-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIndependentQ.py
200 lines (182 loc) · 8.08 KB
/
IndependentQ.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import tempfile
import tensorflow as tf
import zipfile
import cloudpickle
import numpy as np
import gym
import baselines.common.tf_util as U
from baselines import logger
from baselines.deepq.simple import ActWrapper
from baselines.common.schedules import LinearSchedule
from baselines import deepq
from baselines.deepq.replay_buffer import ReplayBuffer, PrioritizedReplayBuffer
from baselines.deepq.utils import BatchInput, load_state, save_state
class SharedAct:
def __init__(self,act,act_params):
self.act=act
self.act_params=act_params
def __call__(self, *args, **kwargs):
return self.act(*args, **kwargs)
def step(self,observations,**kwargs):
acts=[]
for obs in range(len(observations)):
acts.append(self.act(observations[obs],**kwargs))
return acts,None,None,None
def save(self,fname='MultiAct'):
pickle.dump(open(fname,'wb'),self.act)
@staticmethod
def load(fname='MultiAct'):
x=pickle.load(open(fname,'rb'))
return MultiAct(x)
def learn(env,
q_func,
lr=5e-4,
max_timesteps=100000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
train_freq=1,
batch_size=32,
print_freq=100,
checkpoint_freq=10000,
learning_starts=1000,
gamma=1.0,
target_network_update_freq=500,
prioritized_replay=False,
prioritized_replay_alpha=0.6,
prioritized_replay_beta0=0.4,
prioritized_replay_beta_iters=None,
prioritized_replay_eps=1e-6,
param_noise=False,
callback=None):
sess = tf.Session()
sess.__enter__()
# capture the shape outside the closure so that the env object is not serialized
# by cloudpickle when serializing make_obs_ph
if(env.is_single):
observation_space_shape = env.observation_space.shape
num_actions = env.action_space.n
else:
observation_space_shape = env.observation_space[0].shape
num_actions = env.action_space[0].n
num_agents=env.agentSize
def make_obs_ph(name):
return BatchInput(observation_space_shape, name=name)
act, train, update_target, debug = deepq.build_train(
make_obs_ph=make_obs_ph,
q_func=q_func,
num_actions=num_actions,
optimizer=tf.train.AdamOptimizer(learning_rate=lr),
gamma=gamma,
grad_norm_clipping=10,
param_noise=param_noise
)
act_params = {
'make_obs_ph': make_obs_ph,
'q_func': q_func,
'num_actions': num_actions,
}
act = ActWrapper(act, act_params)
# Create the replay buffer
if prioritized_replay:
replay_buffer = PrioritizedReplayBuffer(buffer_size*num_agents, alpha=prioritized_replay_alpha)
if prioritized_replay_beta_iters is None:
prioritized_replay_beta_iters = max_timesteps
beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
initial_p=prioritized_replay_beta0,
final_p=1.0)
else:
replay_buffer = ReplayBuffer(buffer_size*num_agents)
beta_schedule = None
# Create the schedule for exploration starting from 1.
exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
initial_p=1.0,
final_p=exploration_final_eps)
# Initialize the parameters and copy them to the target network.
U.initialize()
update_target()
episode_rewards = [0.0]
saved_mean_reward = None
obs = env.reset()
reset = True
with tempfile.TemporaryDirectory() as td:
model_saved = False
model_file = os.path.join(td, "model")
for t in range(max_timesteps):
if callback is not None:
if callback(locals(), globals()):
break
# Take action and update exploration to the newest value
kwargs = {}
if not param_noise:
update_eps = exploration.value(t)
update_param_noise_threshold = 0.
else:
update_eps = 0.
# Compute the threshold such that the KL divergence between perturbed and non-perturbed
# policy is comparable to eps-greedy exploration with eps = exploration.value(t).
# See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
# for detailed explanation.
update_param_noise_threshold = -np.log(
1. - exploration.value(t) + exploration.value(t) / float(num_actions))
kwargs['reset'] = reset
kwargs['update_param_noise_threshold'] = update_param_noise_threshold
kwargs['update_param_noise_scale'] = True
action=[]
qval=[]
for i in range(num_agents):
prediction=act(np.array(obs[i])[None], update_eps=update_eps, **kwargs)
#print(prediction[0],prediction[1][0])
action.append(prediction[0][0])
qval.append(prediction[1][0])
env_action = action
reset = False
new_obs, rew, done, _ = env.step(env_action,qval)
# Store transition in the replay buffer.
for i in range(num_agents):
replay_buffer.add(obs[i], action[i], rew, new_obs[i], float(done))
obs = new_obs
episode_rewards[-1] += rew
if done:
obs = env.reset()
episode_rewards.append(0.0)
reset = True
if t > learning_starts and t*num_agents % train_freq == 0:
# Minimize the error in Bellman's equation on a batch sampled from replay buffer.
if prioritized_replay:
experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
(obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
else:
obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
weights, batch_idxes = np.ones_like(rewards), None
#print(obses_t.shape,actions.shape,rewards.shape,obses_tp1.shape,dones.shape)
td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
if prioritized_replay:
new_priorities = np.abs(td_errors) + prioritized_replay_eps
replay_buffer.update_priorities(batch_idxes, new_priorities)
if t > learning_starts and t % target_network_update_freq == 0:
# Update target network periodically.
update_target()
mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
num_episodes = len(episode_rewards)
if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
logger.record_tabular("steps", t)
logger.record_tabular("episodes", num_episodes)
logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
logger.dump_tabular()
if (checkpoint_freq is not None and t > learning_starts and
num_episodes > 100 and t % checkpoint_freq == 0):
if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
if print_freq is not None:
logger.log("Saving model due to mean reward increase: {} -> {}".format(
saved_mean_reward, mean_100ep_reward))
save_state(model_file)
model_saved = True
saved_mean_reward = mean_100ep_reward
if model_saved:
if print_freq is not None:
logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
load_state(model_file)
return act,episode_rewards