-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_local.py
50 lines (39 loc) · 1.4 KB
/
main_local.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os
import pandas as pd
import numpy as np
from math import sqrt
from sklearn import linear_model
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from feature_engineering import FeatureEngineering
trainDataFilePath = os.path.join(os.getcwd(), 'local.csv')
dateParser = lambda x: pd.datetime.fromtimestamp(float(x))
def model_evaluation(model, X, Y):
predict = model.predict(X)
return mean_squared_error(Y, predict)
def run():
df = pd.read_csv(trainDataFilePath, parse_dates=['TIME'], date_parser=dateParser)
df.columns = ['terminalno',
'time',
'trip_id',
'longitude',
'latitude',
'direction',
'height',
'speed',
'callstate',
'y']
featureService = FeatureEngineering(df)
X, featureCols = featureService.create_X_dataset()
Y = featureService.create_Y_dataset()
X = featureService.normalization(X, featureCols)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0)
model = linear_model.LinearRegression()
model.fit(X_train, Y_train)
trainRMSE = sqrt(model_evaluation(model, X_train, Y_train))
testRMSE = sqrt(model_evaluation(model, X_test, Y_test))
print(trainRMSE)
print(testRMSE)
if __name__ == "__main__":
print('------- run begins -------')
run()