-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval_orb_relight.py
225 lines (190 loc) · 8.48 KB
/
eval_orb_relight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
import random
import argparse
from utils.base_utils import load_cfg
import torch
import numpy as np
from tqdm import tqdm
import imageio
import cv2
from skimage.io import imread, imsave
from lpips import LPIPS
from kornia.losses import ssim_loss
_lpips = None
def rgb_to_srgb(f: np.ndarray):
# f is loaded from .exr
# output is NOT clipped to [0, 1]
assert len(f.shape) == 3, f.shape
assert f.shape[2] == 3, f.shape
f = np.where(f > 0.0031308, np.power(np.maximum(f, 0.0031308), 1.0 / 2.4) * 1.055 - 0.055, 12.92 * f)
return f
def srgb_to_rgb(f: np.ndarray):
# f is LDR
assert len(f.shape) == 3, f.shape
assert f.shape[2] == 3, f.shape
f = np.where(f <= 0.04045, f / 12.92, np.power((np.maximum(f, 0.04045) + 0.055) / 1.055, 2.4))
return f
def erode_mask(mask, target_size):
if mask.ndim == 3:
mask = mask[...,0]
if mask.dtype == np.float32:
mask = (mask*255).clip(0, 255).astype(np.uint8)
# shrink mask by a small margin to prevent inaccurate mask boundary.
kernel = np.ones((5, 5), np.uint8)
mask = cv2.erode(mask, kernel)
if target_size is not None:
mask = cv2.resize(mask, (target_size, target_size))
return (mask > 127).astype(np.float32)
def lpips(inputs: np.ndarray, target: np.ndarray, mask: np.ndarray):
if LPIPS is None:
return np.nan
global _lpips
if _lpips is None:
_lpips = LPIPS(net='vgg', verbose=False).cuda()
inputs = rgb_to_srgb(inputs)
target = rgb_to_srgb(target)
mask = erode_mask(mask, None)
inputs = inputs * mask[:, :, None]
target = target * mask[:, :, None]
inputs = torch.tensor(inputs, dtype=torch.float32, device='cuda').permute(2, 0, 1).unsqueeze(0)
target = torch.tensor(target, dtype=torch.float32, device='cuda').permute(2, 0, 1).unsqueeze(0)
return _lpips(inputs, target, normalize=True).item()
def mse_to_psnr(mse):
"""Compute PSNR given an MSE (we assume the maximum pixel value is 1)."""
return -10. / np.log(10.) * np.log(mse)
def calc_PSNR(img_pred, img_gt, mask_gt,
max_value, tonemapping, scale_invariant,
divide_mask=True):
# make sure img_pred, img_gt are linear
'''
calculate the PSNR between the predicted image and ground truth image.
a scale is optimized to get best possible PSNR.
images are clip by max_value_ratio.
params:
img_pred: numpy.ndarray of shape [H, W, 3]. predicted HDR image.
img_gt: numpy.ndarray of shape [H, W, 3]. ground truth HDR image.
mask_gt: numpy.ndarray of shape [H, W]. ground truth foreground mask.
max_value: Float. the maximum value of the ground truth image clipped to.
This is designed to prevent the result being affected by too bright pixels.
tonemapping: Bool. Whether the images are tone-mapped before comparion.
divide_mask: Bool. Whether the mse is divided by the foreground area.
'''
if mask_gt.ndim == 3:
mask_gt = mask_gt[..., 0]
if mask_gt.dtype == np.float32:
mask_gt = (mask_gt * 255).clip(0, 255).astype(np.uint8)
else:
import ipdb; ipdb.set_trace()
# shrink mask by a small margin to prevent inaccurate mask boundary.
kernel = np.ones((5, 5), np.uint8)
mask_gt = cv2.erode(mask_gt, kernel)
mask_gt = (mask_gt > 127).astype(np.float32)
img_pred = img_pred * mask_gt[..., None]
img_gt = img_gt * mask_gt[..., None]
img_gt[img_gt < 0] = 0
if scale_invariant:
img_pred_pixels = img_pred[np.where(mask_gt > 0.5)]
img_gt_pixels = img_gt[np.where(mask_gt > 0.5)]
for c in range(3):
if (img_pred_pixels[:, c] ** 2).sum() <= 1e-6:
img_pred_pixels[:, c] = np.ones_like(img_pred_pixels[:, c])
# import ipdb; ipdb.set_trace()
scale = (img_gt_pixels * img_pred_pixels).sum(axis=0) / (img_pred_pixels ** 2).sum(axis=0)
assert scale.shape == (3,), scale.shape
if (scale < 0).any():
import ipdb; ipdb.set_trace()
if (img_pred < 0).any():
import ipdb; ipdb.set_trace()
if (img_gt < 0).any():
import ipdb; ipdb.set_trace()
img_pred = scale * img_pred
# if not tonemapping:
# imageio.imsave("./rescaled.exr", img_pred)
# imageio.imsave("./rescaled_gt.exr", img_gt)
# clip the prediction and the gt img by the maximum_value
img_pred = np.clip(img_pred, 0, max_value)
img_gt = np.clip(img_gt, 0, max_value)
if tonemapping:
img_pred = rgb_to_srgb(img_pred)
img_gt = rgb_to_srgb(img_gt)
# imageio.imsave("./rescaled.png", (img_pred*255).clip(0,255).astype(np.uint8))
# imageio.imsave("./rescaled_gt.png", (img_gt*255).clip(0,255).astype(np.uint8))
if not divide_mask:
mse = ((img_pred - img_gt) ** 2).mean()
lb = ((np.ones_like(img_gt) * .5 * mask_gt[:, :, None] - img_gt) ** 2).mean()
else:
mse = ((img_pred - img_gt) ** 2).sum() / mask_gt.sum()
lb = ((np.ones_like(img_gt) * .5 * mask_gt[:, :, None] - img_gt) ** 2).sum() / mask_gt.sum()
out = mse_to_psnr(mse)
lb = mse_to_psnr(lb)
out = max(out, lb)
return out, img_pred, img_gt
def ssim(inputs: np.ndarray, target: np.ndarray, mask: np.ndarray):
if ssim_loss is None:
return np.nan
mask = erode_mask(mask, None)
inputs = inputs * mask[:, :, None]
target = target * mask[:, :, None]
# image_pred and image_gt: (1, 3, H, W) in range [0, 1]
inputs = torch.tensor(inputs, dtype=torch.float32, device='cuda').permute(2, 0, 1).unsqueeze(0)
target = torch.tensor(target, dtype=torch.float32, device='cuda').permute(2, 0, 1).unsqueeze(0)
dssim_ = ssim_loss(inputs, target, 3).item() # dissimilarity in [0, 1]
return 1 - 2 * dssim_ # in [-1, 1]
def load_mask_png(path: str):
f = imread(path).astype(np.float32)
f = f / 255.
assert len(f.shape) == 2, f.shape
return f
def img_read_rgba(path):
im = imread(path).astype(np.float32)
im_rgb = np.array(im)[..., :3] / 255.
im_alpha = np.array(im)[..., [-1]] / 255.
im = (im_rgb * im_alpha + (1 - im_alpha))
return im
def img_read_rgb(path):
im = imread(path).astype(np.float32)
im_rgb = np.array(im)[..., :3] / 255.
return im_rgb
def eval_relight(relight_dir, gt_dir):
relight_env_name = gt_dir.split('/')[-1]
save_dir = f'data/relight/orb/afterScale/{relight_env_name}'
os.makedirs(save_dir, exist_ok=True)
avg_PSNR, avg_SSIM, avg_LPIPS = 0, 0, 0
msg = ''
num = len(os.listdir(relight_dir))
for name in tqdm(os.listdir(relight_dir)):
relit_path = os.path.join(relight_dir, name)
mask_path = os.path.join(gt_dir, 'test_mask', name)
gt_path = os.path.join(gt_dir, 'test', name)
relit_im = img_read_rgba(relit_path)
gt_im = img_read_rgb(gt_path)
mask = load_mask_png(mask_path)
cur_psnr, img_pred, img_gt = calc_PSNR(relit_im, gt_im, mask, max_value=1, tonemapping=False, divide_mask=False, scale_invariant=True)
cur_lpips = lpips(img_pred, img_gt, mask)
cur_ssim = ssim(img_gt, img_pred, mask)
msg += f'{name}, psnr: {cur_psnr}, ssim: {cur_ssim}, lpips: {cur_lpips}\n'
avg_PSNR += cur_psnr
avg_SSIM += cur_ssim
avg_LPIPS += cur_lpips
img_pred_save = np.concatenate([img_pred, mask[..., None]], axis=-1)
img_gt_save = np.concatenate([img_gt, mask[..., None]], axis=-1)
imageio.imsave(f"{save_dir}/{name}", (img_pred_save*255).clip(0,255).astype(np.uint8))
imageio.imsave(f"{save_dir}/gt_{name}", (img_gt_save*255).clip(0,255).astype(np.uint8))
avg_PSNR /= num
avg_SSIM /= num
avg_LPIPS /= num
avg_info = f'Avg_psnr: {avg_PSNR}, avg_ssim: {avg_SSIM}, avg_lpips: {avg_LPIPS}\n'
msg += avg_info
print(avg_info)
with open(f'{save_dir}/metrics_record.txt', 'a') as f:
f.write(msg)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--relight_dir', type=str, default='data/relight/orb/noScale/teapot_scene006_relighting_teapot_scene001',
help='relighted images from blender')
parser.add_argument('--gt_dir', type=str, default='/home/riga/NeRF/nerf_data/blender_LDR/teapot_scene001',
help='ground truth relighting images from orb LDR datasets')
flags = parser.parse_args()
eval_relight(flags.relight_dir, flags.gt_dir)