-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathperformance.py
37 lines (30 loc) · 982 Bytes
/
performance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# -*- coding:utf-8 -*-
# Author: Roc-J
import utilities
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import metrics
# load data
filename = 'data_perf.txt'
data = utilities.load_data(filename)
# 迭代集群数来找最好的
scores = []
range_values = np.arange(2, 10)
for i in range_values:
# 训练模型
kmeans = KMeans(init='k-means++', n_clusters=i, n_init=10)
kmeans.fit(data)
score = metrics.silhouette_score(data, kmeans.labels_, metric='euclidean', sample_size=len(data))
print "\nNumber of clusters = ", i
print "Silhouette score = ", score
scores.append(score)
# plot clusters vs scores
plt.figure()
plt.bar(range_values, scores, width=0.6, color='k', align='center')
plt.title('Silhouette score vs number of clusters')
#plot the data
plt.figure()
plt.scatter(data[:, 0], data[:, 1], color='k', s=30, marker='o', edgecolors='k', facecolor='none')
plt.title('Input data')
plt.show()