-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgui.py
278 lines (252 loc) · 12.7 KB
/
gui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import numpy
import time
import gym
from gym.spaces import Box
import copy
from gym.envs.registration import EnvSpec
from gym import spaces
from gym.envs.classic_control import rendering
import numpy as np
from gym.utils import seeding
import pickle
import os.path
def isBlack(x):
return x.vec4[0]+x.vec4[1]<=0.1
def generateMaze(size): # 1 = obstacle, 0 = blank
path = 'maze%d.txt'%size
if (os.path.isfile(path)):
return pickle.load(open(path, 'rb'))
ans = numpy.zeros([size, size])
def _gen(top, bot, left, right):
if (left + 1 >= right or top + 1 >= bot):
return
mid = [numpy.random.choice(numpy.arange(top + 1, bot)), numpy.random.choice(numpy.arange(left + 1, right))]
if (left + 1 < right):
ans[top:bot, mid[1]] = 1
ans[numpy.random.choice(numpy.arange(top, mid[0])), mid[1]] = 0
ans[numpy.random.choice(numpy.arange(mid[0], bot)), mid[1]] = 0
if (top + 1 < bot):
ans[mid[0], left:right] = 1
ans[mid[0], numpy.random.choice(numpy.arange(left, mid[1]))] = 0
ans[mid[0], numpy.random.choice(numpy.arange(mid[1], right))] = 0
_gen(top, mid[0] - 1, left, mid[1] - 1)
_gen(mid[0] + 1, bot, left, mid[1] - 1)
_gen(top, mid[0] - 1, mid[1] + 1, right)
_gen(mid[0] + 1, bot, mid[1] + 1, right)
_gen(0, size, 0, size)
pickle.dump(ans, open(path, 'wb'))
return ans
def generateAG(map, goalSize,agentSize, goalPos=None, agentPos=None):
if(goalPos!=None):
return numpy.array([goalPos]), numpy.array([agentPos])
goods = numpy.argwhere(map == 0)
goals = goods[numpy.random.choice(len(goods), size=goalSize+agentSize, replace=False)]
return goals[:goalSize], goals[goalSize:]
class gameGUI(gym.Env):
def __init__(self, totalSize, cellSize, goalSize,agentSize,repr, vision=-1, title=''):
self.timeFrame = 0
self.repr=repr
self.num_envs=1
self.maxFrame = totalSize * totalSize * goalSize * 2
self.totalSize = totalSize
self.vision = vision
self.cellSize = cellSize
self.goalSize = goalSize
self.agentSize= agentSize
self.is_single = 0
self.viewer = None
self.trace=numpy.zeros([totalSize,totalSize])
self.obstacles = numpy.zeros([totalSize, totalSize]).astype(numpy.int32)
self.agents = numpy.zeros([self.agentSize, 2]).astype(numpy.int32)
self.goals = numpy.zeros([self.goalSize, 2]).astype(numpy.int32)
self.goal_places = numpy.zeros([totalSize, totalSize]).astype(numpy.int32)
self.goal_reached=numpy.zeros([self.goalSize])
self.agent_places = numpy.zeros([totalSize, totalSize]).astype(numpy.int32)
if (self.is_single):
self.action_space = self.repr.action_space[0]
self.observation_space=self.repr.observation_space[0]
else:
self.action_space = [self.repr.action_space[1] for i in range(self.agentSize)]
self.observation_space = [self.repr.observation_space[1] for i in range(self.agentSize)]
self.seed()
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def _updateBG(self):
if (self.vision == -1):
return
for i in range(self.totalSize):
for j in range(self.totalSize):
inSight = 0
for k in range(self.agentSize):
if (abs(i - self.agents[k][0]) <= self.vision and abs(j - self.agents[k][1]) <= self.vision):
inSight = 1
if (isBlack(self.backGeom[i][j]._color)==False):
if (inSight == 1):
self.backGeom[i][j].set_color(1.0, 1.0, 1.0)
else:
self.backGeom[i][j].set_color(0.5,0.5,0.5)
def _fillSquare(self, left, top, color):
length = self.cellSize
left *= self.cellSize
top *= self.cellSize
x = rendering.FilledPolygon(
[(left, top), (left + length, top), (left + length, top + length), (left, top + length)])
x.set_color(color[0] / 255.0, color[1] / 255.0, color[2] / 255.0)
self.viewer.add_geom(x)
return x
def _updateGeom(self, geom, ob):
try:
top, left = ob[0], ob[1]
top *= self.cellSize
left *= self.cellSize
length = self.cellSize
geom.v = ([(left, top), (left + length, top), (left + length, top + length), (left, top + length)])
except:
pass
def render(self):
if (self.viewer == None):
self.viewer = rendering.Viewer(self.totalSize * self.cellSize * 3, self.totalSize * self.cellSize * 2)
self.agentGeom = [None for i in range(self.agentSize)]
self.goalGeom = [None for i in range(self.goalSize)]
self.trailGeom = [[[None for i in range(4)] for j in range(self.totalSize)] for k in range(self.totalSize)]
self.backGeom = [[None for i in range(self.totalSize)] for j in range(self.totalSize)]
for i in range(self.totalSize):
for j in range(self.totalSize):
if (self.obstacles[i][j] == 1):
self.backGeom[i][j] = self._fillSquare(j, i, (0, 0, 0))
else:
self.backGeom[i][j] = self._fillSquare(j, i, (255,255,255))
for i in range(self.goalSize):
self.goalGeom[i] = self._fillSquare(self.goals[i][1], self.goals[i][0], (0, 255, 0))
for i in range(self.agentSize):
self.agentGeom[i] = self._fillSquare(self.agents[i][1], self.agents[i][0], (255.0, 0, 0))
for i in range(self.totalSize):
for j in range(self.totalSize):
for k in range(4):
self.trailGeom[i][j][k] = self._fillSquare(j+self.totalSize*((k+1)%3), i+self.totalSize*((k+1)//3), (255, 255, 255))
for i in range(1,3):
l=rendering.Line((i*self.totalSize*self.cellSize,0),
(i*self.totalSize*self.cellSize,2*self.totalSize*self.cellSize))
l.set_color(1,0,0)
self.viewer.add_geom(l)
l=rendering.Line((0,self.totalSize*self.cellSize),
(3*self.totalSize*self.cellSize,self.totalSize*self.cellSize))
l.set_color(1, 0, 0)
self.viewer.add_geom(l)
if(hasattr(self.repr,'trail')):
maxt=numpy.amax(self.repr.trail)+1e-6
mint=numpy.amin(self.repr.trail)
for i in range(self.totalSize):
for j in range(self.totalSize):
for k in range(self.repr.trailSize):
self.trailGeom[i][j][k].set_color((self.repr.trail[i, j, k] - mint) / (maxt - mint),
(self.repr.trail[i, j, k] - mint) / (maxt - mint),
(self.repr.trail[i, j, k] - mint) / (maxt - mint))
for i in range(len(self.agents)):
self._updateGeom(self.agentGeom[i], self.agents[i])
for i in range(len(self.goals)):
self._updateGeom(self.goalGeom[i], self.goals[i])
self._updateBG()
return self.viewer.render(return_rgb_array=0)
def markAgents(self):
self.agent_places = numpy.zeros([self.totalSize, self.totalSize]).astype(numpy.int32)
for i in range(len(self.agents)):
self.agent_places[self.agents[i, 0], self.agents[i, 1]] = 1
def hot_agent(self, ind):
if(self.vision==-1):
ans = numpy.zeros([self.totalSize, self.totalSize]).astype(numpy.int32)
ans[self.agents[ind][0], self.agents[ind][1]] = 1
return ans
else:
ans=numpy.zeros([self.vision*2+1,self.vision*2+1]).astype(numpy.int32)
ans[self.vision,self.vision]=1
return ans
def all_agent(self,k):
#print(self.agents,k,self.agentSize)
if(self.vision==-1):
ans = numpy.zeros([self.totalSize, self.totalSize]).astype(numpy.int32)
for ind in range(self.agentSize):
if(k!=ind):
ans[self.agents[ind][0], self.agents[ind][1]] = 1
return ans
else:
ans=numpy.zeros([self.vision*2+1,self.vision*2+1]).astype(numpy.int32)
for ind in range(self.agentSize):
if(k!=ind):
if (abs(self.agents[ind][0] - self.agents[k][0]) <= self.vision and
abs(self.agents[ind][1] - self.agents[k][1]) <= self.vision):
ans[self.agents[ind][0] - self.agents[k][0]+self.vision, self.agents[ind][1] - self.agents[k][1]+self.vision]=1
return ans
def _get_obs(self):
if(self.is_single):
return self.repr.single_repr(self)
else:
return [self.repr.multiple_repr(self,i) for i in range(self.agentSize)]
def reset(self, goalPos=None, agentPos=None):
self.timeFrame = 0
self.agents = numpy.zeros([self.agentSize, 2]).astype(numpy.int32)
self.goals = numpy.zeros([self.goalSize, 2]).astype(numpy.int32)
self.obstacles = numpy.zeros([self.totalSize, self.totalSize]).astype(numpy.int32)
self.goal_places = numpy.zeros([self.totalSize, self.totalSize]).astype(numpy.int32)
self.agent_places = numpy.zeros([self.totalSize, self.totalSize]).astype(numpy.int32)
self.goal_reached=numpy.zeros([self.goalSize]).astype(numpy.int32)
self.obstacles = generateMaze(self.totalSize)
self.goals, self.agents = generateAG(self.obstacles, self.goalSize,self.agentSize,goalPos=goalPos,agentPos=agentPos)
self.markAgents()
self.last_reward=0
if (self.viewer):
self.viewer.close()
self.viewer = None
self.tviewer=None
for i in self.goals:
self.goal_places[i[0]][i[1]] = 1
#self.repr.trail*=0.9
return self._get_obs()
def step(self, actions,vals=None):
if (self.is_single):
actions = [actions]
old_pos=copy.deepcopy(self.agents)
newval=[]
for i in range(len(actions)):
if(type(actions[i])==numpy.int64): #action in {0,1,2,3}
if (actions[i] == 0 and self.agents[i][0] != 0): # up
if (self.obstacles[self.agents[i][0] - 1][self.agents[i][1]] != 1):
self.agents[i][0] -= 1
elif (actions[i] == 1 and self.agents[i][1] != 0): # left
if (self.obstacles[self.agents[i][0]][self.agents[i][1] - 1] != 1):
self.agents[i][1] -= 1
elif (actions[i] == 2 and self.agents[i][1] != self.totalSize - 1): # right
if (self.obstacles[self.agents[i][0]][self.agents[i][1] + 1] != 1):
self.agents[i][1] += 1
elif (actions[i] == 3 and self.agents[i][0] != self.totalSize - 1): # down
if (self.obstacles[self.agents[i][0] + 1][self.agents[i][1]] != 1):
self.agents[i][0] += 1
elif(isinstance(actions[i],(tuple,list))==True):#action=(move,val)
if (actions[i][0] == 0 and self.agents[i][0] != 0): # up
if (self.obstacles[self.agents[i][0] - 1][self.agents[i][1]] != 1):
self.agents[i][0] -= 1
elif (actions[i][0] == 1 and self.agents[i][1] != 0): # left
if (self.obstacles[self.agents[i][0]][self.agents[i][1] - 1] != 1):
self.agents[i][1] -= 1
elif (actions[i][0] == 2 and self.agents[i][1] != self.totalSize - 1): # right
if (self.obstacles[self.agents[i][0]][self.agents[i][1] + 1] != 1):
self.agents[i][1] += 1
elif (actions[i][0] == 3 and self.agents[i][0] != self.totalSize - 1): # down
if (self.obstacles[self.agents[i][0] + 1][self.agents[i][1]] != 1):
self.agents[i][0] += 1
newval.append([actions[i][1:]])
self.markAgents()
if(vals!=None):
self.repr.step(old_pos,actions,self.agents[:],vals)
else:
self.repr.step(old_pos,actions,self.agents,newval)
reward = -float(self.goalSize)/self.maxFrame
self.timeFrame += 1
for i in range(len(self.goals)):
if (self.agent_places[self.goals[i][0], self.goals[i][1]] == 1):
reward += self.goal_reached[i]==0
self.goal_reached[i]=1
done = (numpy.sum(self.goal_reached)== self.goalSize or self.timeFrame >= self.maxFrame)
#self.last_reward=reward
return self._get_obs(), reward, done, {}