-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval_mat.py
287 lines (258 loc) · 13.6 KB
/
eval_mat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import os
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
import random
import argparse
from utils.base_utils import load_cfg
import torch
import numpy as np
from tqdm import tqdm
from network.invRenderer import name2renderer
from dataset.database import parse_database_name
from skimage.metrics import peak_signal_noise_ratio as psnr, structural_similarity as ssim
from utils.base_utils import color_map_backward, color_map_forward, rgb_lpips
import cv2
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
from network.other_field import GaussianBlur2D, GaussianBlur1D
import torch.nn.functional as F
from skimage.io import imread, imsave
from utils.raw_utils import linear_to_srgb
import subprocess
class MaterialTester:
default_cfg={
"multi_gpus": False,
"worker_num": 8,
'random_seed': 6033,
'isBGWhite': True,
'albedoRescale': 0,
}
def __init__(self, cfg, blender_path, env_dir, orb_settings = None):
self.cfg={**self.default_cfg,**cfg}
torch.manual_seed(self.cfg['random_seed'])
np.random.seed(self.cfg['random_seed'])
random.seed(self.cfg['random_seed'])
self.model_name=cfg['name']
self.model_dir=os.path.join('data/model', cfg['name'])
if not os.path.exists(self.model_dir):
raise ImportError
self.pth_fn=os.path.join(self.model_dir,'model.pth')
self.best_pth_fn=os.path.join(self.model_dir,'model_best.pth')
self.base_save_path = os.path.join('data/nvs', cfg['name'])
self.albedo_rescale = self.cfg['albedoRescale']
self.blender_path = blender_path
self.env_dir = env_dir
self.env_maps = ['bridge', 'city', 'courtyard', 'interior', 'night']
self.orb_settings = orb_settings
self._init_dataset()
self._init_network()
def _init_dataset(self):
self.database_type, self.scene_name = self.cfg['database_name'].split('/')
self.scene_dir = f'{self.cfg["dataset_dir"]}/{self.scene_name}'
self.database = parse_database_name(self.cfg['database_name'], self.cfg['dataset_dir'], isTest=True, isWhiteBG=self.cfg['isBGWhite'])
self.test_ids = self.database.get_img_ids()
self.dataloader = DataLoader(self.test_ids, 1, False, num_workers=self.cfg['worker_num'])
print(f'Test set len {len(self.test_ids)}')
def _init_network(self):
best_para,start_step=0,0
if os.path.exists(self.pth_fn):
checkpoint=torch.load(self.pth_fn)
best_para = checkpoint['best_para']
start_step = checkpoint['step']
if 'kwargs' in checkpoint:
kwargs = checkpoint['kwargs']
self.cfg.update(kwargs)
self.network = name2renderer[self.cfg['network']](self.cfg).eval().cuda()
self.network.load_ckpt(checkpoint)
self.step = start_step
print(f'==> resuming from step {start_step} best para {best_para}')
else:
raise NotImplementedError
def calc_albedo_rescale(self):
os.makedirs(self.base_save_path, exist_ok=True)
h, w = int(self.database.H), int(self.database.W)
gt_albedo_lst, pred_albedo_lst = [], []
rescale_sample_num = 20
sample_interval = len(self.dataloader) // rescale_sample_num
for _, ind in tqdm(enumerate(self.dataloader)):
if (ind+1) % sample_interval == 0:
pose = self.database.get_pose(ind)
K = self.database.get_K(ind)
with torch.no_grad():
outputs = self.network.nvs(pose, K, h, w)
if self.database_type == 'tensoSDF':
# tips: The gt 'albedo' from blender is the albedo * (1-metallic), so we align with it here
albedo_pred = outputs['albedo'] * (1. - outputs['metallic'])
else:
albedo_pred = outputs['albedo']
gt_albedo = self.database.get_albedo(ind)
gt_mask = self.database.get_mask(ind) > 0.
pred_albedo_lst.append(albedo_pred[gt_mask])
gt_albedo_lst.append(gt_albedo[gt_mask])
gt_albedo_samples = np.concatenate(gt_albedo_lst, axis=0)
pred_albedo_samples = np.concatenate(pred_albedo_lst, axis=0)
self.single_channel_ratio = np.median((gt_albedo_samples / pred_albedo_samples.clip(min=1e-6))[..., 0])
self.three_channel_ratio = np.median(gt_albedo_samples / pred_albedo_samples.clip(min=1e-6), axis=0)
saved_message = f'single channel rescale ratio: {self.single_channel_ratio}, three channels rescale ratio: {self.three_channel_ratio}'
with open(f'{self.base_save_path}/albedoRescale_record.txt', 'a') as f:
f.write(saved_message)
print(saved_message)
def extract_materials(self):
torch.set_default_tensor_type('torch.cuda.FloatTensor')
self.material_dir = f'data/materials/{self.model_name}-{self.step}'
os.makedirs(self.material_dir, exist_ok=True)
with torch.no_grad():
materials = self.network.predict_materials()
if self.albedo_rescale != 0:
self.calc_albedo_rescale()
if self.albedo_rescale == 1:
materials['albedo'] *= self.single_channel_ratio
elif self.albedo_rescale == 2:
materials['albedo'] *= self.three_channel_ratio
else:
raise NotImplementedError
print(
'warning!!!!! we transform both albedo/metallic/roughness with gamma correction because our blender script uses vertex colors to store them, '
'it seems blender will apply an inverse gamma correction so that the results will be incorrect without this gamma correct\n'
'for more information refer to https://blender.stackexchange.com/questions/87576/vertex-colors-loose-color-data/87583#87583')
np.save(f'{self.material_dir}/metallic.npy', linear_to_srgb(materials['metallic']))
np.save(f'{self.material_dir}/roughness.npy', linear_to_srgb(materials['roughness']))
np.save(f'{self.material_dir}/albedo.npy', linear_to_srgb(materials['albedo']))
def relight(self):
if self.database_type == 'tensoSDF':
for env_name in self.env_maps:
save_dir_name = f'{self.scene_name}_{env_name}'
relight_save_dir = f'data/relight/{save_dir_name}'
cmds=[
self.blender_path, '--background', '--python', 'blender_backend/relight_backend.py', '--',
'--output', relight_save_dir,
'--mesh', self.cfg['mesh'],
'--material', self.material_dir,
'--env_fn', f'{self.env_dir}/{env_name}.exr',
'--gt', self.scene_dir,
'--env_name', env_name,
]
if self.cfg['trans']:
cmds.append('--trans')
subprocess.run(cmds)
self.eval_relight_results()
elif self.database_type == 'orb':
save_dir_name = f'{self.scene_name}_relighting_{self.orb_settings["orb_relight_env_name"]}'
relight_save_dir = f'data/relight/orb/noScale/{save_dir_name}'
env_dir = f'{self.orb_settings["orb_relight_gt_dir"]}/{self.orb_settings["orb_relight_env_name"]}/env_map'
pose_dir = f'{self.orb_settings["orb_blender_dir"]}/{self.scene_name}'
cmds=[
self.blender_path, '--background', '--python', 'blender_backend/relight_backend.py', '--',
'--output', relight_save_dir,
'--mesh', self.cfg['mesh'],
'--material', self.material_dir,
'--env_fn', env_dir,
'--gt', pose_dir,
'--dataset', self.database_type,
'--env_name', self.orb_settings['orb_relight_env_name'],
]
if self.cfg['trans']:
cmds.append('--trans')
subprocess.run(cmds)
else:
raise NotImplementedError
def eval_relight_results(self):
avg_psnr, avg_ssim, avg_lpips, total_num = 0., 0., 0., 0.
for env_name in self.env_maps:
relight_dir = f'data/relight/{self.scene_name}_{env_name}'
gt_dir = f'{self.scene_dir}/test_relight'
num = len(os.listdir(relight_dir))
total_num += num
for i in tqdm(range(num)):
im_name = f'{i}.png'
im_path = os.path.join(relight_dir, im_name)
gt_path = os.path.join(gt_dir, env_name, f'r_{i}.png')
img = img_read_rgba(im_path)
gt_img = img_read_rgba(gt_path)
cur_psnr = psnr(gt_img, img)
cur_ssim = ssim(gt_img, img, win_size=11, channel_axis=2, data_range=255)
cur_lpips = rgb_lpips(gt_img, img, 'vgg', 'cuda')
avg_psnr += cur_psnr
avg_ssim += cur_ssim
avg_lpips += cur_lpips
avg_psnr, avg_ssim, avg_lpips = avg_psnr / total_num, avg_ssim / total_num, avg_lpips / total_num
print(f'avg_psnr: {avg_psnr}, avg_ssim: {avg_ssim}, avg_lpips: {avg_lpips}')
msg = f'avg_psnr: {avg_psnr}, avg_ssim: {avg_ssim}, avg_lpips: {avg_lpips}, total_num:{total_num}\n'
with open(f'data/relight/{self.scene_name}_relight_record.txt', 'a') as f:
f.write(msg)
def run_nvs(self):
os.makedirs(self.base_save_path, exist_ok=True)
h, w = int(self.database.H), int(self.database.W)
num = len(self.test_ids)
img_avg_psnr = 0
img_avg_ssim = 0
img_avg_lpips = 0
def dir_maker(name):
dir = os.path.join(self.base_save_path, name)
os.makedirs(dir, exist_ok=True)
return dir
imgs_dir = dir_maker('imgs')
albedo_dir = dir_maker('albedo')
metallic_dir = dir_maker('metallic')
rough_dir = dir_maker('roughness')
diff_spec_color_dir = dir_maker('diff_spec_color')
light_dir = dir_maker('light')
save_func = lambda save_dir, index, im : cv2.imwrite(os.path.join(save_dir, str(int(index)) + '.png'), im[..., ::-1])
for _, ind in tqdm(enumerate(self.dataloader)):
pose = self.database.get_pose(ind)
K = self.database.get_K(ind)
gt_imgs = self.database.get_image(ind)
with torch.no_grad():
outputs = self.network.nvs(pose, K, h, w)
for k in outputs:
outputs[k] = color_map_backward(outputs[k])
img_avg_psnr += psnr(gt_imgs, outputs['color'])
img_avg_ssim += ssim(gt_imgs, outputs['color'], win_size=11, channel_axis=2, data_range=255)
img_avg_lpips += rgb_lpips(gt_imgs, outputs['color'], 'vgg', 'cuda')
save_func(imgs_dir, ind, outputs['color'])
save_func(albedo_dir, ind, outputs['albedo'])
save_func(rough_dir, ind, outputs['roughness'])
save_func(metallic_dir, ind, outputs['metallic'])
save_func(diff_spec_color_dir, ind, np.concatenate((outputs['diff_color'], outputs['spec_color']), axis=1))
save_func(light_dir, ind, np.concatenate((outputs['diff_light'], outputs['spec_light'], outputs['indirect_light'], outputs['occ_trace'].repeat(3, axis=-1)), axis=1))
img_avg_psnr /= num
img_avg_ssim /= num
img_avg_lpips /= num
saved_message = f'{self.model_name}: \n' \
+ f'\tPSNR_nvs: {img_avg_psnr:.3f}, SSIM_nvs: {img_avg_ssim:.5f}, LPIPS_nvs: {img_avg_lpips:.5f}'
with open(f'{self.base_save_path}/metrics_record.txt', 'a') as f:
f.write(saved_message)
print(saved_message)
def img_read_rgba(path):
im = imread(path).astype(np.float32)
im_rgb = np.array(im)[..., :3] / 255.
im_alpha = np.array(im)[..., [-1]] / 255.
im = (im_rgb * im_alpha + (1 - im_alpha))
return color_map_backward(im)
def img_read_rgb(path):
im = imread(path).astype(np.float32)
im_rgb = np.array(im)[..., :3] / 255.
return im_rgb
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='configs/mat/syn/compressor.yaml')
parser.add_argument('--blender', type=str, default='/home/riga/blender-3.6.5-linux-x64/blender',
help='the blender path')
parser.add_argument('--env_dir', type=str, default='/home/riga/NeRF/nerf_data/env_maps/tensoIR/envmaps_1k_exr',
help='env dir')
#---------------------------Following settings are used in orb datasets-----------------------------------
parser.add_argument('--orb_relight_gt_dir', type=str, default='/home/riga/NeRF/nerf_data/ground_truth',
help='base dir of orb ground-truth')
parser.add_argument('--orb_relight_env', type=str, default='cactus_scene007',
help='orb relight env name')
parser.add_argument('--orb_blender_dir', type=str, default='/home/riga/NeRF/nerf_data/blender_LDR',
help='base dir of orb ldr blender datasets')
flags = parser.parse_args()
orb_settings = {
'orb_relight_env_name': flags.orb_relight_env,
'orb_relight_gt_dir': flags.orb_relight_gt_dir,
'orb_blender_dir': flags.orb_blender_dir,
}
matTester = MaterialTester(load_cfg(flags.cfg), flags.blender, flags.env_dir, orb_settings)
matTester.extract_materials()
matTester.relight()