []
#Convert each word to corresponding word vector using wordVectors
for _, word in enumerate(ii[0]):
#Ignore if not in model vocab
if word in self.wordVectors.key_to_index:
words.append(self.wordVectors[word])
if len(words) > self.maxLen:
self.maxLen = len(words) #Calculate max length of preprocessed reviews
data.append([words, ii[1], ii[2]]) #Format (preprocessed words, category label, binary label)
self.data = data
# Convert tokenized review & sentiment to tensor
def data_to_tensor(self, review, sentiment):
review_embeddings = np.array([np.array(word) for word in review]) #Create single numpy array to convert to tensor
sentiment_embeddings = torch.zeros(2)
sentiment_embeddings[sentiment] = 1
return torch.FloatTensor(review_embeddings), torch.FloatTensor(sentiment_embeddings)
#Convert reviews and sentiment labels to tensors
def preprocess(self):
data = []
for ii in self.data:
review, category, sentiment = ii
review, sentiment = self.data_to_tensor(review, sentiment)
temp = {'review': review, 'category': self.categories.index(category), 'sentiment': sentiment}
data.append(temp)
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
#GRU bidirectional class
class GRUnet(torch.nn.Module):
def __init__(self, args):
super().__init__()
self.batchSize = args.batch_size
self.inputSize = args.input_size
self.hiddenSize = args.hidden_size
self.outputSize = args.output_size
self.numLayers = 1
self.GRU = torch.nn.GRU(self.inputSize, self.hiddenSize, self.numLayers, batch_first=True, bidirectional=True) #Set bidirectional to True
self.fc = torch.nn.Linear(self.hiddenSize * 2, self.outputSize) # Multiply by 2 for bidirectional hidden states (2 hidden states)
self.ReLU = torch.nn.ReLU()
self.softmax = torch.nn.LogSoftmax(dim=1)
def forward(self, data, hidden):
out, hidden = self.GRU(data, hidden)
out = self.fc(self.ReLU(out[:, -1]))
out = self.softmax(out)
return out, hidden
def init_hidden(self):
weight = next(self.parameters()).data
hidden = weight.new(2, self.batchSize, self.hiddenSize).zero_() # Multiply num layers by 2 when initializing hidden state
return hidden
#Define function for training
def run_code_for_training(model, dataloader, args):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = copy.deepcopy(model).to(device)
criterion = torch.nn.NLLLoss() # Use negative log likelihood loss for classification
optimizer = torch.optim.Adam(model.parameters(), lr=0.001) #Adjustable learning rate here
epochs = 4
loss_record = []
for epoch in range(epochs):
# print(f"Entering {epoch + 1} of {epochs} epochs")
gruloss = 0.0
for iteration, data in enumerate(dataloader):
review, category, sentiment = data['review'], data['category'], data['sentiment']
review = review.to(device)
sentiment = sentiment.to(device).long() # Convert sentiment tensor to long data type for NLLLoss
optimizer.zero_grad()
hidden = model.init_hidden().to(device)
for i in range(review.shape[1]):
output, hidden = model(torch.unsqueeze(torch.unsqueeze(review[0, i], 0), 0), hidden)
loss = criterion(output, sentiment.argmax(dim=1)) # Compute loss using NLLLoss
gruloss += loss.item()
loss.backward()
optimizer.step()
i = 100
if (iteration + 1) % i == 0:
running_loss = gruloss / float(i)
loss_record.append(running_loss)
print("\n[epoch:%d, batch:%5d] loss: %.7f" %(epoch + 1, iteration + 1, gruloss / float(i)))
gruloss = 0.0
return model, loss_record
#Define function for testing (accuracy and confusion matrix)
def run_code_for_testing(model, dataloader, args):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.load_state_dict(torch.load(args.model_path))
correct_count = 0.0
total_count = 0.0
confusionmatrix = torch.zeros(2, 2)
with torch.no_grad():
for iteration, data in enumerate(dataloader):
review, category, sentiment = data['review'], data['category'], data['sentiment']
hidden = model.init_hidden()
for i in range(review.shape[1]):
output, hidden = model(torch.unsqueeze(torch.unsqueeze(review[0, i], 0), 0), hidden)
pred = torch.argmax(output).item()
truth = torch.argmax(sentiment).item()
if pred == truth:
correct_count += 1
total_count += 1
confusionmatrix[truth, pred] += 1
accuracy = correct_count / total_count
print(accuracy * 100)
print(confusionmatrix)
return (accuracy * 100), confusionmatrix
def plotconfusionmatrix(accuracy, confusionMatrix, MODEL):
accuracy = f'Accuracy ({MODEL}): {accuracy:.2f}%'
plt.rcParams['axes.facecolor'] = 'white'
plt.figure(figsize = (9, 9))
ax = seaborn.heatmap(confusionMatrix.int(), annot=True, fmt='d')
plt.title(accuracy)
plt.xlabel("Predicted Label")
plt.xticks([_+0.5 for _ in range(2)], ['negative', 'positive'])
plt.ylabel("True Label")
plt.yticks([_+0.5 for _ in range(2)], ['negative', 'positive'])
hw8_path = '/content/drive/MyDrive/BME 64600/hw8'
# Save confusion matrix
plt.savefig(os.path.join(hw8_path, f'confusion_matrix_{MODEL}.jpg'), bbox_inches='tight', dpi=800)
plt.show()
#Main Script for code
if __name__ == '__main__':
args = Namespace(
path = '/content/drive/MyDrive/BME 64600/hw8/data',
data = 'sentiment_dataset_train_400.tar.gz',
types = 'train',
batch_size = 1,
input_size = 300,
hidden_size = 100,
output_size = 2,
)
dataset = Dataset(args)
dataLoader = torch.utils.data.DataLoader(dataset=dataset, batch_size=args.batch_size, shuffle=True)
#Train and test torch.nn.GRU bidirectional model
args.data = 'sentiment_dataset_train_400.tar.gz'
args.types = 'train'
args.model = 'bidirectionalGRU'
args.model_path = os.path.join(args.path, 'bidirectionalGRU.pth')
model = GRUnet(args)
bidirectionalgrumodel, lossrecord_bidirectionalGRU = run_code_for_training(model, dataLoader, args)
torch.save(bidirectionalgrumodel.state_dict(), args.model_path) #Save model for bidirectional GRU
#Plot the figures
plt.figure()
plt.title("bidirectionalGRU Training Loss vs. Iterations")
plt.plot(lossrecord_bidirectionalGRU, label = "Training Loss")
plt.xlabel("Iterations")
plt.ylabel("Loss")
plt.legend()
# Save training loss plot
hw8_path = '/content/drive/MyDrive/BME 64600/hw8'
plt.savefig(os.path.join(hw8_path, "bidirectionalGRU_train_loss.jpg"))
plt.show()
#Evaluate Model
args.data = 'sentiment_dataset_test_400.tar.gz'
args.types = 'test'
model = GRUnet(args)
accuracy_bidirectionalGRU, confusionMatrix_bidirectionalGRU = run_code_for_testing(model, dataLoader, args)
#Plot Confusion Matrix
plotconfusionmatrix(accuracy_bidirectionalGRU, confusionMatrix_bidirectionalGRU, 'bidirectionalGRU')