diff --git a/.gitattributes b/.gitattributes index 2ab2d3c5962..2f2cad2e13a 100644 --- a/.gitattributes +++ b/.gitattributes @@ -1,4 +1,4 @@ * text=auto *.js linguist-language=java *.css linguist-language=java -*.html linguist-language=java +*.html linguist-language=java \ No newline at end of file diff --git a/.gitignore b/.gitignore index 37cac6147d8..2dc9c784aa8 100644 --- a/.gitignore +++ b/.gitignore @@ -1,38 +1,4 @@ -.gradle -/build/ -/**/build/ - -### STS ### -.apt_generated -.classpath -.factorypath -.project -.settings -.springBeans -.sts4-cache - -### IntelliJ IDEA ### -.idea -*.iws -*.iml -*.ipr -/out/ -/**/out/ -.shelf/ -.ideaDataSources/ -dataSources/ - -### NetBeans ### -/nbproject/private/ -/nbbuild/ -/dist/ -/nbdist/ -/.nb-gradle/ -/node_modules/ - -### OS ### -.DS_Store -.Ds_Store´ /node_modules - - +/package-lock.json +/dist +.DS_Store diff --git a/.nojekyll b/.nojekyll old mode 100644 new mode 100755 diff --git a/LICENSE b/LICENSE deleted file mode 100644 index 261eeb9e9f8..00000000000 --- a/LICENSE +++ /dev/null @@ -1,201 +0,0 @@ - Apache License - Version 2.0, January 2004 - http://www.apache.org/licenses/ - - TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION - - 1. Definitions. - - "License" shall mean the terms and conditions for use, reproduction, - and distribution as defined by Sections 1 through 9 of this document. - - "Licensor" shall mean the copyright owner or entity authorized by - the copyright owner that is granting the License. - - "Legal Entity" shall mean the union of the acting entity and all - other entities that control, are controlled by, or are under common - control with that entity. For the purposes of this definition, - "control" means (i) the power, direct or indirect, to cause the - direction or management of such entity, whether by contract or - otherwise, or (ii) ownership of fifty percent (50%) or more of the - outstanding shares, or (iii) beneficial ownership of such entity. - - "You" (or "Your") shall mean an individual or Legal Entity - exercising permissions granted by this License. - - "Source" form shall mean the preferred form for making modifications, - including but not limited to software source code, documentation - source, and configuration files. - - "Object" form shall mean any form resulting from mechanical - transformation or translation of a Source form, including but - not limited to compiled object code, generated documentation, - and conversions to other media types. - - "Work" shall mean the work of authorship, whether in Source or - Object form, made available under the License, as indicated by a - copyright notice that is included in or attached to the work - (an example is provided in the Appendix below). - - "Derivative Works" shall mean any work, whether in Source or Object - form, that is based on (or derived from) the Work and for which the - editorial revisions, annotations, elaborations, or other modifications - represent, as a whole, an original work of authorship. For the purposes - of this License, Derivative Works shall not include works that remain - separable from, or merely link (or bind by name) to the interfaces of, - the Work and Derivative Works thereof. - - "Contribution" shall mean any work of authorship, including - the original version of the Work and any modifications or additions - to that Work or Derivative Works thereof, that is intentionally - submitted to Licensor for inclusion in the Work by the copyright owner - or by an individual or Legal Entity authorized to submit on behalf of - the copyright owner. For the purposes of this definition, "submitted" - means any form of electronic, verbal, or written communication sent - to the Licensor or its representatives, including but not limited to - communication on electronic mailing lists, source code control systems, - and issue tracking systems that are managed by, or on behalf of, the - Licensor for the purpose of discussing and improving the Work, but - excluding communication that is conspicuously marked or otherwise - designated in writing by the copyright owner as "Not a Contribution." - - "Contributor" shall mean Licensor and any individual or Legal Entity - on behalf of whom a Contribution has been received by Licensor and - subsequently incorporated within the Work. - - 2. Grant of Copyright License. Subject to the terms and conditions of - this License, each Contributor hereby grants to You a perpetual, - worldwide, non-exclusive, no-charge, royalty-free, irrevocable - copyright license to reproduce, prepare Derivative Works of, - publicly display, publicly perform, sublicense, and distribute the - Work and such Derivative Works in Source or Object form. - - 3. Grant of Patent License. Subject to the terms and conditions of - this License, each Contributor hereby grants to You a perpetual, - worldwide, non-exclusive, no-charge, royalty-free, irrevocable - (except as stated in this section) patent license to make, have made, - use, offer to sell, sell, import, and otherwise transfer the Work, - where such license applies only to those patent claims licensable - by such Contributor that are necessarily infringed by their - Contribution(s) alone or by combination of their Contribution(s) - with the Work to which such Contribution(s) was submitted. If You - institute patent litigation against any entity (including a - cross-claim or counterclaim in a lawsuit) alleging that the Work - or a Contribution incorporated within the Work constitutes direct - or contributory patent infringement, then any patent licenses - granted to You under this License for that Work shall terminate - as of the date such litigation is filed. - - 4. Redistribution. You may reproduce and distribute copies of the - Work or Derivative Works thereof in any medium, with or without - modifications, and in Source or Object form, provided that You - meet the following conditions: - - (a) You must give any other recipients of the Work or - Derivative Works a copy of this License; and - - (b) You must cause any modified files to carry prominent notices - stating that You changed the files; and - - (c) You must retain, in the Source form of any Derivative Works - that You distribute, all copyright, patent, trademark, and - attribution notices from the Source form of the Work, - excluding those notices that do not pertain to any part of - the Derivative Works; and - - (d) If the Work includes a "NOTICE" text file as part of its - distribution, then any Derivative Works that You distribute must - include a readable copy of the attribution notices contained - within such NOTICE file, excluding those notices that do not - pertain to any part of the Derivative Works, in at least one - of the following places: within a NOTICE text file distributed - as part of the Derivative Works; within the Source form or - documentation, if provided along with the Derivative Works; or, - within a display generated by the Derivative Works, if and - wherever such third-party notices normally appear. The contents - of the NOTICE file are for informational purposes only and - do not modify the License. You may add Your own attribution - notices within Derivative Works that You distribute, alongside - or as an addendum to the NOTICE text from the Work, provided - that such additional attribution notices cannot be construed - as modifying the License. - - You may add Your own copyright statement to Your modifications and - may provide additional or different license terms and conditions - for use, reproduction, or distribution of Your modifications, or - for any such Derivative Works as a whole, provided Your use, - reproduction, and distribution of the Work otherwise complies with - the conditions stated in this License. - - 5. Submission of Contributions. Unless You explicitly state otherwise, - any Contribution intentionally submitted for inclusion in the Work - by You to the Licensor shall be under the terms and conditions of - this License, without any additional terms or conditions. - Notwithstanding the above, nothing herein shall supersede or modify - the terms of any separate license agreement you may have executed - with Licensor regarding such Contributions. - - 6. Trademarks. This License does not grant permission to use the trade - names, trademarks, service marks, or product names of the Licensor, - except as required for reasonable and customary use in describing the - origin of the Work and reproducing the content of the NOTICE file. - - 7. Disclaimer of Warranty. Unless required by applicable law or - agreed to in writing, Licensor provides the Work (and each - Contributor provides its Contributions) on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or - implied, including, without limitation, any warranties or conditions - of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A - PARTICULAR PURPOSE. You are solely responsible for determining the - appropriateness of using or redistributing the Work and assume any - risks associated with Your exercise of permissions under this License. - - 8. Limitation of Liability. In no event and under no legal theory, - whether in tort (including negligence), contract, or otherwise, - unless required by applicable law (such as deliberate and grossly - negligent acts) or agreed to in writing, shall any Contributor be - liable to You for damages, including any direct, indirect, special, - incidental, or consequential damages of any character arising as a - result of this License or out of the use or inability to use the - Work (including but not limited to damages for loss of goodwill, - work stoppage, computer failure or malfunction, or any and all - other commercial damages or losses), even if such Contributor - has been advised of the possibility of such damages. - - 9. Accepting Warranty or Additional Liability. While redistributing - the Work or Derivative Works thereof, You may choose to offer, - and charge a fee for, acceptance of support, warranty, indemnity, - or other liability obligations and/or rights consistent with this - License. However, in accepting such obligations, You may act only - on Your own behalf and on Your sole responsibility, not on behalf - of any other Contributor, and only if You agree to indemnify, - defend, and hold each Contributor harmless for any liability - incurred by, or claims asserted against, such Contributor by reason - of your accepting any such warranty or additional liability. - - END OF TERMS AND CONDITIONS - - APPENDIX: How to apply the Apache License to your work. - - To apply the Apache License to your work, attach the following - boilerplate notice, with the fields enclosed by brackets "[]" - replaced with your own identifying information. (Don't include - the brackets!) The text should be enclosed in the appropriate - comment syntax for the file format. We also recommend that a - file or class name and description of purpose be included on the - same "printed page" as the copyright notice for easier - identification within third-party archives. - - Copyright [yyyy] [name of copyright owner] - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. diff --git a/README.md b/README.md old mode 100644 new mode 100755 index a8609952856..f8e670983e3 --- a/README.md +++ b/README.md @@ -1,400 +1,367 @@ -👉 如果你不知道该学习什么的话,请看 [Java 学习线路图是怎样的?]( https://zhuanlan.zhihu.com/p/379041500) (原创不易,欢迎点赞),这是 2021 最新最完善的 Java 学习路线!另外,我整理了一份各个技术的学习路线,需要的小伙伴[加我微信](#联系我)备注“**Github-学习路线**”即可! - -👉 推荐 [在线阅读](https://snailclimb.gitee.io/javaguide) (Github 访问速度比较慢可能会导致部分图片无法刷新出来) - -👉 书单已经被移动到 [awesome-cs](https://github.com/CodingDocs/awesome-cs) 这个仓库。 - -> 1. **介绍**:关于 JavaGuide 的相关介绍请看:[关于 JavaGuide 的一些说明](https://www.yuque.com/snailclimb/dr6cvl/mr44yt) 。 -> 2. **贡献指南** :欢迎参与 [JavaGuide的维护工作](https://github.com/Snailclimb/JavaGuide/issues/1235),这是一件非常有意义的事情。 -> 3. **PDF版本** : [《JavaGuide 面试突击版》PDF 版本](#公众号) 。 -> 4. **图解计算机基础** :[图解计算机基础 PDF 下载](https://mp.weixin.qq.com/s?__biz=Mzg2OTA0Njk0OA==&mid=100021725&idx=1&sn=2db9664ca25363139a81691043e9fd8f&chksm=4ea19a1679d61300d8990f7e43bfc7f476577a81b712cf0f9c6f6552a8b219bc081efddb5c54#rd) 。 -> 5. **知识星球** : 简历指导/Java学习/面试指导/面试小册。欢迎加入[我的知识星球](https://mp.weixin.qq.com/s?__biz=Mzg2OTA0Njk0OA==&mid=100015911&idx=1&sn=2e8a0f5acb749ecbcbb417aa8a4e18cc&chksm=4ea1b0ec79d639fae37df1b86f196e8ce397accfd1dd2004bcadb66b4df5f582d90ae0d62448#rd) 。 -> 6. **面试专版** :准备面试的小伙伴可以考虑面试专版:[《Java面试进阶指北 》](https://www.yuque.com/docs/share/f37fc804-bfe6-4b0d-b373-9c462188fec7) (质量很高,专为面试打造) -> 7. **转载须知** :以下所有文章如非文首说明皆为我(Guide哥)的原创,转载在文首注明出处,如发现恶意抄袭/搬运,会动用法律武器维护自己的权益。让我们一起维护一个良好的技术创作环境!⛽️ - -

- - - -

-

- 阅读 - 公众号 - 公众号 - 投稿 - 投稿 - 投稿 -

- - -

Sponsor

- - - - - - - -
- - -
- -## Java - -### 基础 - -**知识点/面试题:**(必看:+1: ) - -1. **[Java 基础知识](docs/java/basis/Java基础知识.md)** -2. **[Java 基础知识疑难点/易错点](docs/java/basis/Java基础知识疑难点.md)** - -**重要知识点详解:** - -1. [枚举](docs/java/basis/用好Java中的枚举真的没有那么简单.md) (很重要的一个数据结构,用好枚举真的没有那么简单!) -2. [Java 常见关键字总结:final、static、this、super!](docs/java/basis/Java常见关键字总结.md) -3. [什么是反射机制?反射机制的应用场景有哪些?](docs/java/basis/反射机制.md) -4. [代理模式详解:静态代理+JDK/CGLIB 动态代理实战](docs/java/basis/代理模式详解.md) -5. [常见的 IO 模型有哪些?Java 中的 BIO、NIO、AIO 有啥区别?](docs/java/basis/IO模型.md) - -### 容器 - -1. **[Java 容器常见问题总结](docs/java/collection/Java集合框架常见面试题.md)** (必看 :+1:) -2. **源码分析** :[ArrayList 源码+扩容机制分析](docs/java/collection/ArrayList源码+扩容机制分析.md) 、[LinkedList 源码](docs/java/collection/LinkedList源码分析.md) 、[HashMap(JDK1.8)源码+底层数据结构分析]() 、[ConcurrentHashMap 源码+底层数据结构分析](docs/java/collection/ConcurrentHashMap源码+底层数据结构分析.md) - -### 并发 - -**知识点/面试题:** (必看 :+1:) - -1. **[Java 并发基础常见面试题总结](docs/java/multi-thread/2020最新Java并发基础常见面试题总结.md)** -2. **[Java 并发进阶常见面试题总结](docs/java/multi-thread/2020最新Java并发进阶常见面试题总结.md)** - -**重要知识点详解:** - -2. **线程池**:[Java 线程池学习总结](./docs/java/multi-thread/java线程池学习总结.md)、[拿来即用的线程池最佳实践](./docs/java/multi-thread/拿来即用的线程池最佳实践.md) -4. [ ThreadLocal 关键字解析](docs/java/multi-thread/万字详解ThreadLocal关键字.md) -5. [并发容器总结](docs/java/multi-thread/并发容器总结.md) -6. [JUC 中的 Atomic 原子类总结](docs/java/multi-thread/Atomic原子类总结.md) -7. [AQS 原理以及 AQS 同步组件总结](docs/java/multi-thread/AQS原理以及AQS同步组件总结.md) - -### JVM (必看 :+1:) - -JVM 这部分内容主要参考 [JVM 虚拟机规范-Java8 ](https://docs.oracle.com/javase/specs/jvms/se8/html/index.html) 和周志明老师的[《深入理解Java虚拟机(第3版)》](https://book.douban.com/subject/34907497/) (强烈建议阅读多遍!)。 - -1. **[Java 内存区域](docs/java/jvm/Java内存区域.md)** -2. **[JVM 垃圾回收](docs/java/jvm/JVM垃圾回收.md)** -3. [JDK 监控和故障处理工具](docs/java/jvm/JDK监控和故障处理工具总结.md) -4. [类文件结构](docs/java/jvm/类文件结构.md) -5. **[类加载过程](docs/java/jvm/类加载过程.md)** -6. [类加载器](docs/java/jvm/类加载器.md) -7. **[【待完成】最重要的 JVM 参数指南(翻译完善了一半)](docs/java/jvm/最重要的JVM参数指南.md)** -9. **[【加餐】大白话带你认识 JVM](docs/java/jvm/[加餐]大白话带你认识JVM.md)** - -### 新特性 - -1. **Java 8** :[Java 8 新特性总结](docs/java/new-features/Java8新特性总结.md)、[Java8常用新特性总结](docs/java/new-features/java8-common-new-features.md) 、[Java 8 学习资源推荐](docs/java/new-features/Java8教程推荐.md)、[Java8 forEach 指南](docs/java/new-features/Java8foreach指南.md) -2. **Java9~Java14** : [一文带你看遍 JDK9~14 的重要新特性!](./docs/java/new-features/一文带你看遍JDK9到14的重要新特性.md) - -## 计算机基础 - -👉 **[图解计算机基础 PDF 下载](https://mp.weixin.qq.com/s?__biz=Mzg2OTA0Njk0OA==&mid=100021725&idx=1&sn=2db9664ca25363139a81691043e9fd8f&chksm=4ea19a1679d61300d8990f7e43bfc7f476577a81b712cf0f9c6f6552a8b219bc081efddb5c54#rd)** 。 - -### 操作系统 - -1. [操作系统常见问题总结!](docs/operating-system/basis.md) -2. [后端程序员必备的 Linux 基础知识](docs/operating-system/linux.md) -3. [Shell 编程入门](docs/operating-system/Shell.md) - -### 网络 - -1. [计算机网络常见面试题](docs/network/计算机网络.md) -2. [计算机网络基础知识总结](docs/network/计算机网络知识总结.md) - -### 数据结构 - -- **图解数据结构:** - 1. [线性数据结构 :数组、链表、栈、队列](docs/dataStructures-algorithms/data-structure/线性数据结构.md) - 2. [图](docs/dataStructures-algorithms/data-structure/图.md) - 3. [堆](docs/dataStructures-algorithms/data-structure/堆.md) -- [不了解布隆过滤器?一文给你整的明明白白!](docs/dataStructures-algorithms/data-structure/bloom-filter.md) - -### 算法 - -算法这部分内容非常重要,如果你不知道如何学习算法的话,可以看下我写的: - -- [算法学习书籍+资源推荐](https://www.zhihu.com/question/323359308/answer/1545320858) 。 -- [如何刷Leetcode?](https://www.zhihu.com/question/31092580/answer/1534887374) - -**常见算法问题总结:** - -- [几道常见的字符串算法题总结 ](docs/dataStructures-algorithms/几道常见的字符串算法题.md) -- [几道常见的链表算法题总结 ](docs/dataStructures-algorithms/几道常见的链表算法题.md) -- [剑指 offer 部分编程题](docs/dataStructures-algorithms/剑指offer部分编程题.md) - -## 数据库 - -### MySQL - -**总结:** - -1. **[MySQL知识点总结](docs/database/MySQL.md)** (必看 :+1:) -2. [阿里巴巴开发手册数据库部分的一些最佳实践](docs/database/阿里巴巴开发手册数据库部分的一些最佳实践.md) -3. [一千行 MySQL 学习笔记](docs/database/一千行MySQL命令.md) -4. [MySQL 高性能优化规范建议](docs/database/MySQL高性能优化规范建议.md) - -**重要知识点:** - -1. [MySQL数据库索引总结](docs/database/MySQL数据库索引.md) -2. [事务隔离级别(图文详解)]() -3. [一条 SQL 语句在 MySQL 中如何执行的](docs/database/一条sql语句在mysql中如何执行的.md) -4. [关于数据库中如何存储时间的一点思考](docs/database/关于数据库存储时间的一点思考.md) - -### Redis - -2. [Redis 常见问题总结](docs/database/Redis/redis-all.md) -3. [面试/工作必备!3种常用的缓存读写策略!](docs/database/Redis/3种常用的缓存读写策略.md) - -## 系统设计 - -### 系统设计必备基础 - -#### RESTful API - -我们在进行后端开发的时候,主要的工作就是为前端或者其他后端服务提供 API 比如查询用户数据的 API 。RESTful API 是一种基于 REST 构建的 API,它是一种被设计的更好使用的 API。 - -相关阅读:[RestFul API 简明教程](docs/system-design/coding-way/RESTfulAPI简明教程.md) - -#### 命名 - -编程过程中,一定要重视命名。因为好的命名即是注释,别人一看到你的命名就知道你的变量、方法或者类是做什么的! - -相关阅读: [Java 命名之道](docs/system-design/naming.md) 。 - -### 常用框架 - -如果你没有接触过 Java Web 开发的话,可以先看一下我总结的 [《J2EE 基础知识》](docs/java/J2EE基础知识.md) 。虽然,这篇文章中的很多内容已经淘汰,但是可以让你对 Java 后台技术发展有更深的认识。 - -#### Spring/SpringBoot (必看 :+1:) - -**知识点/面试题:** - -1. **[Spring 常见问题总结](docs/system-design/framework/spring/Spring常见问题总结.md)** -2. **[SpringBoot 入门指南](https://github.com/Snailclimb/springboot-guide)** -3. **[面试常问:“讲述一下 SpringBoot 自动装配原理?”](https://www.cnblogs.com/javaguide/p/springboot-auto-config.html)** - -**重要知识点详解:** - -1. **[Spring/Spring Boot 常用注解总结!安排!](./docs/system-design/framework/spring/SpringBoot+Spring常用注解总结.md)** -2. **[Spring 事务总结](docs/system-design/framework/spring/Spring事务总结.md)** -3. [Spring 中都用到了那些设计模式?](docs/system-design/framework/spring/Spring-Design-Patterns.md) - -#### MyBatis - -- [MyBatis 常见面试题总结](docs/system-design/framework/mybatis/mybatis-interview.md) - -#### Netty (必看 :+1:) - -1. [剖析面试最常见问题之 Netty(上)](https://xiaozhuanlan.com/topic/4028536971) -2. [剖析面试最常见问题之 Netty(下)](https://xiaozhuanlan.com/topic/3985146207) - -#### ZooKeeper - -> 前两篇文章可能有内容重合部分,推荐都看一遍。 - -1. [【入门】ZooKeeper 相关概念总结](docs/system-design/distributed-system/zookeeper/zookeeper-intro.md) -2. [【进阶】ZooKeeper 相关概念总结](docs/system-design/distributed-system/zookeeper/zookeeper-plus.md) -3. [【实战】ZooKeeper 实战](docs/system-design/distributed-system/zookeeper/zookeeper-in-action.md) - -### 安全 - -#### 认证授权 - -**[《认证授权基础》](docs/system-design/authority-certification/basis-of-authority-certification.md)** 这篇文章中我会介绍认证授权常见概念: **Authentication**,**Authorization** 以及 **Cookie**、**Session**、Token、**OAuth 2**、**SSO** 。如果你不清楚这些概念的话,建议好好阅读一下这篇文章。 - -- **JWT** :JWT(JSON Web Token)是一种身份认证的方式,JWT 本质上就一段签名的 JSON 格式的数据。由于它是带有签名的,因此接收者便可以验证它的真实性。相关阅读: - - [JWT 优缺点分析以及常见问题解决方案](docs/system-design/authority-certification/JWT优缺点分析以及常见问题解决方案.md) - - [适合初学者入门 Spring Security With JWT 的 Demo](https://github.com/Snailclimb/spring-security-jwt-guide) - -- **SSO(单点登录)** :**SSO(Single Sign On)** 即单点登录说的是用户登陆多个子系统的其中一个就有权访问与其相关的其他系统。举个例子我们在登陆了京东金融之后,我们同时也成功登陆京东的京东超市、京东家电等子系统。相关阅读:[**SSO 单点登录看这篇就够了!**](docs/system-design/authority-certification/SSO单点登录看这一篇就够了.md) - -#### 数据脱敏 - -数据脱敏说的就是我们根据特定的规则对敏感信息数据进行变形,比如我们把手机号、身份证号某些位数使用 * 来代替。 - -### 分布式 - -#### CAP 理论 - -CAP 也就是 Consistency(一致性)、Availability(可用性)、Partition Tolerance(分区容错性) 这三个单词首字母组合。 - -关于 CAP 的详细解读请看:[《CAP理论解读》](docs/system-design/distributed-system/CAP理论.md)。 - -#### BASE 理论 - -**BASE** 是 **Basically Available(基本可用)** 、**Soft-state(软状态)** 和 **Eventually Consistent(最终一致性)** 三个短语的缩写。BASE 理论是对 CAP 中一致性和可用性权衡的结果,其来源于对大规模互联网系统分布式实践的总结,是基于 CAP 定理逐步演化而来的,它大大降低了我们对系统的要求。 - -关于 BASE 的详细解读请看:[《BASE理论解读》](docs/system-design/distributed-system/BASE理论.md)。 - -#### Paxos 算法和 Raft 算法 - -**Paxos 算法**诞生于 1990 年,这是一种解决分布式系统一致性的经典算法 。但是,由于 Paxos 算法非常难以理解和实现,不断有人尝试简化这一算法。到了2013 年才诞生了一个比 Paxos 算法更易理解和实现的分布式一致性算法—**Raft 算法**。 - -#### 搜索引擎 - -用于提高搜索效率,功能和浏览器搜索引擎类似。比较常见的搜索引擎是 Elasticsearch(推荐) 和 Solr。 - -#### RPC - -RPC 让调用远程服务调用像调用本地方法那样简单。 - -Dubbo 是一款国产的 RPC 框架,由阿里开源。相关阅读: - -- [Dubbo 常见问题总结](docs/system-design/distributed-system/rpc/Dubbo.md) -- [服务之间的调用为啥不直接用 HTTP 而用 RPC?](docs/system-design/distributed-system/rpc/服务之间的调用为啥不直接用HTTP而用RPC.md) - -#### API 网关 - -网关主要用于请求转发、安全认证、协议转换、容灾。 - -1. [为什么要网关?你知道有哪些常见的网关系统?](docs/system-design/distributed-system/api-gateway/为什么要网站有哪些常见的网站系统.md) -2. [如何设计一个亿级网关(API Gateway)?](docs/system-design/distributed-system/api-gateway/如何设计一个亿级网关.md) - -#### 分布式 id - -在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识。比如数据量太大之后,往往需要对进行对数据进行分库分表,分库分表后需要有一个唯一 ID 来标识一条数据或消息,数据库的自增 ID 显然不能满足需求。相关阅读:[为什么要分布式 id ?分布式 id 生成方案有哪些?](docs/system-design/micro-service/分布式id生成方案总结.md) - -#### 分布式事务 - -**分布式事务就是指事务的参与者、支持事务的服务器、资源服务器以及事务管理器分别位于不同的分布式系统的不同节点之上。** - -简单的说,就是一次大的操作由不同的小操作组成,这些小的操作分布在不同的服务器上,且属于不同的应用,分布式事务需要保证这些小操作要么全部成功,要么全部失败。本质上来说,分布式事务就是为了保证不同数据库的数据一致性。 - -### 微服务 - -1. [ 大白话入门 Spring Cloud](docs/system-design/micro-service/spring-cloud.md) -2. [微服务/分布式大厂真实面试问题解答](https://xiaozhuanlan.com/topic/2895047136) - -### 高并发 - -#### 消息队列 - -消息队列在分布式系统中主要是为了解耦和削峰。相关阅读: [消息队列常见问题总结](docs/system-design/distributed-system/message-queue/message-queue.md)。 - -1. **RabbitMQ** : [RabbitMQ 入门](docs/system-design/distributed-system/message-queue/RabbitMQ入门看这一篇就够了.md) -2. **RocketMQ** : [RocketMQ 入门](docs/system-design/distributed-system/message-queue/RocketMQ.md)、[RocketMQ 的几个简单问题与答案](docs/system-design/distributed-system/message-queue/RocketMQ-Questions.md) -3. **Kafka** :[Kafka 常见问题总结](docs/system-design/distributed-system/message-queue/Kafka常见面试题总结.md) - -#### 读写分离&分库分表 - -读写分离主要是为了将数据库的读和写操作分不到不同的数据库节点上。主服务器负责写,从服务器负责读。另外,一主一从或者一主多从都可以。 - -读写分离可以大幅提高读性能,小幅提高写的性能。因此,读写分离更适合单机并发读请求比较多的场景。 - -分库分表是为了解决由于库、表数据量过大,而导致数据库性能持续下降的问题。 - -常见的分库分表工具有:`sharding-jdbc`(当当)、`TSharding`(蘑菇街)、`MyCAT`(基于 Cobar)、`Cobar`(阿里巴巴)...。 推荐使用 `sharding-jdbc`。 因为,`sharding-jdbc` 是一款轻量级 `Java` 框架,以 `jar` 包形式提供服务,不要我们做额外的运维工作,并且兼容性也很好。 - -相关阅读: [读写分离&分库分表常见问题总结](docs/system-design/读写分离&分库分表.md) - -#### 负载均衡 - -负载均衡系统通常用于将任务比如用户请求处理分配到多个服务器处理以提高网站、应用或者数据库的性能和可靠性。 - -常见的负载均衡系统包括 3 种: - -1. **DNS 负载均衡** :一般用来实现地理级别的均衡。 -2. **硬件负载均衡** : 通过单独的硬件设备比如 F5 来实现负载均衡功能(硬件的价格一般很贵)。 -3. **软件负载均衡** :通过负载均衡软件比如 Nginx 来实现负载均衡功能。 - -### 高可用 - -高可用描述的是一个系统在大部分时间都是可用的,可以为我们提供服务的。高可用代表系统即使在发生硬件故障或者系统升级的时候,服务仍然是可用的 。 - -相关阅读: **《[如何设计一个高可用系统?要考虑哪些地方?](docs/system-design/high-availability/如何设计一个高可用系统要考虑哪些地方.md)》** 。 - -#### 限流 - -限流是从用户访问压力的角度来考虑如何应对系统故障。 - -限流为了对服务端的接口接受请求的频率进行限制,防止服务挂掉。比如某一接口的请求限制为 100 个每秒, 对超过限制的请求放弃处理或者放到队列中等待处理。限流可以有效应对突发请求过多。相关阅读:[限流算法有哪些?](docs/system-design/high-availability/limit-request.md) - -#### 降级 - -降级是从系统功能优先级的角度考虑如何应对系统故障。 - -服务降级指的是当服务器压力剧增的情况下,根据当前业务情况及流量对一些服务和页面有策略的降级,以此释放服务器资源以保证核心任务的正常运行。 - -#### 熔断 - -熔断和降级是两个比较容易混淆的概念,两者的含义并不相同。 - -降级的目的在于应对系统自身的故障,而熔断的目的在于应对当前系统依赖的外部系统或者第三方系统的故障。 - -#### 排队 - -另类的一种限流,类比于现实世界的排队。玩过英雄联盟的小伙伴应该有体会,每次一有活动,就要经历一波排队才能进入游戏。 - -#### 集群 - -相同的服务部署多份,避免单点故障。 - -#### 超时和重试机制 - -**一旦用户的请求超过某个时间得不到响应就结束此次请求并抛出异常。** 如果不进行超时设置可能会导致请求响应速度慢,甚至导致请求堆积进而让系统无法在处理请求。 - -另外,重试的次数一般设为 3 次,再多次的重试没有好处,反而会加重服务器压力(部分场景使用失败重试机制会不太适合)。 - -### 大型网站架构 - -- [8 张图读懂大型网站技术架构](docs/system-design/website-architecture/8%20张图读懂大型网站技术架构.md) -- [关于大型网站系统架构你不得不懂的 10 个问题](docs/system-design/website-architecture/关于大型网站系统架构你不得不懂的10个问题.md) - -## 工具 - -1. **Java** :[JAD 反编译](docs/java/JAD反编译tricks.md)、[手把手教你定位常见 Java 性能问题](./docs/java/手把手教你定位常见Java性能问题.md) -2. **Git** :[Git 入门](docs/tools/Git.md) -3. **Github** : [Github小技巧](docs/tools/Github技巧.md) -4. **Docker** : [Docker 基本概念解读](docs/tools/Docker.md) 、[Docker从入门到上手干事](docs/tools/Docker从入门到实战.md) - -## Java 学习常见问题汇总 - -1. [2021最新 Java 学习路线!凎!](https://www.zhihu.com/question/56110328/answer/869069586) -2. [Java 培训四个月能学会吗?](docs/questions/java-training-4-month.md) -3. [新手学习 Java,有哪些 Java 相关的博客,专栏,和技术学习网站推荐?](docs/questions/java-learning-website-blog.md) -4. [Java 还是大数据,你需要了解这些东西!](docs/questions/java-big-data.md) - ---- - -## 其他 - -### 贡献者 - -[你可以点此链接查看JavaGuide的所有贡献者。](https://github.com/Snailclimb/JavaGuide/graphs/contributors) 感谢你们让 JavaGuide 变得更好!如果你们来到武汉一定要找我,我请你们吃饭玩耍。 - -*悄悄话:JavaGuide 会不定时为贡献者们送福利。* - -### 待办 - -- [ ] 数据结构总结重构 - -### 捐赠支持 - -项目的发展离不开你的支持,如果 JavaGuide 帮助到了你找到自己满意的 offer,请作者喝杯咖啡吧 ☕ 后续会继续完善更新!加油! - -[点击捐赠支持作者](https://www.yuque.com/snailclimb/dr6cvl/mr44yt#vu3ok) - -### 联系我 - -![各种技术的学习路线](https://img-blog.csdnimg.cn/20210609102613344.png) - -整理了一份各个技术的学习路线,需要的小伙伴加我微信:“**JavaGuide1996**”备注“**Github-学习路线**”即可! - -![](https://img-blog.csdnimg.cn/20210609084555810.jpg) - -### 公众号 - -如果大家想要实时关注我更新的文章以及分享的干货的话,可以关注我的公众号“**JavaGuide**”。 - -**《Java 面试突击》:** 由本文档衍生的专为面试而生的《Java 面试突击》V4.0 PDF 版本[公众号](#公众号)后台回复 **"面试突击"** 即可领取! - -![我的公众号](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images/2020-08/167598cd2e17b8ec.png) +👏 重大更新!!!重磅! + +- JavaGuide 在线阅读版(新版,推荐👍):https://javaguide.cn/ +- JavaGuide 在线阅读版(老版):https://snailclimb.gitee.io/javaguide/#/ + +👉 [朋友开源的面试八股文系列](https://github.com/csguide-dabai/interview-guide)。 + +> 1. **介绍**:关于 JavaGuide 的相关介绍请看:[关于 JavaGuide 的一些说明](https://www.yuque.com/snailclimb/dr6cvl/mr44yt) 。 +> 2. **贡献指南** :欢迎参与 [JavaGuide的维护工作](https://github.com/Snailclimb/JavaGuide/issues/1235),这是一件非常有意义的事情。 +> 3. **PDF版本** : [《JavaGuide 面试突击版》PDF 版本](#公众号) 。 +> 4. **图解计算机基础** :[图解计算机基础 PDF 下载](https://mp.weixin.qq.com/s?__biz=Mzg2OTA0Njk0OA==&mid=100021725&idx=1&sn=2db9664ca25363139a81691043e9fd8f&chksm=4ea19a1679d61300d8990f7e43bfc7f476577a81b712cf0f9c6f6552a8b219bc081efddb5c54#rd) 。 +> 5. **知识星球** : 简历指导/Java学习/面试指导/面试小册。欢迎加入[我的知识星球](https://mp.weixin.qq.com/s?__biz=Mzg2OTA0Njk0OA==&mid=100015911&idx=1&sn=2e8a0f5acb749ecbcbb417aa8a4e18cc&chksm=4ea1b0ec79d639fae37df1b86f196e8ce397accfd1dd2004bcadb66b4df5f582d90ae0d62448#rd) 。 +> 6. **面试专版** :准备面试的小伙伴可以考虑面试专版:[《Java面试进阶指北 》](https://www.yuque.com/docs/share/f37fc804-bfe6-4b0d-b373-9c462188fec7) (质量很高,专为面试打造,星球用户免费) +> 7. **转载须知** :以下所有文章如非文首说明皆为我(Guide哥)的原创,转载在文首注明出处,如发现恶意抄袭/搬运,会动用法律武器维护自己的权益。让我们一起维护一个良好的技术创作环境!⛽️ + +

+ + + +

+

+ 阅读 + stars +

+ + +

Sponsor

+ + + + + + + +
+ + +
+ +## Java + +### 基础 + +**知识点/面试题** : (必看:+1: ):[Java 基础知识点/面试题总结](docs/java/basis/java基础知识总结.md) + +**重要知识点详解:** + +- [什么是反射机制?反射机制的应用场景有哪些?](docs/java/basis/反射机制详解.md) +- [代理模式详解:静态代理+JDK/CGLIB 动态代理实战](docs/java/basis/代理模式详解.md) +- [常见的 IO 模型有哪些?Java 中的 BIO、NIO、AIO 有啥区别?](docs/java/basis/java基础知识总结) + +### 集合 + +1. **[Java 集合常见问题总结](docs/java/collection/java集合框架基础知识&面试题总结.md)** (必看 :+1:) +2. [Java 容器使用注意事项总结](docs/java/collection/java集合使用注意事项总结.md) +3. **源码分析** :[ArrayList 源码+扩容机制分析](docs/java/collection/arraylist-source-code.md) 、[HashMap(JDK1.8)源码+底层数据结构分析](docs/java/collection/hashmap-source-code.md) 、[ConcurrentHashMap 源码+底层数据结构分析](docs/java/collection/concurrent-hash-map-source-code.md) + +### 并发 + +**知识点/面试题:** (必看 :+1:) + +1. **[Java 并发基础常见面试题总结](docs/java/concurrent/java并发基础常见面试题总结.md)** +2. **[Java 并发进阶常见面试题总结](docs/java/concurrent/java并发进阶常见面试题总结.md)** + +**重要知识点详解:** + +1. **线程池**:[Java 线程池学习总结](./docs/java/concurrent/java线程池学习总结.md)、[拿来即用的 Java 线程池最佳实践](./docs/java/concurrent/拿来即用的java线程池最佳实践.md) +2. [ThreadLocal 关键字解析](docs/java/concurrent/threadlocal.md) +3. [Java 并发容器总结](docs/java/concurrent/并发容器总结.md) +4. [Atomic 原子类总结](docs/java/concurrent/atomic原子类总结.md) +5. [AQS 原理以及 AQS 同步组件总结](docs/java/concurrent/aqs原理以及aqs同步组件总结.md) +6. [CompletableFuture入门](docs/java/concurrent/completablefuture-intro.md) + +### JVM (必看 :+1:) + +JVM 这部分内容主要参考 [JVM 虚拟机规范-Java8 ](https://docs.oracle.com/javase/specs/jvms/se8/html/index.html) 和周志明老师的[《深入理解Java虚拟机(第3版)》](https://book.douban.com/subject/34907497/) (强烈建议阅读多遍!)。 + +1. **[Java 内存区域](docs/java/jvm/内存区域.md)** +2. **[JVM 垃圾回收](docs/java/jvm/jvm垃圾回收.md)** +3. [JDK 监控和故障处理工具](docs/java/jvm/jdk监控和故障处理工具总结.md) +4. [类文件结构](docs/java/jvm/类文件结构.md) +5. **[类加载过程](docs/java/jvm/类加载过程.md)** +6. [类加载器](docs/java/jvm/类加载器.md) +7. **[【待完成】最重要的 JVM 参数总结(翻译完善了一半)](docs/java/jvm/jvm参数指南.md)** +9. **[【加餐】大白话带你认识 JVM](docs/java/jvm/[加餐]大白话带你认识jvm.md)** + +### 新特性 + +1. **Java 8** :[Java 8 新特性总结](docs/java/new-features/Java8新特性总结.md)、[Java8常用新特性总结](docs/java/new-features/java8-common-new-features.md) +2. **Java9~Java15** : [一文带你看遍 JDK9~15 的重要新特性!](./docs/java/new-features/java新特性总结.md) + +### 小技巧 + +1. [JAD 反编译](docs/java/tips/JAD反编译tricks.md) +2. [手把手教你定位常见 Java 性能问题](./docs/java/tips/locate-performance-problems/手把手教你定位常见Java性能问题.md) + +## 计算机基础 + +👉 **[图解计算机基础 PDF 下载](https://mp.weixin.qq.com/s?__biz=Mzg2OTA0Njk0OA==&mid=100021725&idx=1&sn=2db9664ca25363139a81691043e9fd8f&chksm=4ea19a1679d61300d8990f7e43bfc7f476577a81b712cf0f9c6f6552a8b219bc081efddb5c54#rd)** 。 + +### 操作系统 + +1. [操作系统常见问题总结!](docs/cs-basics/operating-system/basis.md) +2. [后端程序员必备的 Linux 基础知识总结](docs/cs-basics/operating-system/linux.md) +3. [Shell 编程入门](docs/cs-basics/operating-system/Shell.md) + +### 网络 + +1. [计算机网络常见面试题](docs/cs-basics/network/计算机网络.md) +2. [计算机网络基础知识总结](docs/cs-basics/network/计算机网络知识总结.md) + +### 数据结构 + +**图解数据结构:** + +1. [线性数据结构 :数组、链表、栈、队列](docs/cs-basics/data-structure/线性数据结构.md) +2. [图](docs/cs-basics/data-structure/图.md) +3. [堆](docs/cs-basics/data-structure/堆.md) +4. [树](docs/cs-basics/data-structure/树.md) :重点关注[红黑树](docs/cs-basics/data-structure/红黑树.md)、B-,B+,B*树、LSM树 + +其他常用数据结构 : + +1. [布隆过滤器](docs/cs-basics/data-structure/bloom-filter.md) + +### 算法 + +算法这部分内容非常重要,如果你不知道如何学习算法的话,可以看下我写的: + +- [算法学习书籍+资源推荐](https://www.zhihu.com/question/323359308/answer/1545320858) 。 +- [如何刷Leetcode?](https://www.zhihu.com/question/31092580/answer/1534887374) + +**常见算法问题总结** : + +- [几道常见的字符串算法题总结 ](docs/cs-basics/algorithms/几道常见的字符串算法题.md) +- [几道常见的链表算法题总结 ](docs/cs-basics/algorithms/几道常见的链表算法题.md) +- [剑指 offer 部分编程题](docs/cs-basics/algorithms/剑指offer部分编程题.md) + +另外,[GeeksforGeeks]( https://www.geeksforgeeks.org/fundamentals-of-algorithms/) 这个网站总结了常见的算法 ,比较全面系统。 + +## 数据库 + +### MySQL + +**总结:** + +1. [数据库基础知识总结](docs/database/数据库基础知识.md) +2. **[MySQL知识点总结](docs/database/mysql/mysql知识点&面试题总结.md)** (必看 :+1:) +4. [一千行 MySQL 学习笔记](docs/database/mysql/a-thousand-lines-of-mysql-study-notes.md) +5. [MySQL 高性能优化规范建议](docs/database/mysql/mysql-high-performance-optimization-specification-recommendations.md) + +**重要知识点:** + +1. [MySQL数据库索引总结](docs/database/mysql/mysql-index.md) +2. [事务隔离级别(图文详解)](docs/database/mysql/transaction-isolation-level.md) +3. [MySQL三大日志(binlog、redo log和undo log)详解](docs/database/mysql/mysql-logs.md) +4. [InnoDB存储引擎对MVCC的实现](docs/database/mysql/innodb-implementation-of-mvcc.md) +5. [一条 SQL 语句在 MySQL 中如何被执行的?](docs/database/mysql/how-sql-executed-in-mysql.md) +6. [字符集详解:为什么不建议在MySQL中使用 utf8 ?](docs/database/字符集.md) +7. [关于数据库中如何存储时间的一点思考](docs/database/mysql/some-thoughts-on-database-storage-time.md) + +### Redis + +1. [Redis 常见问题总结](docs/database/redis/redis-all.md) +2. [3种常用的缓存读写策略](docs/database/redis/3-commonly-used-cache-read-and-write-strategies.md) + +## 搜索引擎 + +用于提高搜索效率,功能和浏览器搜索引擎类似。比较常见的搜索引擎是 Elasticsearch(推荐) 和 Solr。 + +## 系统设计 + +### 系统设计必备基础 + +#### RESTful API + +我们在进行后端开发的时候,主要的工作就是为前端或者其他后端服务提供 API 比如查询用户数据的 API 。RESTful API 是一种基于 REST 构建的 API,它是一种被设计的更好使用的 API。 + +相关阅读:[RestFul API 简明教程](docs/system-design/basis/RESTfulAPI.md) + +#### 命名 + +编程过程中,一定要重视命名。因为好的命名即是注释,别人一看到你的命名就知道你的变量、方法或者类是做什么的! + +相关阅读: [Java 命名之道](docs/system-design/naming.md) 。 + +### 常用框架 + +如果你没有接触过 Java Web 开发的话,可以先看一下我总结的 [《J2EE 基础知识》](docs/system-design/J2EE基础知识.md) 。虽然,这篇文章中的很多内容已经淘汰,但是可以让你对 Java 后台技术发展有更深的认识。 + +#### Spring/SpringBoot (必看 :+1:) + +**知识点/面试题:** + +1. **[Spring 常见问题总结](docs/system-design/framework/spring/Spring常见问题总结.md)** +2. **[SpringBoot 入门指南](https://github.com/Snailclimb/springboot-guide)** + +**重要知识点详解:** + +1. **[Spring/Spring Boot 常用注解总结!安排!](./docs/system-design/framework/spring/Spring&SpringBoot常用注解总结.md)** +2. **[Spring 事务总结](docs/system-design/framework/spring/Spring事务总结.md)** +3. [Spring 中都用到了那些设计模式?](docs/system-design/framework/spring/Spring设计模式总结.md) +4. **[SpringBoot 自动装配原理?”](docs/system-design/framework/spring/SpringBoot自动装配原理.md)** + +#### MyBatis + +[MyBatis 常见面试题总结](docs/system-design/framework/mybatis/mybatis-interview.md) + +#### Spring Cloud + +[ 大白话入门 Spring Cloud](docs/system-design/framework/springcloud/springcloud-intro.md) + +### 安全 + +#### 认证授权 + +**[《认证授权基础》](docs/system-design/security/basis-of-authority-certification.md)** 这篇文章中我会介绍认证授权常见概念: **Authentication**,**Authorization** 以及 **Cookie**、**Session**、Token、**OAuth 2**、**SSO** 。如果你不清楚这些概念的话,建议好好阅读一下这篇文章。 + +- **JWT** :JWT(JSON Web Token)是一种身份认证的方式,JWT 本质上就一段签名的 JSON 格式的数据。由于它是带有签名的,因此接收者便可以验证它的真实性。相关阅读: + - [JWT 优缺点分析以及常见问题解决方案](docs/system-design/security/jwt优缺点分析以及常见问题解决方案.md) + - [适合初学者入门 Spring Security With JWT 的 Demo](https://github.com/Snailclimb/spring-security-jwt-guide) + +- **SSO(单点登录)** :**SSO(Single Sign On)** 即单点登录说的是用户登陆多个子系统的其中一个就有权访问与其相关的其他系统。举个例子我们在登陆了京东金融之后,我们同时也成功登陆京东的京东超市、京东家电等子系统。相关阅读:[**SSO 单点登录看这篇就够了!**](docs/system-design/security/sso-intro.md) + +#### 数据脱敏 + +数据脱敏说的就是我们根据特定的规则对敏感信息数据进行变形,比如我们把手机号、身份证号某些位数使用 * 来代替。 + +### 定时任务 + +最近有朋友问到定时任务相关的问题。于是,我简单写了一篇文章总结一下定时任务的一些概念以及一些常见的定时任务技术选型:[《Java定时任务大揭秘》](./docs/system-design/定时任务.md) + +## 分布式 + +### CAP 理论和 BASE 理论 + +CAP 也就是 Consistency(一致性)、Availability(可用性)、Partition Tolerance(分区容错性) 这三个单词首字母组合。 + +**BASE** 是 **Basically Available(基本可用)** 、**Soft-state(软状态)** 和 **Eventually Consistent(最终一致性)** 三个短语的缩写。BASE 理论是对 CAP 中一致性和可用性权衡的结果,其来源于对大规模互联网系统分布式实践的总结,是基于 CAP 定理逐步演化而来的,它大大降低了我们对系统的要求。 + +相关阅读:[CAP 理论和 BASE 理论解读](docs/distributed-system/理论&算法/cap&base理论.md) + +### Paxos 算法和 Raft 算法 + +**Paxos 算法**诞生于 1990 年,这是一种解决分布式系统一致性的经典算法 。但是,由于 Paxos 算法非常难以理解和实现,不断有人尝试简化这一算法。到了2013 年才诞生了一个比 Paxos 算法更易理解和实现的分布式一致性算法—**Raft 算法**。 + +### RPC + +RPC 让调用远程服务调用像调用本地方法那样简单。 + +Dubbo 是一款国产的 RPC 框架,由阿里开源。相关阅读: + +- [Dubbo 常见问题总结](docs/distributed-system/rpc/dubbo.md) +- [服务之间的调用为啥不直接用 HTTP 而用 RPC?](docs/distributed-system/rpc/why-use-rpc.md) + +### API 网关 + +网关主要用于请求转发、安全认证、协议转换、容灾。 + +相关阅读: + +- [为什么要网关?你知道有哪些常见的网关系统?](docs/distributed-system/api-gateway.md) +- [百亿规模API网关服务Shepherd的设计与实现](https://tech.meituan.com/2021/05/20/shepherd-api-gateway.html) + +### 分布式 id + +在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识。比如数据量太大之后,往往需要对数据进行分库分表,分库分表后需要有一个唯一 ID 来标识一条数据或消息,数据库的自增 ID 显然不能满足需求。相关阅读:[为什么要分布式 id ?分布式 id 生成方案有哪些?](docs/distributed-system/distributed-id.md) + +### 分布式事务 + +**分布式事务就是指事务的参与者、支持事务的服务器、资源服务器以及事务管理器分别位于不同的分布式系统的不同节点之上。** + +简单的说,就是一次大的操作由不同的小操作组成,这些小的操作分布在不同的服务器上,且属于不同的应用,分布式事务需要保证这些小操作要么全部成功,要么全部失败。本质上来说,分布式事务就是为了保证不同数据库的数据一致性。 + +### 分布式协调 + +**ZooKeeper** : + +> 前两篇文章可能有内容重合部分,推荐都看一遍。 + +1. [【入门】ZooKeeper 相关概念总结](docs/distributed-system/分布式协调/zookeeper/zookeeper-intro.md) +2. [【进阶】ZooKeeper 相关概念总结](docs/distributed-system/分布式协调/zookeeper/zookeeper-plus.md) +3. [【实战】ZooKeeper 实战](docs/distributed-system/分布式协调/zookeeper/zookeeper-in-action.md) + +## 高性能 + +### 消息队列 + +消息队列在分布式系统中主要是为了解耦和削峰。相关阅读: [消息队列常见问题总结](docs/high-performance/message-queue/message-queue.md)。 + +1. **RabbitMQ** : [RabbitMQ 入门](docs/high-performance/message-queue/rabbitmq-intro.md) +2. **RocketMQ** : [RocketMQ 入门](docs/high-performance/message-queue/rocketmq-intro)、[RocketMQ 的几个简单问题与答案](docs/high-performance/message-queue/rocketmq-questions.md) +3. **Kafka** :[Kafka 常见问题总结](docs/high-performance/message-queue/kafka知识点&面试题总结.md) + +### 读写分离&分库分表 + +读写分离主要是为了将数据库的读和写操作分不到不同的数据库节点上。主服务器负责写,从服务器负责读。另外,一主一从或者一主多从都可以。 + +读写分离可以大幅提高读性能,小幅提高写的性能。因此,读写分离更适合单机并发读请求比较多的场景。 + +分库分表是为了解决由于库、表数据量过大,而导致数据库性能持续下降的问题。 + +常见的分库分表工具有:`sharding-jdbc`(当当)、`TSharding`(蘑菇街)、`MyCAT`(基于 Cobar)、`Cobar`(阿里巴巴)...。 推荐使用 `sharding-jdbc`。 因为,`sharding-jdbc` 是一款轻量级 `Java` 框架,以 `jar` 包形式提供服务,不要我们做额外的运维工作,并且兼容性也很好。 + +相关阅读: [读写分离&分库分表常见问题总结](docs/high-performance/读写分离&分库分表.md) + +### 负载均衡 + +负载均衡系统通常用于将任务比如用户请求处理分配到多个服务器处理以提高网站、应用或者数据库的性能和可靠性。 + +常见的负载均衡系统包括 3 种: + +1. **DNS 负载均衡** :一般用来实现地理级别的均衡。 +2. **硬件负载均衡** : 通过单独的硬件设备比如 F5 来实现负载均衡功能(硬件的价格一般很贵)。 +3. **软件负载均衡** :通过负载均衡软件比如 Nginx 来实现负载均衡功能。 + +## 高可用 + +高可用描述的是一个系统在大部分时间都是可用的,可以为我们提供服务的。高可用代表系统即使在发生硬件故障或者系统升级的时候,服务仍然是可用的 。 + +相关阅读: **《[如何设计一个高可用系统?要考虑哪些地方?](docs/high-availability/高可用系统设计.md)》** 。 + +### 限流 + +限流是从用户访问压力的角度来考虑如何应对系统故障。 + +限流为了对服务端的接口接受请求的频率进行限制,防止服务挂掉。比如某一接口的请求限制为 100 个每秒, 对超过限制的请求放弃处理或者放到队列中等待处理。限流可以有效应对突发请求过多。相关阅读:[何为限流?限流算法有哪些?](docs/high-availability/limit-request.md) + +### 降级 + +降级是从系统功能优先级的角度考虑如何应对系统故障。 + +服务降级指的是当服务器压力剧增的情况下,根据当前业务情况及流量对一些服务和页面有策略的降级,以此释放服务器资源以保证核心任务的正常运行。 + +### 熔断 + +熔断和降级是两个比较容易混淆的概念,两者的含义并不相同。 + +降级的目的在于应对系统自身的故障,而熔断的目的在于应对当前系统依赖的外部系统或者第三方系统的故障。 + +### 排队 + +另类的一种限流,类比于现实世界的排队。玩过英雄联盟的小伙伴应该有体会,每次一有活动,就要经历一波排队才能进入游戏。 + +### 集群 + +相同的服务部署多份,避免单点故障。 + +### 超时和重试机制 + +**一旦用户的请求超过某个时间得不到响应就结束此次请求并抛出异常。** 如果不进行超时设置可能会导致请求响应速度慢,甚至导致请求堆积进而让系统无法在处理请求。 + +另外,重试的次数一般设为 3 次,再多次的重试没有好处,反而会加重服务器压力(部分场景使用失败重试机制会不太适合)。 + +### 灾备设计和异地多活 + +**灾备** = 容灾+备份。 + +- **备份** : 将系统所产生的的所有重要数据多备份几份。 +- **容灾** : 在异地建立两个完全相同的系统。当某个地方的系统突然挂掉,整个应用系统可以切换到另一个,这样系统就可以正常提供服务了。 + +**异地多活** 描述的是将服务部署在异地并且服务同时对外提供服务。和传统的灾备设计的最主要区别在于“多活”,即所有站点都是同时在对外提供服务的。异地多活是为了应对突发状况比如火灾、地震等自然或者认为灾害。 + +相关阅读: + +- [搞懂异地多活,看这篇就够了](https://mp.weixin.qq.com/s/T6mMDdtTfBuIiEowCpqu6Q) +- [四步构建异地多活](https://mp.weixin.qq.com/s/hMD-IS__4JE5_nQhYPYSTg) +- [《从零开始学架构》— 28 | 业务高可用的保障:异地多活架构](http://gk.link/a/10pKZ) diff --git a/_coverpage.md b/_coverpage.md deleted file mode 100644 index 7310181ac88..00000000000 --- a/_coverpage.md +++ /dev/null @@ -1,12 +0,0 @@ -

- -

- - -

Java 学习/面试指南

- -[常用资源](https://shimo.im/docs/MuiACIg1HlYfVxrj/) -[GitHub]() -[开始阅读](#java) - - diff --git a/docs/.vuepress/config.js b/docs/.vuepress/config.js new file mode 100644 index 00000000000..b9ce3f6d372 --- /dev/null +++ b/docs/.vuepress/config.js @@ -0,0 +1,383 @@ +const { config } = require("vuepress-theme-hope"); + +module.exports = config({ + title: "JavaGuide", + description: "Java学习&&面试指南", + dest: "./dist", + head: [ + [ + "script", + { src: "https://cdn.jsdelivr.net/npm/react/umd/react.production.min.js" }, + ], + [ + "script", + { + src: "https://cdn.jsdelivr.net/npm/react-dom/umd/react-dom.production.min.js", + }, + ], + ["script", { src: "https://cdn.jsdelivr.net/npm/vue/dist/vue.min.js" }], + [ + "script", + { src: "https://cdn.jsdelivr.net/npm/@babel/standalone/babel.min.js" }, + ], + // 添加百度统计 + [ + "script",{}, + `var _hmt = _hmt || []; + (function() { + var hm = document.createElement("script"); + hm.src = "https://hm.baidu.com/hm.js?5dd2e8c97962d57b7b8fea1737c01743"; + var s = document.getElementsByTagName("script")[0]; + s.parentNode.insertBefore(hm, s); + })();` + ] + ], + + themeConfig: { + logo: "/logo.png", + hostname: "https://javaguide.cn/", + author: "Guide哥", + repo: "https://github.com/Snailclimb/JavaGuide", + nav: [ + { text: "Java面试指南", icon: "java", link: "/", }, + { text: "Java面试指北", icon: "java", link: "https://www.yuque.com/docs/share/f37fc804-bfe6-4b0d-b373-9c462188fec7?#%20%E3%80%8A%E3%80%8AJava%E9%9D%A2%E8%AF%95%E8%BF%9B%E9%98%B6%E6%8C%87%E5%8C%97%20%20%E6%89%93%E9%80%A0%E4%B8%AA%E4%BA%BA%E7%9A%84%E6%8A%80%E6%9C%AF%E7%AB%9E%E4%BA%89%E5%8A%9B%E3%80%8B%E3%80%8B", }, + { + text: "Java精选", icon: "file", icon: "java", + items: [ + { text: "Java书单精选", icon: "book", link: "https://gitee.com/SnailClimb/awesome-cs" }, + { text: "Java学习路线", icon: "luxianchaxun", link: "https://zhuanlan.zhihu.com/p/379041500" }, + { text: "Java开源项目精选", icon: "git", link: "https://gitee.com/SnailClimb/awesome-java" } + ], + }, + { text: "IDEA指南", icon: "intellijidea", link: "/idea-tutorial/", }, + { text: "开发工具", icon: "Tools", link: "/tools/", }, + { + text: "PDF资源", icon: "pdf", + items: [ + { text: "JavaGuide面试突击版", link: "https://t.1yb.co/Fy1e", }, + { text: "消息队列常见知识点&面试题总结", link: "https://t.1yb.co/Fy0u", }, + { text: "图解计算机基础!", link: "https://mp.weixin.qq.com/s?__biz=Mzg2OTA0Njk0OA==&mid=100021725&idx=1&sn=2db9664ca25363139a81691043e9fd8f&chksm=4ea19a1679d61300d8990f7e43bfc7f476577a81b712cf0f9c6f6552a8b219bc081efddb5c54#rd" } + ], + }, + { + text: "关于作者", icon: "zuozhe", link: "/about-the-author/" + }, + ], + sidebar: { + "/about-the-author/": [ + "internet-addiction-teenager", "feelings-after-one-month-of-induction-training" + ], + // 应该把更精确的路径放置在前边 + '/tools/': [ + { + title: "数据库", + icon: "database", + prefix: "database/", + collapsable: false, + children: ["CHINER", "DBeaver", "screw"] + }, + { + title: "Git", + icon: "git", + prefix: "git/", + collapsable: false, + children: ["git-intro", "github技巧"] + }, + { + title: "Docker", + icon: "docker1", + prefix: "docker/", + collapsable: false, + children: ["docker", "docker从入门到实战"] + }, + ], + '/idea-tutorial/': + [ + { + title: "IDEA小技巧", + icon: "creative", + prefix: "idea-tips/", + collapsable: false, + children: [ + "idea-refractor-intro", + "idea-plug-in-development-intro", + "idea-source-code-reading-skills", + ] + }, + { + title: "IDEA插件推荐", + icon: "plugin", + collapsable: false, + prefix: "idea-plugins/", + children: [ + "shortcut-key", "idea-themes", "improve-code", "interface-beautification", + "camel-case", "code-glance", "code-statistic", + "git-commit-template", "gson-format", "idea-features-trainer", "jclasslib", + "maven-helper", "rest-devlop", "save-actions", "sequence-diagram", "translation", + "others" + ] + }, + ], + // 必须放在最后面 + '/': [{ + title: "Java", icon: "java", prefix: "java/", + children: [ + { + title: "基础", prefix: "basis/", + children: [ + "java基础知识总结", + { + title: "重要知识点", + children: ["反射机制详解", "代理模式详解", "io模型详解"], + },], + }, + { + title: "容器", prefix: "collection/", + children: [ + "java集合框架基础知识&面试题总结", "java集合使用注意事项", + { + title: "源码分析", + children: ["arraylist-source-code", "hashmap-source-code", "concurrent-hash-map-source-code"], + },], + }, + { + title: "并发编程", prefix: "concurrent/", + children: [ + "java并发基础常见面试题总结", "java并发进阶常见面试题总结", + { + title: "重要知识点", + children: ["java线程池学习总结", "并发容器总结", "拿来即用的java线程池最佳实践", "aqs原理以及aqs同步组件总结", "reentrantlock", + "atomic原子类总结", "threadlocal", "completablefuture-intro"], + }, + ], + }, + { + title: "JVM", prefix: "jvm/", + children: ["memory-area", "jvm-garbage-collection", "class-file-structure", "class-loading-process", "classloader", "jvm-parameters-intro", "jvm-intro", "jdk-monitoring-and-troubleshooting-tools"], + }, + { + title: "新特性", prefix: "new-features/", + children: ["java8-common-new-features", "java8-tutorial-translate", "java新特性总结"], + }, + { + title: "小技巧", prefix: "tips/", + children: ["locate-performance-problems/手把手教你定位常见Java性能问题", "jad"], + }, + ], + }, + { + title: "计算机基础", icon: "computer", prefix: "cs-basics/", + children: [ + { + title: "计算机网络", prefix: "network/", icon: "network", + children: [ + "计算机网络常见面试题", "谢希仁老师的《计算机网络》内容总结", "HTTPS中的TLS" + ], + }, + { + title: "操作系统", prefix: "operating-system/", icon: "caozuoxitong", + children: [ + "操作系统常见面试题&知识点总结", "linux-intro", "shell-intro" + ], + }, + { + title: "数据结构", prefix: "data-structure/", icon: "people-network-full", + children: [ + "线性数据结构", "图", "堆", "树", "红黑树", "bloom-filter" + ], + }, + { + title: "算法", prefix: "algorithms/", icon: "suanfaku", + children: [ + "几道常见的字符串算法题", "几道常见的链表算法题", "剑指offer部分编程题" + ], + }, + ], + + }, + { + title: "数据库", icon: "database", prefix: "database/", + children: [ + "数据库基础知识", + "字符集", + { + title: "MySQL", prefix: "mysql/", + children: [ + "mysql知识点&面试题总结", + "a-thousand-lines-of-mysql-study-notes", + "mysql-high-performance-optimization-specification-recommendations", + "mysql-index", "mysql-logs", "transaction-isolation-level", + "innodb-implementation-of-mvcc", "how-sql-executed-in-mysql", + "some-thoughts-on-database-storage-time" + ], + }, + { + title: "Redis", prefix: "redis/", + children: ["redis知识点&面试题总结", "3-commonly-used-cache-read-and-write-strategies"], + }, + ], + }, + { + title: "系统设计", icon: "xitongsheji", prefix: "system-design/", + children: [ + { + title: "基础", prefix: "basis/", icon: "jibendebasic", + children: [ + "RESTfulAPI", + "naming", + ], + }, + { + title: "常用框架", prefix: "framework/", icon: "framework", + children: [{ + title: "Spring", prefix: "spring/", + children: ["Spring常见问题总结", "Spring&SpringBoot常用注解总结", "Spring事务总结", "Spring设计模式总结", "SpringBoot自动装配原理"] + }, + "mybatis/mybatis-interview", "netty", + { + title: "SpringCloud", prefix: "springcloud/", + children: ["springcloud-intro"] + }, + ], + }, + { + title: "安全", prefix: "security/", icon: "security-fill", + children: ["basis-of-authority-certification", "jwt优缺点分析以及常见问题解决方案", "sso-intro", "数据脱敏"] + }, + "定时任务" + ], + }, + { + title: "分布式", icon: "distributed-network", prefix: "distributed-system/", + children: [ + { + title: "理论&算法", prefix: "理论&算法/", + children: ["cap&base理论", "paxos&raft算法"], + }, + "api-gateway", "distributed-id", + { + title: "rpc", prefix: "rpc/", + children: ["dubbo", "why-use-rpc"] + }, + "distributed-transaction", + { + title: "分布式协调", prefix: "分布式协调/", + children: ["zookeeper/zookeeper-intro", "zookeeper/zookeeper-plus", "zookeeper/zookeeper-in-action"] + }, + ], + }, { + title: "高性能", icon: "gaojixiaozuzhibeifen", prefix: "high-performance/", + children: [ + "读写分离&分库分表", "负载均衡", + { + title: "消息队列", prefix: "message-queue/", + children: ["message-queue", "kafka知识点&面试题总结", "rocketmq-intro", "rocketmq-questions", "rabbitmq-intro"], + }, + ], + }, { + title: "高可用", icon: "CalendarAvailability-1", prefix: "high-availability/", + children: [ + "高可用系统设计", "limit-request", "降级&熔断", "超时和重试机制", "集群", "灾备设计和异地多活", "性能测试" + ], + }], + }, + blog: { + intro: "/intro/", + sidebarDisplay: "mobile", + links: { + Zhihu: "https://www.zhihu.com/people/javaguide", + Github: "https://github.com/Snailclimb", + Gitee: "https://gitee.com/SnailClimb", + }, + }, + + footer: { + display: true, + content: '鄂ICP备2020015769号-1', + }, + + copyright: { + status: "global", + }, + + git: { + timezone: "Asia/Shanghai", + }, + + mdEnhance: { + enableAll: true, + presentation: { + plugins: [ + "highlight", + "math", + "search", + "notes", + "zoom", + "anything", + "audio", + "chalkboard", + ], + }, + }, + + pwa: { + favicon: "/favicon.ico", + cachePic: true, + apple: { + icon: "/assets/icon/apple-icon-152.png", + statusBarColor: "black", + }, + msTile: { + image: "/assets/icon/ms-icon-144.png", + color: "#ffffff", + }, + manifest: { + icons: [ + { + src: "/assets/icon/chrome-mask-512.png", + sizes: "512x512", + purpose: "maskable", + type: "image/png", + }, + { + src: "/assets/icon/chrome-mask-192.png", + sizes: "192x192", + purpose: "maskable", + type: "image/png", + }, + { + src: "/assets/icon/chrome-512.png", + sizes: "512x512", + type: "image/png", + }, + { + src: "/assets/icon/chrome-192.png", + sizes: "192x192", + type: "image/png", + }, + ], + shortcuts: [ + { + name: "Guide", + short_name: "Guide", + url: "/guide/", + icons: [ + { + src: "/assets/icon/guide-maskable.png", + sizes: "192x192", + purpose: "maskable", + type: "image/png", + }, + { + src: "/assets/icon/guide-monochrome.png", + sizes: "192x192", + purpose: "monochrome", + type: "image/png", + }, + ], + }, + ], + }, + }, + }, +}); diff --git a/docs/.vuepress/public/assets/icon/apple-icon-152.png b/docs/.vuepress/public/assets/icon/apple-icon-152.png new file mode 100644 index 00000000000..3eabbeb1dc3 Binary files /dev/null and b/docs/.vuepress/public/assets/icon/apple-icon-152.png differ diff --git a/docs/.vuepress/public/assets/icon/chrome-192.png b/docs/.vuepress/public/assets/icon/chrome-192.png new file mode 100644 index 00000000000..851ad3a224d Binary files /dev/null and b/docs/.vuepress/public/assets/icon/chrome-192.png differ diff --git a/docs/.vuepress/public/assets/icon/chrome-512.png b/docs/.vuepress/public/assets/icon/chrome-512.png new file mode 100644 index 00000000000..2fb9f40be37 Binary files /dev/null and b/docs/.vuepress/public/assets/icon/chrome-512.png differ diff --git a/docs/.vuepress/public/assets/icon/chrome-mask-192.png b/docs/.vuepress/public/assets/icon/chrome-mask-192.png new file mode 100644 index 00000000000..530977a9e69 Binary files /dev/null and b/docs/.vuepress/public/assets/icon/chrome-mask-192.png differ diff --git a/docs/.vuepress/public/assets/icon/chrome-mask-512.png b/docs/.vuepress/public/assets/icon/chrome-mask-512.png new file mode 100644 index 00000000000..a4f90ae484b Binary files /dev/null and b/docs/.vuepress/public/assets/icon/chrome-mask-512.png differ diff --git a/docs/.vuepress/public/assets/icon/guide-maskable.png b/docs/.vuepress/public/assets/icon/guide-maskable.png new file mode 100644 index 00000000000..75449b6098b Binary files /dev/null and b/docs/.vuepress/public/assets/icon/guide-maskable.png differ diff --git a/docs/.vuepress/public/assets/icon/guide-monochrome.png b/docs/.vuepress/public/assets/icon/guide-monochrome.png new file mode 100644 index 00000000000..5b1dc406d6a Binary files /dev/null and b/docs/.vuepress/public/assets/icon/guide-monochrome.png differ diff --git a/docs/.vuepress/public/assets/icon/ms-icon-144.png b/docs/.vuepress/public/assets/icon/ms-icon-144.png new file mode 100644 index 00000000000..24641244228 Binary files /dev/null and b/docs/.vuepress/public/assets/icon/ms-icon-144.png differ diff --git a/docs/.vuepress/public/favicon.ico b/docs/.vuepress/public/favicon.ico new file mode 100644 index 00000000000..3a14635ac46 Binary files /dev/null and b/docs/.vuepress/public/favicon.ico differ diff --git a/docs/.vuepress/public/logo.png b/docs/.vuepress/public/logo.png new file mode 100644 index 00000000000..7675a8b5aa3 Binary files /dev/null and b/docs/.vuepress/public/logo.png differ diff --git a/docs/.vuepress/public/logo.svg b/docs/.vuepress/public/logo.svg new file mode 100644 index 00000000000..fdfe9e6c1ce --- /dev/null +++ b/docs/.vuepress/public/logo.svg @@ -0,0 +1,317 @@ + + + + diff --git a/docs/.vuepress/public/me.png b/docs/.vuepress/public/me.png new file mode 100644 index 00000000000..cfa3a6ea375 Binary files /dev/null and b/docs/.vuepress/public/me.png differ diff --git a/docs/.vuepress/styles/index.styl b/docs/.vuepress/styles/index.styl new file mode 100644 index 00000000000..e67a4cf0381 --- /dev/null +++ b/docs/.vuepress/styles/index.styl @@ -0,0 +1,2 @@ +// import icon +@import '//at.alicdn.com/t/font_2922463_74fu8o5xg3.css' \ No newline at end of file diff --git a/docs/about-the-author/feelings-after-one-month-of-induction-training.md b/docs/about-the-author/feelings-after-one-month-of-induction-training.md new file mode 100644 index 00000000000..9f81220150f --- /dev/null +++ b/docs/about-the-author/feelings-after-one-month-of-induction-training.md @@ -0,0 +1,19 @@ +# 入职培训一个月后的感受 + +不知不觉已经入职一个多月了,在入职之前我没有在某个公司实习过或者工作过,所以很多东西刚入职工作的我来说还是比较新颖的。学校到职场的转变,带来了角色的转变,其中的差别因人而异。对我而言,在学校的时候课堂上老师课堂上教的东西,自己会根据自己的兴趣选择性接受,甚至很多课程你不想去上的话,还可以逃掉。到了公司就不一样了,公司要求你会的技能你不得不学,除非你不想干了。在学校的时候大部分人编程的目的都是为了通过考试或者找到一份好工作,真正靠自己兴趣支撑起来的很少,到了工作岗位之后我们编程更多的是因为工作的要求,相比于学校的来说会一般会更有挑战而且压力更大。在学校的时候,我们最重要的就是对自己负责,我们不断学习知识去武装自己,但是到了公司之后我们不光要对自己负责,更要对公司负责,毕竟公司出钱请你过来,不是让你一直 on beach 的。 + +刚来公司的时候,因为公司要求,我换上了 Mac 电脑。由于之前一直用的是 Windows 系统,所以非常不习惯。刚开始用 Mac 系统的时候笨手笨脚,自己会很明显的感觉自己的编程效率降低了至少 3 成。当时内心还是挺不爽的,心里也总是抱怨为什么不直接用 Windows 系统或者 Linux 系统。不过也挺奇怪,大概一个星期之后,自己就开始慢慢适应使用 Mac 进行编程,甚至非常喜欢。我这里不想对比 Mac 和 Windows 编程体验哪一个更好,我觉得还是因人而异,相同价位的 Mac 的配置相比于 Windows确实要被甩几条街。不过 Mac 的编程和使用体验确实不错,当然你也可以选择使用 Linux 进行日常开发,相信一定很不错。 另外,Mac 不能玩一些主流网络游戏,对于一些克制不住自己想玩游戏的朋友是一个不错的选择。 + +不得不说 ThoughtWorks 的培训机制还是很不错的。应届生入职之后一般都会安排培训,与往年不同的是,今年的培训多了中国本地班(TWU-C)。作为本地班的第一期学员,说句心里话还是很不错。8周的培训,除了工作需要用到的基本技术比如ES6、SpringBoot等等之外,还会增加一些新员工基本技能的培训比如如何高效开会、如何给别人正确的提 Feedback、如何对代码进行重构、如何进行 TDD 等等。培训期间不定期的有活动,比如Weekend Trip、 City Tour、Cake time等等。最后三周还会有一个实际的模拟项目,这个项目基本和我们正式工作的实际项目差不多,我个人感觉很不错。目前这个项目已经正式完成了一个迭代,我觉得在做项目的过程中,收获最大的不是项目中使用的技术,而是如何进行团队合作、如何正确使用 Git 团队协同开发、一个完成的迭代是什么样子的、做项目的过程中可能遇到那些问题、一个项目运作的完整流程等等。 + +ThoughtWorks 非常提倡分享、提倡帮助他人成长,这一点在公司的这段时间深有感触。培训期间,我们每个人会有一个 Trainer 负责,Trainer 就是日常带我们上课和做项目的同事,一个 Trainer 大概会负责5-6个人。Trainer不定期都会给我们最近表现的 Feedback( 反馈) ,我个人觉得这个并不是这是走走形式,Trainer 们都很负责,很多时候都是在下班之后找我们聊天。同事们也都很热心,如果你遇到问题,向别人询问,其他人如果知道的话一般都会毫无保留的告诉你,如果遇到大部分都不懂的问题,甚至会组织一次技术 Session 分享。上周五我在我们小组内进行了一次关于 Feign 远程调用的技术分享,因为 team 里面大家对这部分知识都不太熟悉,但是后面的项目进展大概率会用到这部分知识。我刚好研究了这部分内容,所以就分享给了组内的其他同事,以便于项目更好的进行。 + + 另外,ThoughtWorks 也是一家非常提倡 Feedback( 反馈) 文化的公司,反馈是告诉人们我们对他们的表现的看法以及他们应该如何更好地做到这一点。刚开始我并没有太在意,慢慢地自己确实感觉到正确的进行反馈对他人会有很大的帮助。因为人在做很多事情的时候,会很难发现别人很容易看到的一些小问题。就比如一个很有趣的现象一样,假如我们在做项目的时候没有测试这个角色,如果你完成了自己的模块,并且自己对这个模块测试了很多遍,你发现已经没啥问题了。但是,到了实际使用的时候会很大概率出现你之前从来没有注意的问题。解释这个问题的说法是:每个人的视野或多或少都是有盲点的,这与我们的关注点息息相关。对于自己做的东西,很多地方自己测试很多遍都不会发现,但是如果让其他人帮你进行测试的话,就很大可能会发现很多显而易见的问题。 + +![](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-7/feedback.png) + +工作之后,平时更新公众号、专栏还有维护 Github 的时间变少了。实际上,很多时候下班回来后,都有自己的时间来干自己的事情,但是自己也总是找工作太累或者时间比较零散的接口来推掉了。到了今天,翻看 Github 突然发现 14 天前别人在 Github 上给我提的 pr 我还没有处理。这一点确实是自己没有做好的地方,没有合理安排好自己的时间。实际上自己有很多想写的东西,后面会慢慢将他们提上日程。工作之后,更加发现下班后的几个小时如何度过确实很重要 ,如果你觉得自己没有完成好自己白天该做的工作的话,下班后你可以继续忙白天没有忙完的工作,如果白天的工作对于你游刃有余的话,下班回来之后,你大可去干自己感兴趣的事情,学习自己感兴趣的技术。做任何事情都要基于自身的基础,切不可好高骛远。 + +工作之后身边也会有很多厉害的人,多从他人身上学习我觉得是每个职场人都应该做的。这一届和我们一起培训的同事中,有一些技术很厉害的,也有一些技术虽然不是那么厉害,但是组织能力以及团队协作能力特别厉害的。有一个特别厉害的同事,在我们还在学 SpringBoot 各种语法的时候,他自己利用业余时间写了一个简化版的 SpringBoot ,涵盖了 Spring 的一些常用注解比如 `@RestController`、`@Autowried`、`@Pathvairable`、`@RestquestParam`等等(已经联系这位同事,想让他开源一下,后面会第一时间同步到公众号,期待一下吧!)。我觉得这位同事对于编程是真的有兴趣,他好像从初中就开始接触编程了,对于各种底层知识也非常感兴趣,自己写过实现过很多比较底层的东西。他的梦想是在 Github 上造一个 20k Star 以上的轮子。我相信以这位同事的能力一定会达成目标的,在这里祝福这位同事,希望他可以尽快实现这个目标。 + +这是我入职一个多月之后的个人感受,很多地方都是一带而过,后面我会抽时间分享自己在公司或者业余学到的比较有用的知识给各位,希望看过的人都能有所收获。 \ No newline at end of file diff --git a/docs/about-the-author/internet-addiction-teenager.md b/docs/about-the-author/internet-addiction-teenager.md new file mode 100644 index 00000000000..52458b4a0c0 --- /dev/null +++ b/docs/about-the-author/internet-addiction-teenager.md @@ -0,0 +1,104 @@ +# 我曾经也是网瘾少年 + +聊到高考,无数人都似乎有很多话说。今天就假借高考的名义,**简单**来聊聊我的求学经历吧!因为我自己的求学经历真的还不算平淡,甚至有点魔幻,所以还是有很多话想要说的。这篇文章大概会从我的初中一直介绍到大学,每一部分我都不会花太多篇幅。实际上,每一段经历我都可以增加很多“有趣”的经历,考虑到篇幅问题,以后有机会再慢慢说吧! + +整个初中我都属于有点网瘾少年的状态,不过初三的时候稍微克制一些。到了高二下学期的时候,自己才对游戏没有真的没有那么沉迷了。 + +另外,关于大学的详细经历我已经在写了。想要知道我是如何从一个普通的不能再普通的少年慢慢成长起来的朋友不要错过~ + +![](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images/2020-08/0e370ac2-5f96-4e17-9ff4-8cc78ef72f19-20200802173544441.png) + +**以下所有内容皆是事实,没有任何夸大的地方,稍微有一点点魔幻。** + +## 01 刚开始接触电脑 + +最开始接触电脑是在我五年级的时候,那时候家里没电脑,都是在黑网吧玩的。我现在已经记不清当时是被哥哥还是姐姐带进网吧的了。 + +起初的时候,自己就是玩玩流行蝴蝶剑、单机摩托之类的单机游戏。但是,也没有到沉迷的地步,只是觉得这东西确实挺好玩的。 + +![](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images/2020-08/2a6021b9-e7a0-41c4-b69e-a652f7bc3e12-20200802173601289.png) + +开始有网瘾是在小学毕业的时候,在我玩了一款叫做 **QQ 飞车**的游戏之后(好像是六年级就开始玩了)。我艹,当时真的被这游戏吸引了。**每天上课都幻想自己坐在车里面飘逸,没错,当时就觉得秋名山车神就是我啦!** + +我记得,那时候上网还不要身份证,10 元办一张网卡就行了,网费也是一元一小时。但凡,我口袋里有余钱,我都会和我的小伙伴奔跑到网吧一起玩 QQ 飞车。Guide 的青回啊!说到这,我情不自禁地打开自己的 Windows 电脑,下载了 Wegame ,然后下载了 QQ 飞车。 + +到了初二的时候,就没玩 QQ 飞车了。我的等级也永久定格在了 **120** 级,这个等级在当时那个升级难的一匹的年代,算的上非常高的等级了。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/javaguide/b488618c-3c25-4bc9-afd4-7324e27553bd-20200802175534614.png) + +## 02 初二网瘾爆发 + +网瘾爆发是在上了初中之后。初二的时候,最为猖狂,自己当时真的是太痴迷 **穿越火线** 了,每天上课都在想像自己拿起枪横扫地方阵营的场景。除了周末在网吧度过之外,我经常每天早上还会起早去玩别人包夜留下的机子,毕竟那时候上学也没什么钱嘛! + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/javaguide/9e94bb35-650d-4cad-8e69-40043fb4ec3d-20200802173632800.png) + +那时候成绩挺差的。这样说吧!我当时在很普通的一个县级市的高中,全年级有 500 来人,我基本都是在 280 名左右。 + +而且,整个初二我都没有学物理。因为开学不久的一次物理课,物理老师误会我在上课吃东西还狡辩,闪了我一巴掌。从此,我上物理课就睡觉,平常的物理考试就交白卷。那时候心里一直记仇,想着以后自己长大了把这个物理暴打他一顿。 + +初中时候的觉悟是在初三上学期的时候,当时就突然意识到自己马上就要升高中了。为了让自己能在家附近上学,因为当时我家就在我们当地的二中附近(_附近网吧多是主要原因,哈哈_)。年级前 80 的话基本才有可能考得上二中。**经过努力,初三上学期的第一次月考我直接从 280 多名进不到了年级 50 多名。当时,还因为进步太大,被当做进步之星在讲台上给整个年级做演讲。**那也是我第一次在这么多人面前讲话,挺紧张的,但是挺爽的。 + +**其实在初三的时候,我的网瘾还是很大。不过,我去玩游戏的前提都是自己把所有任务做完,并且上课听讲也很认真。** 我参加高中提前考试前的一个晚上,我半夜12点乘着妈妈睡着,跑去了网吧玩CF到凌晨 3点多回来。那一次我被抓了现行,到家之后发现妈妈就坐在客厅等我,训斥一顿后,我就保证以后不再晚上偷偷跑出去了(*其实整个初二我通宵了无数次,每个周五晚上都回去通宵*)。 + +_这里要说明一点:我的智商我自己有自知之明的,属于比较普通的水平吧! 前进很大的主要原因是自己基础还行,特别是英语和物理。英语是因为自己喜欢,加上小学就学了很多初中的英语课程。 物理的话就很奇怪,虽然初二也不怎么听物理课,也不会物理,但是到了初三之后自己就突然开窍了。真的!我现在都感觉很奇怪。然后,到了高中之后,我的英语和物理依然是我最好的两门课。大学的兼职,我出去做家教都是教的高中物理。_ + +后面,自己阴差阳错参加我们那个县级市的提前招生考试,然后就到了我们当地的二中,也没有参加中考。 + +## 03 高中生活 + +上了高中的之后,我上课就偷偷看小说,神印王座、斗罗大陆很多小说都是当时看的。中午和晚上回家之后,就在家里玩几把 DNF,当时家里也买了电脑。没记错的话,到我卸载 DNF 的时候已经练了 4 个满级的号。大量时间投入在游戏和小说上,我成功把自己从学校最好的小班玩到奥赛班,然后再到平行班。有点魔幻吧! + +高中觉悟是在高二下学期的时候,当时是真的觉悟了,就突然觉得游戏不香了,觉得 DNF 也不好玩了。我妈妈当时还很诧异,还奇怪地问我:“怎么不玩游戏了?”(*我妈属于不怎么管我玩游戏的,她觉得这东西还是要靠自觉*)。 + +*当时,自己就感觉这游戏没啥意思了。内心的真实写照是:“我练了再多的满级的DNF账号有啥用啊?以后有钱了,直接氪金不久能很牛逼嘛!” 就突然觉悟了!* + +然后,我就开始牟足劲学习。当时,理科平行班大概有 7 个,每次考试都是平行班之间会单独拍一个名次。 后面的话,自己基本每次都能在平行班得第一,并且很多时候都是领先第二名个 30 来分。因为成绩还算亮眼,高三上学期快结束的时候,我就向年级主任申请去了奥赛班。 + +## 04 高考前的失眠 + +> **失败之后,不要抱怨外界因素,自始至终实际都是自己的问题,自己不够强大!** 然后,高考前的失眠也是我自己问题,要怪只能怪自己,别的没有任何接口。 + +我的高考经历其实还蛮坎坷的,毫不夸张的说,高考那今天可能是我到现在为止,经历的最难熬的时候,特别是在晚上。 + +我在高考那几天晚上都经历了失眠,想睡都睡不着那种痛苦想必很多人或许都体验过。 + +其实我在之前是从来没有过失眠的经历的。高考前夕,因为害怕自己睡不着,所以,我提前让妈妈去买了几瓶老师推荐的安神补脑液。我到现在还记得这个安神补脑液是敖东牌的。 + +高考那几天的失眠,我觉得可能和我喝了老师推荐的安神补脑液有关系,又或者是我自己太过于紧张了。因为那几天睡觉总会感觉有很多蚂蚁在身上爬一样,然后还起了一些小痘痘。 + +然后,这里要格外说明一点,避免引起误导: **睡不着本身就是自身的问题,上述言论并没有责怪这个补脑液的意思。** 另外, 这款安神补脑液我去各个平台都查了一下,发现大家对他的评价都挺好,和我们老师当时推荐的理由差不多。如果大家需要改善睡眠的话,可以咨询相关医生之后尝试一下。 + +## 05 还算充实的大学生活 + +高考成绩出来之后,比一本线高了 20 多分。自己挺不满意的,因为比平时考差了太多。加上自己泪点很低,就哭了一上午之后。后面,自我安慰说以后到了大学好好努力也是一样的。然后,我的第一志愿学校就报了长江大学,第一志愿专业就报了计算机专业。 + +后面,就开始了自己还算充实的大学生活。 + +大一的时候,满腔热血,对于高考结果的不满意,化作了我每天早起的动力。雷打不动,每天早上 6点左右就出去背英语单词。这也奠定了我后面的四六级都是一次过,并且六级的成绩还算不错。大一那年的暑假,我还去了孝感当了主管,几乎从无到有办了 5 个家教点。不过,其中两个家教点的话,是去年都已经办过的,没有其他几个那么费心。 + +![被我的学生 diss](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/javaguide/5a47eb4614934a25b8ea1a83cafac43d-20200802173912511.png) + +大二的时候,加了学校一个偏技术方向的传媒组织(做网站、APP 之类的工作),后面成功当了副站长。在大二的时候,我才开始因为组织需要而接触 Java,不过当时主要学的是安卓开发。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/javaguide/b16201d0-37d4-462a-a5e6-bf95ca503d39-20200802174034108.png) + +大三的时候,正式确定自己要用 Java 语言找工作,并且要走 Java 后台(当时感觉安卓后台在求职时长太不吃香了)。我每天都在寝室学习 Java 后台开发,自己看视频,看书,做项目。我的开源项目 JavaGuide 和公众号都是这一年创建的。这一年,我大部分时间都是在寝室学习。带上耳机之后,即使室友在玩游戏或者追剧,都不会对我有什么影响。 + +我记得当时自己独立做项目的时候,遇到了很多问题。**就很多时候,你看书很容易就明白的东西,等到你实践的时候,总是会遇到一些小问题。我一般都是通过 Google 搜索解决的,用好搜索引擎真的能解决自己 99% 的问题。** + +![](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images/2020-08/d30eef29-3a73-483d-9a4a-d63f41271fb4-20200802174048832.png) + +大四的时候,开始找工作。我是参加的秋招,开始的较晚,基本很多公司都没有 HC 了。这点需要 diss 一下学校了,你其他地方都很好,但是,大四的时候就不要再上课点名了吧!然后,**希望国内的学校尽量能多给学生点机会吧!很多人连春招和秋招都不清楚,毕业了连实习都没实习过。** + +## 06 一些心里话 + +关于大学要努力学习专业知识、多去读书馆这类的鸡汤,Guide 就不多说了。就谈几条自己写这篇文章的时候,想到了一些心理话吧! + +1. **不要抱怨学校** :高考之后,不论你是 985、211 还是普通一本,再或者是 二本、三本,都不重要了,好好享受高考之后的生活。如果你觉得自己考的不满意的话,就去复读,没必要天天抱怨,复读的一年在你的人生长河里根本算不了什么的! +2. **克制** :大学的时候,克制住自己,诱惑太多了。你不去上课,在寝室睡到中午,都没人管你。你的努力不要只是感动自己!追求形式的努力不过是你打得幌子而已。到了社会之后,这个说法依然适用! 说一个真实的发生在我身边的事情吧!高中的时候有一个特别特别特别努力的同班同学,家里的条件也很差,大学之前没有接触过手机和游戏。后来到了大学之后,因为接触了手机还有手机游戏,每天沉迷,不去上课。最后,直接就导致大学没读完就离开了。我听完我的好朋友给我说了之后,非常非常非常诧异!真的太可惜了! +3. **不要总抱怨自己迷茫,多和优秀的学长学姐沟通交流。** +4. **不知道做什么的时候,就把手头的事情做好比如你的专业课学习。** + +*不论以前的自己是什么样,自己未来变成什么样自己是可以决定的,未来的路也终究还是要自己走。大环境下,大部分人都挺难的,当 996 成为了常态,Life Balance 是不可能的了。我们只能试着寻求一种平衡,试着去热爱自己现在所做的事情。* + +**往后余生,爱家人,亦爱自己;好好生活,不忧不恼。** diff --git a/docs/about-the-author/readme.md b/docs/about-the-author/readme.md new file mode 100644 index 00000000000..cdf185586d7 --- /dev/null +++ b/docs/about-the-author/readme.md @@ -0,0 +1,52 @@ +# 个人介绍 Q&A + +大家好,我是 Gudie哥!这篇文章我会通过 Q&A 的形式简单介绍一下我自己。 + +## 我是什么时候毕业的? + +很多老读者应该比较清楚,我是 19 年本科毕业的,刚毕业就去了某家外企“养老”。 + +我的学校背景是比较差的,高考失利,勉强过了一本线 20 来分,去了荆州的一所很普通的双非一本。不过,还好我没有因为学校而放弃自己,反倒是比身边的同学都要更努力,整个大学还算过的比较充实。 + +下面这张是当时拍的毕业照: + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/javaguide/%E4%B8%AA%E4%BA%BA%E4%BB%8B%E7%BB%8D.png) + +## 为什么要做 JavaGuide 这个项目? + +我从大二坚持写作,坚持分享让我收获了 30w+ 的读者以及一笔不错的副业收入。 + +2018 年,我还在读大三的时候,JavaGuide 开源项目&公众号诞生了。很难想到,日后,他们会陪伴我度过这么长的时间。 + +开源 JavaGuide 初始想法源于自己的个人那一段比较迷茫的学习经历。主要目的是为了通过这个开源平台来帮助一些在学习 Java 以及面试过程中遇到问题的小伙伴。 + +- **对于 Java 初学者来说:** 本文档倾向于给你提供一个比较详细的学习路径,让你对于 Java 整体的知识体系有一个初步认识。另外,本文的一些文章也是你学习和复习 Java 知识不错的实践; +- **对于非 Java 初学者来说:** 本文档更适合回顾知识,准备面试,搞清面试应该把重心放在那些问题上。要搞清楚这个道理:提前知道那些面试常见,不是为了背下来应付面试,而是为了让你可以更有针对的学习重点。 + +## 如何看待 JavaGuide 的 star 数量很多? + +[JavaGuide](https://github.com/Snailclimb) 目前已经是 Java 领域 star 数量最多的几个项目之一,登顶过很多次 Github Trending。 + +不过,这个真心没啥好嘚瑟的。因为,教程类的含金量其实是比较低的,Star 数量比较多主要也是因为受众面比较广,大家觉得不错,点个 star 就相当于收藏了。很多特别优秀的框架,star 数量可能只有几 K。所以,单纯看 star 数量没啥意思,就当看个笑话吧! + +维护这个项目的过程中,也被某些人 diss 过:“md 项目,没啥含金量,给国人丢脸!”。 + +对于说这类话的人,我觉得对我没啥影响,就持续完善,把 JavaGuide 做的更好吧!其实,国外的很多项目也是纯 MD 啊!就比如外国的朋友发起的 awesome 系列、求职面试系列。无需多说,行动自证!凎! + +开源非常重要的一点就是协作。如果你开源了一个项目之后,就不再维护,别人给你提交 issue/pr,你都不处理,那开源也没啥意义了! + +## 我在大学期间赚了多少钱? + +在校期间,我还通过接私活、技术培训、编程竞赛等方式变现 20w+,成功实现“经济独立”。我用自己赚的钱去了重庆、三亚、恩施、青岛等地旅游,还给家里补贴了很多,减轻的父母的负担。 + +如果你也想通过接私活变现的话,可以在我的公众号后台回复“**接私活**”来了解详细情况。 + +![](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2020-8/1d38ea3b-da2a-41df-9ac4-087356e9b5b4-20200802185910087.png) + +## 为什么自称 Guide哥? + +可能是因为我的项目名字叫做 JavaGudie ,所以导致有很多人称呼我为 **Guide哥**。 + +后面,为了读者更方便称呼,我就将自己的笔名改成了 **Guide哥**。 + +我早期写文章用的笔名是 SnailClimb 。很多人不知道这个名字是啥意思,给大家拆解一下就清楚了。SnailClimb=Snail(蜗牛)+Climb(攀登)。我从小就非常喜欢听周杰伦的歌曲,特别是他的《蜗牛》🐌 这首歌曲,另外,当年我高考发挥的算是比较失常,上了大学之后还算是比较“奋青”,所以,我就给自己起的笔名叫做 SnailClimb ,寓意自己要不断向上攀登,哈哈 diff --git "a/docs/dataStructures-algorithms/\345\207\240\351\201\223\345\270\270\350\247\201\347\232\204\345\255\227\347\254\246\344\270\262\347\256\227\346\263\225\351\242\230.md" "b/docs/cs-basics/algorithms/\345\207\240\351\201\223\345\270\270\350\247\201\347\232\204\345\255\227\347\254\246\344\270\262\347\256\227\346\263\225\351\242\230.md" similarity index 91% rename from "docs/dataStructures-algorithms/\345\207\240\351\201\223\345\270\270\350\247\201\347\232\204\345\255\227\347\254\246\344\270\262\347\256\227\346\263\225\351\242\230.md" rename to "docs/cs-basics/algorithms/\345\207\240\351\201\223\345\270\270\350\247\201\347\232\204\345\255\227\347\254\246\344\270\262\347\256\227\346\263\225\351\242\230.md" index af63c584c2f..37176650df7 100644 --- "a/docs/dataStructures-algorithms/\345\207\240\351\201\223\345\270\270\350\247\201\347\232\204\345\255\227\347\254\246\344\270\262\347\256\227\346\263\225\351\242\230.md" +++ "b/docs/cs-basics/algorithms/\345\207\240\351\201\223\345\270\270\350\247\201\347\232\204\345\255\227\347\254\246\344\270\262\347\256\227\346\263\225\351\242\230.md" @@ -1,20 +1,4 @@ - - -- [说明](#说明) -- [1. KMP 算法](#1-kmp-算法) -- [2. 替换空格](#2-替换空格) -- [3. 最长公共前缀](#3-最长公共前缀) -- [4. 回文串](#4-回文串) - - [4.1. 最长回文串](#41-最长回文串) - - [4.2. 验证回文串](#42-验证回文串) - - [4.3. 最长回文子串](#43-最长回文子串) - - [4.4. 最长回文子序列](#44-最长回文子序列) -- [5. 括号匹配深度](#5-括号匹配深度) -- [6. 把字符串转换成整数](#6-把字符串转换成整数) - - - - +# 几道常见的字符串算法题 > 授权转载! > @@ -22,9 +6,6 @@ > - 原文地址:https://www.weiweiblog.cn/13string/ - -考虑到篇幅问题,我会分两次更新这个内容。本篇文章只是原文的一部分,我在原文的基础上增加了部分内容以及修改了部分代码和注释。另外,我增加了爱奇艺 2018 秋招 Java:`求给定合法括号序列的深度` 这道题。所有代码均编译成功,并带有注释,欢迎各位享用! - ## 1. KMP 算法 谈到字符串问题,不得不提的就是 KMP 算法,它是用来解决字符串查找的问题,可以在一个字符串(S)中查找一个子串(W)出现的位置。KMP 算法把字符匹配的时间复杂度缩小到 O(m+n) ,而空间复杂度也只有O(m)。因为“暴力搜索”的方法会反复回溯主串,导致效率低下,而KMP算法可以利用已经部分匹配这个有效信息,保持主串上的指针不回溯,通过修改子串的指针,让模式串尽量地移动到有效的位置。 @@ -284,10 +265,7 @@ class Solution { 输出: "bb" ``` -以某个元素为中心,分别计算偶数长度的回文最大长度和奇数长度的回文最大长度。给大家大致花了个草图,不要嫌弃! - - -![](https://user-gold-cdn.xitu.io/2018/9/9/165bc32f6f1833ff?w=723&h=371&f=png&s=9305) +以某个元素为中心,分别计算偶数长度的回文最大长度和奇数长度的回文最大长度。 ```java //https://leetcode-cn.com/problems/longest-palindromic-substring/description/ @@ -401,11 +379,6 @@ class Solution { 2 ``` -思路草图: - - -![](https://user-gold-cdn.xitu.io/2018/9/9/165bc6fca94ef278?w=792&h=324&f=png&s=15868) - 代码如下: ```java diff --git "a/docs/dataStructures-algorithms/\345\207\240\351\201\223\345\270\270\350\247\201\347\232\204\351\223\276\350\241\250\347\256\227\346\263\225\351\242\230.md" "b/docs/cs-basics/algorithms/\345\207\240\351\201\223\345\270\270\350\247\201\347\232\204\351\223\276\350\241\250\347\256\227\346\263\225\351\242\230.md" similarity index 91% rename from "docs/dataStructures-algorithms/\345\207\240\351\201\223\345\270\270\350\247\201\347\232\204\351\223\276\350\241\250\347\256\227\346\263\225\351\242\230.md" rename to "docs/cs-basics/algorithms/\345\207\240\351\201\223\345\270\270\350\247\201\347\232\204\351\223\276\350\241\250\347\256\227\346\263\225\351\242\230.md" index 7b82436891d..1b64653cd9f 100644 --- "a/docs/dataStructures-algorithms/\345\207\240\351\201\223\345\270\270\350\247\201\347\232\204\351\223\276\350\241\250\347\256\227\346\263\225\351\242\230.md" +++ "b/docs/cs-basics/algorithms/\345\207\240\351\201\223\345\270\270\350\247\201\347\232\204\351\223\276\350\241\250\347\256\227\346\263\225\351\242\230.md" @@ -1,29 +1,6 @@ - - -- [1. 两数相加](#1-两数相加) - - [题目描述](#题目描述) - - [问题分析](#问题分析) - - [Solution](#solution) -- [2. 翻转链表](#2-翻转链表) - - [题目描述](#题目描述-1) - - [问题分析](#问题分析-1) - - [Solution](#solution-1) -- [3. 链表中倒数第k个节点](#3-链表中倒数第k个节点) - - [题目描述](#题目描述-2) - - [问题分析](#问题分析-2) - - [Solution](#solution-2) -- [4. 删除链表的倒数第N个节点](#4-删除链表的倒数第n个节点) - - [问题分析](#问题分析-3) - - [Solution](#solution-3) -- [5. 合并两个排序的链表](#5-合并两个排序的链表) - - [题目描述](#题目描述-3) - - [问题分析](#问题分析-4) - - [Solution](#solution-4) - - - - -# 1. 两数相加 +# 几道常见的链表算法题 + +## 1. 两数相加 ### 题目描述 @@ -92,7 +69,7 @@ public ListNode addTwoNumbers(ListNode l1, ListNode l2) { } ``` -# 2. 翻转链表 +## 2. 翻转链表 ### 题目描述 @@ -180,7 +157,7 @@ public class Solution { 1 ``` -# 3. 链表中倒数第k个节点 +## 3. 链表中倒数第k个节点 ### 题目描述 @@ -240,7 +217,7 @@ public class Solution { ``` -# 4. 删除链表的倒数第N个节点 +## 4. 删除链表的倒数第N个节点 > Leetcode:给定一个链表,删除链表的倒数第 n 个节点,并且返回链表的头结点。 @@ -367,7 +344,7 @@ public class Solution { -# 5. 合并两个排序的链表 +## 5. 合并两个排序的链表 ### 题目描述 diff --git "a/docs/dataStructures-algorithms/\345\211\221\346\214\207offer\351\203\250\345\210\206\347\274\226\347\250\213\351\242\230.md" "b/docs/cs-basics/algorithms/\345\211\221\346\214\207offer\351\203\250\345\210\206\347\274\226\347\250\213\351\242\230.md" similarity index 87% rename from "docs/dataStructures-algorithms/\345\211\221\346\214\207offer\351\203\250\345\210\206\347\274\226\347\250\213\351\242\230.md" rename to "docs/cs-basics/algorithms/\345\211\221\346\214\207offer\351\203\250\345\210\206\347\274\226\347\250\213\351\242\230.md" index 9b73888bf07..790422342fc 100644 --- "a/docs/dataStructures-algorithms/\345\211\221\346\214\207offer\351\203\250\345\210\206\347\274\226\347\250\213\351\242\230.md" +++ "b/docs/cs-basics/algorithms/\345\211\221\346\214\207offer\351\203\250\345\210\206\347\274\226\347\250\213\351\242\230.md" @@ -1,17 +1,19 @@ -### 一 斐波那契数列 +# 剑指offer部分编程题 -#### **题目描述:** +## 斐波那契数列 + +**题目描述:** 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项。 n<=39 -#### **问题分析:** +**问题分析:** 可以肯定的是这一题通过递归的方式是肯定能做出来,但是这样会有一个很大的问题,那就是递归大量的重复计算会导致内存溢出。另外可以使用迭代法,用fn1和fn2保存计算过程中的结果,并复用起来。下面我会把两个方法示例代码都给出来并给出两个方法的运行时间对比。 -#### **示例代码:** +**示例代码:** -**采用迭代法:** +采用迭代法: ```java int Fibonacci(int number) { @@ -31,7 +33,7 @@ int Fibonacci(int number) { } ``` -**采用递归:** +采用递归: ```java public int Fibonacci(int n) { @@ -46,27 +48,30 @@ public int Fibonacci(int n) { } ``` -### 二 跳台阶问题 +## 跳台阶问题 -#### **题目描述:** +**题目描述:** 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。 -#### **问题分析:** +**问题分析:** + +正常分析法: + +> a.如果两种跳法,1阶或者2阶,那么假定第一次跳的是一阶,那么剩下的是n-1个台阶,跳法是f(n-1); +> b.假定第一次跳的是2阶,那么剩下的是n-2个台阶,跳法是f(n-2) +> c.由a,b假设可以得出总跳法为: f(n) = f(n-1) + f(n-2) +> d.然后通过实际的情况可以得出:只有一阶的时候 f(1) = 1 ,只有两阶的时候可以有 f(2) = 2 -**正常分析法:** -a.如果两种跳法,1阶或者2阶,那么假定第一次跳的是一阶,那么剩下的是n-1个台阶,跳法是f(n-1); -b.假定第一次跳的是2阶,那么剩下的是n-2个台阶,跳法是f(n-2) -c.由a,b假设可以得出总跳法为: f(n) = f(n-1) + f(n-2) -d.然后通过实际的情况可以得出:只有一阶的时候 f(1) = 1 ,只有两阶的时候可以有 f(2) = 2 -**找规律分析法:** -f(1) = 1, f(2) = 2, f(3) = 3, f(4) = 5, 可以总结出f(n) = f(n-1) + f(n-2)的规律。 -但是为什么会出现这样的规律呢?假设现在6个台阶,我们可以从第5跳一步到6,这样的话有多少种方案跳到5就有多少种方案跳到6,另外我们也可以从4跳两步跳到6,跳到4有多少种方案的话,就有多少种方案跳到6,其他的不能从3跳到6什么的啦,所以最后就是f(6) = f(5) + f(4);这样子也很好理解变态跳台阶的问题了。 +找规律分析法: + +> f(1) = 1, f(2) = 2, f(3) = 3, f(4) = 5, 可以总结出f(n) = f(n-1) + f(n-2)的规律。但是为什么会出现这样的规律呢?假设现在6个台阶,我们可以从第5跳一步到6,这样的话有多少种方案跳到5就有多少种方案跳到6,另外我们也可以从4跳两步跳到6,跳到4有多少种方案的话,就有多少种方案跳到6,其他的不能从3跳到6什么的啦,所以最后就是f(6) = f(5) + f(4);这样子也很好理解变态跳台阶的问题了。 **所以这道题其实就是斐波那契数列的问题。** + 代码只需要在上一题的代码稍做修改即可。和上一题唯一不同的就是这一题的初始元素变为 1 2 3 5 8.....而上一题为1 1 2 3 5 .......。另外这一题也可以用递归做,但是递归效率太低,所以我这里只给出了迭代方式的代码。 -#### **示例代码:** +**示例代码:** ```java int jumpFloor(int number) { @@ -89,13 +94,13 @@ int jumpFloor(int number) { } ``` -### 三 变态跳台阶问题 +## 变态跳台阶问题 -#### **题目描述:** +**题目描述:** 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。 -#### **问题分析:** +**问题分析:** 假设n>=2,第一步有n种跳法:跳1级、跳2级、到跳n级 跳1级,剩下n-1级,则剩下跳法是f(n-1) @@ -108,7 +113,7 @@ f(n)=f(n-1)+f(n-2)+...+f(1) 因为f(n-1)=f(n-2)+f(n-3)+...+f(1) 所以f(n)=2*f(n-1) 又f(1)=1,所以可得**f(n)=2^(number-1)** -#### **示例代码:** +**示例代码:** ```java int JumpFloorII(int number) { @@ -116,25 +121,28 @@ int JumpFloorII(int number) { } ``` -#### **补充:** +**补充:** -**java中有三种移位运算符:** +java中有三种移位运算符: 1. “<<” : **左移运算符**,等同于乘2的n次方 2. “>>”: **右移运算符**,等同于除2的n次方 3. “>>>” : **无符号右移运算符**,不管移动前最高位是0还是1,右移后左侧产生的空位部分都以0来填充。与>>类似。 - 例: - int a = 16; - int b = a << 2;//左移2,等同于16 * 2的2次方,也就是16 * 4 - int c = a >> 2;//右移2,等同于16 / 2的2次方,也就是16 / 4 -### 四 二维数组查找 +```java +int a = 16; +int b = a << 2;//左移2,等同于16 * 2的2次方,也就是16 * 4 +int c = a >> 2;//右移2,等同于16 / 2的2次方,也就是16 / 4 +``` + + +## 二维数组查找 -#### **题目描述:** +**题目描述:** 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。 -#### **问题解析:** +**问题解析:** 这一道题还是比较简单的,我们需要考虑的是如何做,效率最快。这里有一种很好理解的思路: @@ -142,7 +150,7 @@ int JumpFloorII(int number) { > 因此从左下角开始查找,当要查找数字比左下角数字大时。右移 > 要查找数字比左下角数字小时,上移。这样找的速度最快。 -#### **示例代码:** +**示例代码:** ```java public boolean Find(int target, int [][] array) { @@ -163,21 +171,21 @@ public boolean Find(int target, int [][] array) { } ``` -### 五 替换空格 +## 替换空格 -#### **题目描述:** +**题目描述:** 请实现一个函数,将一个字符串中的空格替换成“%20”。例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy。 -#### **问题分析:** +**问题分析:** 这道题不难,我们可以通过循环判断字符串的字符是否为空格,是的话就利用append()方法添加追加“%20”,否则还是追加原字符。 或者最简单的方法就是利用:replaceAll(String regex,String replacement)方法了,一行代码就可以解决。 -#### **示例代码:** +**示例代码:** -**常规做法:** +常规做法: ```java public String replaceSpace(StringBuffer str) { @@ -194,7 +202,7 @@ public String replaceSpace(StringBuffer str) { } ``` -**一行代码解决:** +一行代码解决: ```java public String replaceSpace(StringBuffer str) { @@ -206,13 +214,13 @@ public String replaceSpace(StringBuffer str) { } ``` -### 六 数值的整数次方 +## 数值的整数次方 -#### **题目描述:** +**题目描述:** 给定一个double类型的浮点数base和int类型的整数exponent。求base的exponent次方。 -#### **问题解析:** +**问题解析:** 这道题算是比较麻烦和难一点的一个了。我这里采用的是**二分幂**思想,当然也可以采用**快速幂**。 更具剑指offer书中细节,该题的解题思路如下: @@ -224,7 +232,7 @@ public String replaceSpace(StringBuffer str) { **时间复杂度**:O(logn) -#### **示例代码:** +**示例代码:** ```java public class Solution { @@ -289,18 +297,18 @@ public double powerAnother(double base, int exponent) { } ``` -### 七 调整数组顺序使奇数位于偶数前面 +## 调整数组顺序使奇数位于偶数前面 -#### **题目描述:** +**题目描述:** 输入一个整数数组,实现一个函数来调整该数组中数字的顺序,使得所有的奇数位于数组的前半部分,所有的偶数位于位于数组的后半部分,并保证奇数和奇数,偶数和偶数之间的相对位置不变。 -#### **问题解析:** +**问题解析:** 这道题有挺多种解法的,给大家介绍一种我觉得挺好理解的方法: 我们首先统计奇数的个数假设为n,然后新建一个等长数组,然后通过循环判断原数组中的元素为偶数还是奇数。如果是则从数组下标0的元素开始,把该奇数添加到新数组;如果是偶数则从数组下标为n的元素开始把该偶数添加到新数组中。 -#### **示例代码:** +**示例代码:** 时间复杂度为O(n),空间复杂度为O(n)的算法 @@ -333,13 +341,13 @@ public class Solution { } ``` -### 八 链表中倒数第k个节点 +## 链表中倒数第k个节点 -#### **题目描述:** +**题目描述:** 输入一个链表,输出该链表中倒数第k个结点 -#### **问题分析:** +**问题分析:** **一句话概括:** 两个指针一个指针p1先开始跑,指针p1跑到k-1个节点后,另一个节点p2开始跑,当p1跑到最后时,p2所指的指针就是倒数第k个节点。 @@ -347,6 +355,7 @@ public class Solution { **思想的简单理解:** 前提假设:链表的结点个数(长度)为n。 规律一:要找到倒数第k个结点,需要向前走多少步呢?比如倒数第一个结点,需要走n步,那倒数第二个结点呢?很明显是向前走了n-1步,所以可以找到规律是找到倒数第k个结点,需要向前走n-k+1步。 + **算法开始:** 1. 设两个都指向head的指针p1和p2,当p1走了k-1步的时候,停下来。p2之前一直不动。 @@ -354,11 +363,11 @@ public class Solution { 3. 当p1走到链表的尾部时,即p1走了n步。由于我们知道p2是在p1走了k-1步才开始动的,也就是说p1和p2永远差k-1步。所以当p1走了n步时,p2走的应该是在n-(k-1)步。即p2走了n-k+1步,此时巧妙的是p2正好指向的是规律一的倒数第k个结点处。 这样是不是很好理解了呢? -#### **考察内容:** +**考察内容:** 链表+代码的鲁棒性 -#### **示例代码:** +**示例代码:** ```java /* @@ -401,24 +410,25 @@ public class Solution { } ``` -### 九 反转链表 +## 反转链表 -#### **题目描述:** +**题目描述:** 输入一个链表,反转链表后,输出链表的所有元素。 -#### **问题分析:** +**问题分析:** 链表的很常规的一道题,这一道题思路不算难,但自己实现起来真的可能会感觉无从下手,我是参考了别人的代码。 思路就是我们根据链表的特点,前一个节点指向下一个节点的特点,把后面的节点移到前面来。 就比如下图:我们把1节点和2节点互换位置,然后再将3节点指向2节点,4节点指向3节点,这样以来下面的链表就被反转了。 -![链表](https://img-blog.csdn.net/20160420134000174) -#### **考察内容:** +![链表](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/844773c7300e4373922bb1a6ae2a55a3~tplv-k3u1fbpfcp-zoom-1.image) + +**考察内容:** 链表+代码的鲁棒性 -#### **示例代码:** +**示例代码:** ```java /* @@ -449,13 +459,13 @@ public class Solution { } ``` -### 十 合并两个排序的链表 +## 合并两个排序的链表 -#### **题目描述:** +**题目描述:** 输入两个单调递增的链表,输出两个链表合成后的链表,当然我们需要合成后的链表满足单调不减规则。 -#### **问题分析:** +**问题分析:** 我们可以这样分析: @@ -465,13 +475,13 @@ public class Solution { 4. A2再和B2比较。。。。。。。 就这样循环往复就行了,应该还算好理解。 -#### **考察内容:** +**考察内容:** 链表+代码的鲁棒性 -#### **示例代码:** +**示例代码:** -**非递归版本:** +非递归版本: ```java /* @@ -530,7 +540,7 @@ public class Solution { } ``` -**递归版本:** +递归版本: ```java public ListNode Merge(ListNode list1,ListNode list2) { @@ -550,13 +560,13 @@ public ListNode Merge(ListNode list1,ListNode list2) { } ``` -### 十一 用两个栈实现队列 +## 用两个栈实现队列 -#### **题目描述:** +**题目描述:** 用两个栈来实现一个队列,完成队列的Push和Pop操作。 队列中的元素为int类型。 -#### 问题分析: +**问题分析:** 先来回顾一下栈和队列的基本特点: **栈:**后进先出(LIFO) @@ -566,11 +576,11 @@ public ListNode Merge(ListNode list1,ListNode list2) { 既然题目给了我们两个栈,我们可以这样考虑当push的时候将元素push进stack1,pop的时候我们先把stack1的元素pop到stack2,然后再对stack2执行pop操作,这样就可以保证是先进先出的。(负[pop]负[pop]得正[先进先出]) -#### 考察内容: +**考察内容:** 队列+栈 -#### 示例代码: +示例代码: ```java //左程云的《程序员代码面试指南》的答案 @@ -602,13 +612,13 @@ public class Solution { } ``` -### 十二 栈的压入,弹出序列 +## 栈的压入,弹出序列 -#### **题目描述:** +**题目描述:** 输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否为该栈的弹出顺序。假设压入栈的所有数字均不相等。例如序列1,2,3,4,5是某栈的压入顺序,序列4,5,3,2,1是该压栈序列对应的一个弹出序列,但4,3,5,1,2就不可能是该压栈序列的弹出序列。(注意:这两个序列的长度是相等的) -#### **题目分析:** +**题目分析:** 这道题想了半天没有思路,参考了Alias的答案,他的思路写的也很详细应该很容易看懂。 作者:Alias @@ -638,11 +648,11 @@ https://www.nowcoder.com/questionTerminal/d77d11405cc7470d82554cb392585106 …. 依次执行,最后辅助栈为空。如果不为空说明弹出序列不是该栈的弹出顺序。 -#### **考察内容:** +**考察内容:** 栈 -#### **示例代码:** +**示例代码:** ```java import java.util.ArrayList; diff --git a/docs/dataStructures-algorithms/data-structure/bloom-filter.md b/docs/cs-basics/data-structure/bloom-filter.md similarity index 69% rename from docs/dataStructures-algorithms/data-structure/bloom-filter.md rename to docs/cs-basics/data-structure/bloom-filter.md index bfb7efe7f03..d013be7471f 100644 --- a/docs/dataStructures-algorithms/data-structure/bloom-filter.md +++ b/docs/cs-basics/data-structure/bloom-filter.md @@ -1,3 +1,11 @@ +--- +category: 计算机基础 +tag: + - 数据结构 +--- + +# 布隆过滤器 + 海量数据处理以及缓存穿透这两个场景让我认识了 布隆过滤器 ,我查阅了一些资料来了解它,但是很多现成资料并不满足我的需求,所以就决定自己总结一篇关于布隆过滤器的文章。希望通过这篇文章让更多人了解布隆过滤器,并且会实际去使用它! 下面我们将分为几个方面来介绍布隆过滤器: @@ -6,22 +14,22 @@ 2. 布隆过滤器的原理介绍。 3. 布隆过滤器使用场景。 4. 通过 Java 编程手动实现布隆过滤器。 -5. 利用Google开源的Guava中自带的布隆过滤器。 +5. 利用 Google 开源的 Guava 中自带的布隆过滤器。 6. Redis 中的布隆过滤器。 -### 1.什么是布隆过滤器? +## 什么是布隆过滤器? 首先,我们需要了解布隆过滤器的概念。 -布隆过滤器(Bloom Filter)是一个叫做 Bloom 的老哥于1970年提出的。我们可以把它看作由二进制向量(或者说位数组)和一系列随机映射函数(哈希函数)两部分组成的数据结构。相比于我们平时常用的的 List、Map 、Set 等数据结构,它占用空间更少并且效率更高,但是缺点是其返回的结果是概率性的,而不是非常准确的。理论情况下添加到集合中的元素越多,误报的可能性就越大。并且,存放在布隆过滤器的数据不容易删除。 +布隆过滤器(Bloom Filter)是一个叫做 Bloom 的老哥于 1970 年提出的。我们可以把它看作由二进制向量(或者说位数组)和一系列随机映射函数(哈希函数)两部分组成的数据结构。相比于我们平时常用的的 List、Map 、Set 等数据结构,它占用空间更少并且效率更高,但是缺点是其返回的结果是概率性的,而不是非常准确的。理论情况下添加到集合中的元素越多,误报的可能性就越大。并且,存放在布隆过滤器的数据不容易删除。 ![布隆过滤器示意图](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-11/布隆过滤器-bit数组.png) -位数组中的每个元素都只占用 1 bit ,并且每个元素只能是 0 或者 1。这样申请一个 100w 个元素的位数组只占用 1000000Bit / 8 = 125000 Byte = 125000/1024 kb ≈ 122kb 的空间。 +位数组中的每个元素都只占用 1 bit ,并且每个元素只能是 0 或者 1。这样申请一个 100w 个元素的位数组只占用 1000000Bit / 8 = 125000 Byte = 125000/1024 kb ≈ 122kb 的空间。 总结:**一个名叫 Bloom 的人提出了一种来检索元素是否在给定大集合中的数据结构,这种数据结构是高效且性能很好的,但缺点是具有一定的错误识别率和删除难度。并且,理论情况下,添加到集合中的元素越多,误报的可能性就越大。** -### 2.布隆过滤器的原理介绍 +## 布隆过滤器的原理介绍 **当一个元素加入布隆过滤器中的时候,会进行如下操作:** @@ -35,11 +43,9 @@ 举个简单的例子: - - ![布隆过滤器hash计算](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-11/布隆过滤器-hash运算.png) -如图所示,当字符串存储要加入到布隆过滤器中时,该字符串首先由多个哈希函数生成不同的哈希值,然后将对应的位数组的下标设置为 1(当位数组初始化时,所有位置均为0)。当第二次存储相同字符串时,因为先前的对应位置已设置为 1,所以很容易知道此值已经存在(去重非常方便)。 +如图所示,当字符串存储要加入到布隆过滤器中时,该字符串首先由多个哈希函数生成不同的哈希值,然后将对应的位数组的下标设置为 1(当位数组初始化时,所有位置均为 0)。当第二次存储相同字符串时,因为先前的对应位置已设置为 1,所以很容易知道此值已经存在(去重非常方便)。 如果我们需要判断某个字符串是否在布隆过滤器中时,只需要对给定字符串再次进行相同的哈希计算,得到值之后判断位数组中的每个元素是否都为 1,如果值都为 1,那么说明这个值在布隆过滤器中,如果存在一个值不为 1,说明该元素不在布隆过滤器中。 @@ -47,12 +53,15 @@ 综上,我们可以得出:**布隆过滤器说某个元素存在,小概率会误判。布隆过滤器说某个元素不在,那么这个元素一定不在。** -### 3.布隆过滤器使用场景 +## 布隆过滤器使用场景 -1. 判断给定数据是否存在:比如判断一个数字是否存在于包含大量数字的数字集中(数字集很大,5亿以上!)、 防止缓存穿透(判断请求的数据是否有效避免直接绕过缓存请求数据库)等等、邮箱的垃圾邮件过滤、黑名单功能等等。 +1. 判断给定数据是否存在:比如判断一个数字是否存在于包含大量数字的数字集中(数字集很大,5 亿以上!)、 防止缓存穿透(判断请求的数据是否有效避免直接绕过缓存请求数据库)等等、邮箱的垃圾邮件过滤、黑名单功能等等。 2. 去重:比如爬给定网址的时候对已经爬取过的 URL 去重。 -### 4.通过 Java 编程手动实现布隆过滤器 + +## 编码实战 + +### 通过 Java 编程手动实现布隆过滤器 我们上面已经说了布隆过滤器的原理,知道了布隆过滤器的原理之后就可以自己手动实现一个了。 @@ -190,7 +199,7 @@ true true ``` -### 5.利用 Google 开源的 Guava 中自带的布隆过滤器 +### 利用 Google 开源的 Guava 中自带的布隆过滤器 自己实现的目的主要是为了让自己搞懂布隆过滤器的原理,Guava 中布隆过滤器的实现算是比较权威的,所以实际项目中我们不需要手动实现一个布隆过滤器。 @@ -206,7 +215,7 @@ true 实际使用如下: -我们创建了一个最多存放 最多 1500个整数的布隆过滤器,并且我们可以容忍误判的概率为百分之(0.01) +我们创建了一个最多存放 最多 1500 个整数的布隆过滤器,并且我们可以容忍误判的概率为百分之(0.01) ```java // 创建布隆过滤器对象 @@ -224,27 +233,28 @@ System.out.println(filter.mightContain(1)); System.out.println(filter.mightContain(2)); ``` -在我们的示例中,当`mightContain()` 方法返回 *true* 时,我们可以99%确定该元素在过滤器中,当过滤器返回 *false* 时,我们可以100%确定该元素不存在于过滤器中。 +在我们的示例中,当 `mightContain()` 方法返回 _true_ 时,我们可以 99%确定该元素在过滤器中,当过滤器返回 _false_ 时,我们可以 100%确定该元素不存在于过滤器中。 **Guava 提供的布隆过滤器的实现还是很不错的(想要详细了解的可以看一下它的源码实现),但是它有一个重大的缺陷就是只能单机使用(另外,容量扩展也不容易),而现在互联网一般都是分布式的场景。为了解决这个问题,我们就需要用到 Redis 中的布隆过滤器了。** -### 6.Redis 中的布隆过滤器 +## Redis 中的布隆过滤器 -#### 6.1 介绍 +### 介绍 Redis v4.0 之后有了 Module(模块/插件) 功能,Redis Modules 让 Redis 可以使用外部模块扩展其功能 。布隆过滤器就是其中的 Module。详情可以查看 Redis 官方对 Redis Modules 的介绍 :https://redis.io/modules -另外,官网推荐了一个 RedisBloom 作为 Redis 布隆过滤器的 Module,地址:https://github.com/RedisBloom/RedisBloom。其他还有: +另外,官网推荐了一个 RedisBloom 作为 Redis 布隆过滤器的 Module,地址:https://github.com/RedisBloom/RedisBloom +其他还有: -- redis-lua-scaling-bloom-filter(lua 脚本实现):https://github.com/erikdubbelboer/redis-lua-scaling-bloom-filter -- pyreBloom(Python中的快速Redis 布隆过滤器) :https://github.com/seomoz/pyreBloom -- ...... +* redis-lua-scaling-bloom-filter(lua 脚本实现):https://github.com/erikdubbelboer/redis-lua-scaling-bloom-filter +* pyreBloom(Python 中的快速 Redis 布隆过滤器) :https://github.com/seomoz/pyreBloom +* ...... RedisBloom 提供了多种语言的客户端支持,包括:Python、Java、JavaScript 和 PHP。 -#### 6.2 使用Docker安装 +### 使用 Docker 安装 -如果我们需要体验 Redis 中的布隆过滤器非常简单,通过 Docker 就可以了!我们直接在 Google 搜索 **docker redis bloomfilter** 然后在排除广告的第一条搜素结果就找到了我们想要的答案(这是我平常解决问题的一种方式,分享一下),具体地址:https://hub.docker.com/r/redislabs/rebloom/ (介绍的很详细 )。 +如果我们需要体验 Redis 中的布隆过滤器非常简单,通过 Docker 就可以了!我们直接在 Google 搜索 **docker redis bloomfilter** 然后在排除广告的第一条搜素结果就找到了我们想要的答案(这是我平常解决问题的一种方式,分享一下),具体地址:https://hub.docker.com/r/redislabs/rebloom/ (介绍的很详细 )。 **具体操作如下:** @@ -252,35 +262,35 @@ RedisBloom 提供了多种语言的客户端支持,包括:Python、Java、Ja ➜ ~ docker run -p 6379:6379 --name redis-redisbloom redislabs/rebloom:latest ➜ ~ docker exec -it redis-redisbloom bash root@21396d02c252:/data# redis-cli -127.0.0.1:6379> +127.0.0.1:6379> ``` -#### 6.3常用命令一览 +### 常用命令一览 -> 注意: key : 布隆过滤器的名称,item : 添加的元素。 +> 注意: key : 布隆过滤器的名称,item : 添加的元素。 -1. **`BF.ADD `**:将元素添加到布隆过滤器中,如果该过滤器尚不存在,则创建该过滤器。格式:`BF.ADD {key} {item}`。 -2. **`BF.MADD `** : 将一个或多个元素添加到“布隆过滤器”中,并创建一个尚不存在的过滤器。该命令的操作方式`BF.ADD`与之相同,只不过它允许多个输入并返回多个值。格式:`BF.MADD {key} {item} [item ...]` 。 -3. **`BF.EXISTS` ** : 确定元素是否在布隆过滤器中存在。格式:`BF.EXISTS {key} {item}`。 +1. **`BF.ADD`**:将元素添加到布隆过滤器中,如果该过滤器尚不存在,则创建该过滤器。格式:`BF.ADD {key} {item}`。 +2. **`BF.MADD`** : 将一个或多个元素添加到“布隆过滤器”中,并创建一个尚不存在的过滤器。该命令的操作方式`BF.ADD`与之相同,只不过它允许多个输入并返回多个值。格式:`BF.MADD {key} {item} [item ...]` 。 +3. **`BF.EXISTS`** : 确定元素是否在布隆过滤器中存在。格式:`BF.EXISTS {key} {item}`。 4. **`BF.MEXISTS`** : 确定一个或者多个元素是否在布隆过滤器中存在格式:`BF.MEXISTS {key} {item} [item ...]`。 -另外,`BF.RESERVE` 命令需要单独介绍一下: +另外, `BF. RESERVE` 命令需要单独介绍一下: 这个命令的格式如下: -`BF.RESERVE {key} {error_rate} {capacity} [EXPANSION expansion] `。 +`BF. RESERVE {key} {error_rate} {capacity} [EXPANSION expansion]` 。 下面简单介绍一下每个参数的具体含义: 1. key:布隆过滤器的名称 -2. error_rate :误报的期望概率。这应该是介于0到1之间的十进制值。例如,对于期望的误报率0.1%(1000中为1),error_rate应该设置为0.001。该数字越接近零,则每个项目的内存消耗越大,并且每个操作的CPU使用率越高。 -3. capacity: 过滤器的容量。当实际存储的元素个数超过这个值之后,性能将开始下降。实际的降级将取决于超出限制的程度。随着过滤器元素数量呈指数增长,性能将线性下降。 +2. error_rate : 期望的误报率。该值必须介于 0 到 1 之间。例如,对于期望的误报率 0.1%(1000 中为 1),error_rate 应该设置为 0.001。该数字越接近零,则每个项目的内存消耗越大,并且每个操作的 CPU 使用率越高。 +3. capacity: 过滤器的容量。当实际存储的元素个数超过这个值之后,性能将开始下降。实际的降级将取决于超出限制的程度。随着过滤器元素数量呈指数增长,性能将线性下降。 可选参数: -- expansion:如果创建了一个新的子过滤器,则其大小将是当前过滤器的大小乘以`expansion`。默认扩展值为2。这意味着每个后续子过滤器将是前一个子过滤器的两倍。 +* expansion:如果创建了一个新的子过滤器,则其大小将是当前过滤器的大小乘以`expansion`。默认扩展值为 2。这意味着每个后续子过滤器将是前一个子过滤器的两倍。 -#### 6.4实际使用 +### 实际使用 ```shell 127.0.0.1:6379> BF.ADD myFilter java @@ -294,4 +304,3 @@ root@21396d02c252:/data# redis-cli 127.0.0.1:6379> BF.EXISTS myFilter github (integer) 0 ``` - diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\233\276.png" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\345\233\276.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\233\276.png" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\345\233\276.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2421.drawio" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2421.drawio" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2421.drawio" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2421.drawio" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2421.png" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2421.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2421.png" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2421.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2422.drawio" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2422.drawio" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2422.drawio" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2422.drawio" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2422.png" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2422.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2422.png" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2422.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2423.drawio" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2423.drawio" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2423.drawio" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2423.drawio" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2423.png" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2423.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2423.png" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2423.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2424.drawio" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2424.drawio" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2424.drawio" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2424.drawio" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2424.png" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2424.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2424.png" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2424.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2425.drawio" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2425.drawio" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2425.drawio" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2425.drawio" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2425.png" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2425.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2425.png" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2425.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2426.drawio" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2426.drawio" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2426.drawio" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2426.drawio" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2426.png" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2426.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2426.png" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2426.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\242\345\233\276\347\244\272.drawio" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\242\345\233\276\347\244\272.drawio" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\242\345\233\276\347\244\272.drawio" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\242\345\233\276\347\244\272.drawio" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\242\345\233\276\347\244\272.png" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\242\345\233\276\347\244\272.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\242\345\233\276\347\244\272.png" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\345\271\277\345\272\246\344\274\230\345\205\210\346\220\234\347\264\242\345\233\276\347\244\272.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\227\240\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\347\237\251\351\230\265\345\255\230\345\202\250.drawio" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\227\240\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\347\237\251\351\230\265\345\255\230\345\202\250.drawio" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\227\240\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\347\237\251\351\230\265\345\255\230\345\202\250.drawio" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\227\240\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\347\237\251\351\230\265\345\255\230\345\202\250.drawio" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\227\240\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\347\237\251\351\230\265\345\255\230\345\202\250.png" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\227\240\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\347\237\251\351\230\265\345\255\230\345\202\250.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\227\240\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\347\237\251\351\230\265\345\255\230\345\202\250.png" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\227\240\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\347\237\251\351\230\265\345\255\230\345\202\250.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\227\240\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\350\241\250\345\255\230\345\202\250.drawio" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\227\240\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\350\241\250\345\255\230\345\202\250.drawio" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\227\240\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\350\241\250\345\255\230\345\202\250.drawio" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\227\240\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\350\241\250\345\255\230\345\202\250.drawio" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\227\240\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\350\241\250\345\255\230\345\202\250.png" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\227\240\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\350\241\250\345\255\230\345\202\250.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\227\240\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\350\241\250\345\255\230\345\202\250.png" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\227\240\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\350\241\250\345\255\230\345\202\250.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\234\211\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\347\237\251\351\230\265\345\255\230\345\202\250.drawio" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\234\211\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\347\237\251\351\230\265\345\255\230\345\202\250.drawio" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\234\211\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\347\237\251\351\230\265\345\255\230\345\202\250.drawio" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\234\211\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\347\237\251\351\230\265\345\255\230\345\202\250.drawio" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\234\211\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\347\237\251\351\230\265\345\255\230\345\202\250.png" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\234\211\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\347\237\251\351\230\265\345\255\230\345\202\250.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\234\211\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\347\237\251\351\230\265\345\255\230\345\202\250.png" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\234\211\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\347\237\251\351\230\265\345\255\230\345\202\250.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\234\211\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\347\237\251\351\230\265\345\255\230\345\202\250\347\232\204\345\211\257\346\234\254.drawio" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\234\211\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\347\237\251\351\230\265\345\255\230\345\202\250\347\232\204\345\211\257\346\234\254.drawio" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\234\211\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\347\237\251\351\230\265\345\255\230\345\202\250\347\232\204\345\211\257\346\234\254.drawio" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\234\211\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\347\237\251\351\230\265\345\255\230\345\202\250\347\232\204\345\211\257\346\234\254.drawio" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\234\211\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\350\241\250\345\255\230\345\202\250.drawio" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\234\211\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\350\241\250\345\255\230\345\202\250.drawio" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\234\211\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\350\241\250\345\255\230\345\202\250.drawio" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\234\211\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\350\241\250\345\255\230\345\202\250.drawio" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\234\211\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\350\241\250\345\255\230\345\202\250.png" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\234\211\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\350\241\250\345\255\230\345\202\250.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\234\211\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\350\241\250\345\255\230\345\202\250.png" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\234\211\345\220\221\345\233\276\347\232\204\351\202\273\346\216\245\350\241\250\345\255\230\345\202\250.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2421.drawio" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2421.drawio" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2421.drawio" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2421.drawio" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2421.png" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2421.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2421.png" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2421.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2422.drawio" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2422.drawio" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2422.drawio" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2422.drawio" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2422.png" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2422.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2422.png" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2422.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2423.drawio" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2423.drawio" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2423.drawio" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2423.drawio" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2423.png" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2423.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2423.png" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2423.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2424.drawio" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2424.drawio" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2424.drawio" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2424.drawio" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2424.png" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2424.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2424.png" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2424.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2425.drawio" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2425.drawio" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2425.drawio" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2425.drawio" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2425.png" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2425.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2425.png" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2425.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2426.drawio" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2426.drawio" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2426.drawio" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2426.drawio" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2426.png" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2426.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2426.png" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\2426.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\242\345\233\276\347\244\272.drawio" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\242\345\233\276\347\244\272.drawio" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\242\345\233\276\347\244\272.drawio" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\242\345\233\276\347\244\272.drawio" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\242\345\233\276\347\244\272.png" "b/docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\242\345\233\276\347\244\272.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\242\345\233\276\347\244\272.png" rename to "docs/cs-basics/data-structure/pictures/\345\233\276/\346\267\261\345\272\246\344\274\230\345\205\210\346\220\234\347\264\242\345\233\276\347\244\272.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2401.png" "b/docs/cs-basics/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2401.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2401.png" rename to "docs/cs-basics/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2401.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2402.png" "b/docs/cs-basics/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2402.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2402.png" rename to "docs/cs-basics/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2402.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2403.png" "b/docs/cs-basics/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2403.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2403.png" rename to "docs/cs-basics/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2403.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2404.png" "b/docs/cs-basics/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2404.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2404.png" rename to "docs/cs-basics/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2404.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2405.png" "b/docs/cs-basics/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2405.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2405.png" rename to "docs/cs-basics/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2405.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2406.png" "b/docs/cs-basics/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2406.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2406.png" rename to "docs/cs-basics/data-structure/pictures/\345\240\206/\345\210\240\351\231\244\345\240\206\351\241\266\345\205\203\347\264\2406.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\206-\346\217\222\345\205\245\345\205\203\347\264\2401.png" "b/docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\206-\346\217\222\345\205\245\345\205\203\347\264\2401.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\206-\346\217\222\345\205\245\345\205\203\347\264\2401.png" rename to "docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\206-\346\217\222\345\205\245\345\205\203\347\264\2401.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\206-\346\217\222\345\205\245\345\205\203\347\264\2402.png" "b/docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\206-\346\217\222\345\205\245\345\205\203\347\264\2402.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\206-\346\217\222\345\205\245\345\205\203\347\264\2402.png" rename to "docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\206-\346\217\222\345\205\245\345\205\203\347\264\2402.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\206-\346\217\222\345\205\245\345\205\203\347\264\2403.png" "b/docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\206-\346\217\222\345\205\245\345\205\203\347\264\2403.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\206-\346\217\222\345\205\245\345\205\203\347\264\2403.png" rename to "docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\206-\346\217\222\345\205\245\345\205\203\347\264\2403.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\2061.png" "b/docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\2061.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\2061.png" rename to "docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\2061.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\2062.png" "b/docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\2062.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\2062.png" rename to "docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\2062.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2171.png" "b/docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2171.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2171.png" rename to "docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2171.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2172.png" "b/docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2172.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2172.png" rename to "docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2172.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2173.png" "b/docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2173.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2173.png" rename to "docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2173.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2174.png" "b/docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2174.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2174.png" rename to "docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2174.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2175.png" "b/docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2175.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2175.png" rename to "docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2175.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2176.png" "b/docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2176.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2176.png" rename to "docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\206\346\216\222\345\272\2176.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\206\347\232\204\345\255\230\345\202\250.png" "b/docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\206\347\232\204\345\255\230\345\202\250.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\240\206\347\232\204\345\255\230\345\202\250.png" rename to "docs/cs-basics/data-structure/pictures/\345\240\206/\345\240\206\347\232\204\345\255\230\345\202\250.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\273\272\345\240\2061.png" "b/docs/cs-basics/data-structure/pictures/\345\240\206/\345\273\272\345\240\2061.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\273\272\345\240\2061.png" rename to "docs/cs-basics/data-structure/pictures/\345\240\206/\345\273\272\345\240\2061.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\273\272\345\240\2062.png" "b/docs/cs-basics/data-structure/pictures/\345\240\206/\345\273\272\345\240\2062.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\273\272\345\240\2062.png" rename to "docs/cs-basics/data-structure/pictures/\345\240\206/\345\273\272\345\240\2062.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\273\272\345\240\2063.png" "b/docs/cs-basics/data-structure/pictures/\345\240\206/\345\273\272\345\240\2063.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\273\272\345\240\2063.png" rename to "docs/cs-basics/data-structure/pictures/\345\240\206/\345\273\272\345\240\2063.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\273\272\345\240\2064.png" "b/docs/cs-basics/data-structure/pictures/\345\240\206/\345\273\272\345\240\2064.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\345\240\206/\345\273\272\345\240\2064.png" rename to "docs/cs-basics/data-structure/pictures/\345\240\206/\345\273\272\345\240\2064.png" diff --git "a/docs/cs-basics/data-structure/pictures/\346\240\221/\344\270\255\345\272\217\351\201\215\345\216\206.drawio" "b/docs/cs-basics/data-structure/pictures/\346\240\221/\344\270\255\345\272\217\351\201\215\345\216\206.drawio" new file mode 100644 index 00000000000..f8fe81d2c06 --- /dev/null +++ "b/docs/cs-basics/data-structure/pictures/\346\240\221/\344\270\255\345\272\217\351\201\215\345\216\206.drawio" @@ -0,0 +1 @@ +7Vtbk6I4FP41eZwukgBJHr1g727tVk1VV+30PNKSVmbQuIit7q/fBAISBLVbFHfa8sHkJORyzpcv5xwR4MFs8xj7i+lfIuARQFawAXgIEILQcuWXkmwzCWMkE0ziMNCddoKn8F+uhZaWrsKAL42OiRBREi5M4VjM53ycGDI/jsXa7PYqInPWhT/he4KnsR/tS7+FQTLNpBSRnfw3Hk6m+czQZVnLzM87650sp34g1iUR9gAexEIkWWm2GfBIKS/XS/bcqKG1WFjM58kpD6yenT8ev/39O3VCf/C2ZpuF7X/Ro7z50UpvGCA3kuP1X9SSk63Wg/vPSq2z/yrmyZdlaqWe7ICcxWbXKEsT9d3Lx5CLecmFWgnFiEiuThpRVvrraZjwp4U/Vi1riSMpmyazSNagLPrLRWbZ13DDA7WIMIoGIhJxOhB+feXueCzlyyQWP3mpJSDsxbKKyd94nPBNo/pgYRSJZi5mPIm3sot+gGBtRw1kzHR9XYKFFk1LiMhlvgbipBh5ZytZ0OZ6h+lQjemqKp4HPXUGZG0u5txUq9x3vH0uV76XK0O1b6uobXUtm4MHe6emoke5DrGKx/zABrA+zn484ckxjO7bpaR3p0bvuSzmkZ+Eb+Zy64yhZ/gqQrmRndktYpidWBV7ZtvUT5WPX3Ug5jwgaiMCkU1sN1+JHtYm1GzF5iyZkvZmSYFT6OTjWMKNNLBc+POPM0GJTDLBoJ4aClk23a/BGJSajGF3zRj2tazc/0RWdq0bs7JzLSsPP5GVHWRa2SEdW9m9lpUfP5GVmXtjVibn+nibMHkulb/nPp0s7xw8Vcn9u8IrLCpX9grt/4NX6FaAQuAHvUKKqIk4hq7q+NFzAVYbRFhH4JLD0irBEh6EZQcAc7oEGKneN+yjYYdDD4UdrNOwg52JvhZR4Z6ICtwlKiiCDy7GDrapdEgQNI3pUPjAIGO27AZtNw9c301J2D2AGIdada1XAkxOs5d3e7xP5Pa49MbcHliXljzX7zl8wdT7Pccusi78HqvelldyfMw8FWQmcCB8INAhiBIHOZhWhj/5zrJqh8nvLFq7hGsxEGpkIEU0LTKQfYSBsukaGEiSQWIeCZNB9JEp040W+VE4mcvqWCKYS3lfUUs49qOebpiFQRA1cVssVvNAMdmwLW5ilfSKtc9Ndg3e0cW4qTlX2jIA0B0AilOcyuXUOQCa06gtA8C9AyD1R28NAM0Z1pYBAO8ASC/8CgBo1wBw971R6QI+6arWoqkHESdTMRFzP/pTiIU2yA+eJFv9zoO/SkRDbsV6cDpKxuVvXHwwGXeys3meOeqypBcJCkefKCik1q0Fha3lKt+V2n5/Cr3N80dOPICdpqWgZQZsxIwKXYjrWt8bFbKDmUwJzy7zUnWZzIu4BM7dJZAthNyYS5APfHkAkDsAFBlUg4LOAdD8JmXLAMB3AKhLxb41ADQnBs/zQod9rzcalF/DOOhm/jIWJpXf2N3OLYz3/c1LhH35j+NZ1HdtlzPH8VGXM+vYVdCHarJwngP6Huh5wLOBjNV6EHguYBZgA+AhQNOCycnjInbanToZXzGG8f5BfAyT6epFjUk9wCjwGKAEMDkLVZOq6RxAKWCoiY31KoYFp8en0AK0a+8FORnrA+apQs8GdNjKJr8OR0dXL/crNSA9EbXfEWCuXotUvlIFAT1c0glRBUZSWwxAv5d2HqUFojrkx/rmOCzyX3jU98c/J6m8OrlUjT7D0Nb1UijeTz8theLQZEIb7zNhQXtnUqGs7v6SkoVHuz/2YO8/ \ No newline at end of file diff --git "a/docs/cs-basics/data-structure/pictures/\346\240\221/\344\270\255\345\272\217\351\201\215\345\216\206.png" "b/docs/cs-basics/data-structure/pictures/\346\240\221/\344\270\255\345\272\217\351\201\215\345\216\206.png" new file mode 100644 index 00000000000..3ad5782c8bd Binary files /dev/null and "b/docs/cs-basics/data-structure/pictures/\346\240\221/\344\270\255\345\272\217\351\201\215\345\216\206.png" differ diff --git "a/docs/cs-basics/data-structure/pictures/\346\240\221/\344\270\255\345\272\217\351\201\215\345\216\2062.drawio" "b/docs/cs-basics/data-structure/pictures/\346\240\221/\344\270\255\345\272\217\351\201\215\345\216\2062.drawio" new file mode 100644 index 00000000000..31e3097a914 --- /dev/null +++ "b/docs/cs-basics/data-structure/pictures/\346\240\221/\344\270\255\345\272\217\351\201\215\345\216\2062.drawio" @@ -0,0 +1 @@ +5ZhNc5swEIZ/jY/uYLDBHGPsuIdmpmMfmhxlkEGtYKkQBvLrK1niq46bJm0Zpj6hfSWtpH12NSMmlheXW4bS6AECTCemEZQTaz0xzdnMsMVHKpVSXNdRQshIoAe1wp48Yy0aWs1JgLPeQA5AOUn7og9Jgn3e0xBjUPSHHYH2V01RiC+EvY/opfqFBDxS6tJ0Wv0jJmFUrzyzXdUTo3qwPkkWoQCKjmRtJpbHALhqxaWHqQxeHRc17/5Kb7MxhhP+OxN22UPg7CLH2z06MV1Pt0bxPNVeTojm+sAT06bC3+ogt8wrHQf7ey73uTpCwqfZmdKdGGAu0rLtFK1Qfu9qH2Izh1rUQWg8mmJ3AqIwVkVEON6nyJc9hcgjoUU8psKaiSbKUkX2SEocyE0QSj2gwM6OrOMR274v9Iwz+IY7PYHjHgyjWfyEGcfl1fDNGigimzHEmLNKDNET7DojdSLPa7vopIWWok5G1BrSiRg2nltWoqFxvQGdeRVdlqLk/fQ6CaAE72WcjaaW+z8oO+7IKFtDUV7dEOW5NTLK86Eor2+IsjUfGeXFUJS3N0R56bjjomwPRXlzQ5QX5shq2bmMaCAeDtpMIJGhZZAngQzaWoYBGI8ghATRTwCpDu9XzHmlnz0o59APvogOqx7l/A+L2nzq9q1L7VxZlbbey0ie4deExJEhZz5+/U3BEQsxf23cJXGGKeLk1N/HX+e3HKpK72+oSh1jZFXqDlOlJeGdIhXWU12Vot2WqDT+fYX+QUXpqZ+BCI/ty/enu7e5i2sX6kbQs7p/IN7qSF0ZF47O6JvzvJQNwmx/pKjh7e8oa/MD \ No newline at end of file diff --git "a/docs/cs-basics/data-structure/pictures/\346\240\221/\344\270\255\345\272\217\351\201\215\345\216\2062.png" "b/docs/cs-basics/data-structure/pictures/\346\240\221/\344\270\255\345\272\217\351\201\215\345\216\2062.png" new file mode 100644 index 00000000000..fe6956b9d09 Binary files /dev/null and "b/docs/cs-basics/data-structure/pictures/\346\240\221/\344\270\255\345\272\217\351\201\215\345\216\2062.png" differ diff --git "a/docs/cs-basics/data-structure/pictures/\346\240\221/\345\205\210\345\272\217\351\201\215\345\216\206.drawio" "b/docs/cs-basics/data-structure/pictures/\346\240\221/\345\205\210\345\272\217\351\201\215\345\216\206.drawio" new file mode 100644 index 00000000000..b92e5c29cc9 --- /dev/null +++ "b/docs/cs-basics/data-structure/pictures/\346\240\221/\345\205\210\345\272\217\351\201\215\345\216\206.drawio" @@ -0,0 +1 @@ +7Vtbk6I4FP41eZwuIDfyKIq9D7tVU9u1tTOPKGllGo2L2Or8+k0kIEFQ2xvOtOWDyUnI5ZwvJ985IoDdyeo5CWbjv0TIY+BY4QrAHnAc27aI/FKSdSZhjGaCURKFutNW8BL95FpoaekiCvnc6JgKEafRzBQOxXTKh6khC5JELM1uryI2Z50FI74jeBkG8a703yhMx5nUdehW/gePRuN8ZpuwrGUS5J31TubjIBTLkgj6AHYTIdKsNFl1eayUl+sle67f0FosLOHT9JgHEuvvH2+rZPbTI6O56/T+WTrPX/Qo70G80BsGDonleN5ALTldaz2Q/xZqnd6rmKZf5hsrdWQHB89W20ZZGqnvTj6GXMwgF2olFCM6cnXSiLLiLcdRyl9mwVC1LCWOpGycTmJZs2UxmM8yy75GKx6qRURx3BWxSDYDwddXToZDKZ+niXjjpZaQsoFlFZO/8yTlq0b12YVRJJq5mPA0Wcsu+gGCtB01kCHW9WUJFlo0LiEilwUaiKNi5K2tZEGb6wOmc2pMV1XxNOyoMyBrUzHlplrlvpP1t3Lle7nSU/u2itpa17I5eLhzaip6lOsQi2TI92wA6uMcJCOeHsLorl1Kesc1es9lCY+DNHo3l1tnDD3DVxHJjWzNblPD7IRU7JltUz9VPn6VgaiFnxwXOdR2EEUkX4keFkHXbIXmLJmSdmbZAKfQyelYgo1uYD4Lpqd7gpIzyQTdetdQyLLpfg+PQZnpMVDbHgPdysreJ7Iytu/MyvhWVu59IisjaFoZw5atTG5l5edPZGWX3pmV6bkcbxWl30rl7zmnk+UtwVOVnN8VrLCo3JgVol+BFeIKUAg9lRVC10Qcdm5K/NxzAVYbRFgH4JLD0irB0t4LyxYAhtsEGKneN/hEgBHi7gs7cKthBzsTfRdEBTkSFbBNVFBoPxEIMUQulhe4bRoTI/uJ2YwhV7YgYtETXRIiexCDkVXXeiPA5Fz7+rTH/0S0B7M7oz12XVryXN6z/4Kp5z2HLrI2eI9Vb8sbER/XuDBsZl4n1H6iNqaSSGOJIrcy/NF3ll07TD4Jql3CrTyQ0+iBlKO5oAeyD3igbLoGDySdQWoeCdOD6CNTdjdaFMTRaCqrQ4lgLuWeci3RMIg7umEShWHc5NsSsZiGypP1LpV2typpd7Lrm1AN3p2r+abmXOmFAeA8AKCMS0wAoNYB0JxGvTAA8AMAGz56bwBozrBeGADwAQDl8qv0FLUNALLLRiUFfNFVrUVTDyJJx2IkpkH8pxAzbZAfPE3X+p2HYJGKhtyK9YRbSsblb1ycmIw7mmyeZ466LOlVgsL+JwoKqX1vQeHFcpUfSm1/PIV+yfNHjzyAraalmBmvUTMoxBTWtX40KHT3JjIlOttMS9UlMq/CCMiDEcgW4t4ZI8gHvj4A6AMAyhmgewNA84uUFwYAegAAlH4PuxsANOcFzyOhHa/nd/vltzD2sszfxsKk+hN76xaGu3TzGlFf/tt4FvTdmnHmOD7IOLOObcV8Tk0SzsfA80HHBz4CMlTr2MAngFmAdYHvAHdTMH3ysAidtqdOhleMQbh7EJ+jdLwYqDFdHzAX+Ay4FDA5i6smVdNh4LqAOU3eWK+iV/j05Bi3YKPae0FOxjzAfFXoIOD2LrLJr73+wdXL/UoNSCai9tsHjOi1SOUrVVDQgSWdUFVgdGOLLvA6m879TYGqDjmVuzsfFgcDHnvB8G20kVcnl6rRZ9hGul6KxL3N50KReOVdkCIfVvKEhds70xXK6vYfKVl4tP1fD/T/Bw== \ No newline at end of file diff --git "a/docs/cs-basics/data-structure/pictures/\346\240\221/\345\205\210\345\272\217\351\201\215\345\216\206.png" "b/docs/cs-basics/data-structure/pictures/\346\240\221/\345\205\210\345\272\217\351\201\215\345\216\206.png" new file mode 100644 index 00000000000..5c80cedf7d6 Binary files /dev/null and "b/docs/cs-basics/data-structure/pictures/\346\240\221/\345\205\210\345\272\217\351\201\215\345\216\206.png" differ diff --git "a/docs/cs-basics/data-structure/pictures/\346\240\221/\345\220\216\345\272\217\351\201\215\345\216\206.drawio" "b/docs/cs-basics/data-structure/pictures/\346\240\221/\345\220\216\345\272\217\351\201\215\345\216\206.drawio" new file mode 100644 index 00000000000..c324e801447 --- /dev/null +++ "b/docs/cs-basics/data-structure/pictures/\346\240\221/\345\220\216\345\272\217\351\201\215\345\216\206.drawio" @@ -0,0 +1 @@ +7VvLluI2EP0aLacPlqzXEoPpLJKcySHJPHZurAZnDCLGdEN/fSQsGwtsoHmZTHNYIJVkPaqurqoKA1BnvHhMgunoNxmKGMBWuACoCyB0nBZRX1qyzCSc00wwTKLQdFoL+tGbMMKWkc6jUMysjqmUcRpNbeFATiZikFqyIEnkq93tWcb2rNNgKLYE/UEQb0u/RGE6yqQM0rX8FxENR/nMDuFZyzjIO5udzEZBKF9LIuQD1EmkTLPSeNERsVZerpfsuV5Na7GwREzSQx6I2vhvtYG/fv/jz7cvuP+9P38bfTKjvATx3GwYQBKr8bwnveR0afRA/p3rdXrPcpJ+mq2s1FYdIJ4u1o2qNNTf7XwMtZinXGiUUIwI1eqUEVXFex1FqehPg4FueVU4UrJROo5VzVHFYDbNLPscLUSoFxHFcUfGMlkNhJ6fBRkMlHyWJvKHKLWElD+1WsXkLyJJxaJWfU5hFIVmIcciTZaqi3mA5HY0QIbU1F9LsDCiUQkRuSwwQBwWI69tpQrGXO8wHaww3aaKJ2FbnwFVm8iJsNWq9p0sv5Yr38qVrt53q6gtTS2bQ4Rbp2ZDj2odcp4MxI4NIHOcg2Qo0n0Y3bZLSe+4Qu+5LBFxkEYv9nKrjGFm+CwjtZHC7DjnK2N2vGnPbJvmqfLx2xiIMPwAmQupA13qknwlZliEmd2K7FkyJW3NsgJOoZPjsYRqaWA2DSbHM0GJTDJBp5oaClk23c/BGJTajIGaZgz3Wlb2PpCVXX5jVsbXsnL3I1nZsa3s4oatTK5l5ccPZGWGb8zK9FQfbxGlX0vlb7lPp8prB09Xcv+u8AqLypW9Qvd/4RVuAAXzI71C6jAbcRRe1fFjpwKsMoho7YFLDstWCZbOTlg2ADDcJMDI5n1Djw07XLYr7KCNhh38RPSdERXkQFSgJlFBHeeBIISRy7C6wB3bmC5xHrjDuctUi0ta9EhKgmQHYtS4TSImPxaX93v8D+T3YHpjfo9TlZc81fHZfcNUOz77brImHJ9WtS2v5PkQ68ZwuH2fcOeBOphCRjHEiG0MfygF4eph8kmql3AtBoK1DKSJ5owMRPcwUDZdDQMpMkjtI2EziDkyZboxoiCOhhNVHSgECyX3NLVEgyBum4ZxFIZxHbclcj4JNZN1z8VNzOamgnRKeHcr8A4vxk31ydIzAwDdAaCN69oAQI0DoD6PemYAkDsAVg7prQGgPsV6ZgA4dwCAUkp9HYM0DACy7Y0qF7BvqkaLth5kko7kUE6C+Fcpp8Yg/4g0XZqXHoJ5KmuSK60H3FA2Ln/l4shs3MHO5mnmqEqTXiQo7H2goJDwWwsKz5asfFdu+/059HOeP3rgAWw0L8XseI3aQaHLkdXKjkxMsZ2pTAXPRhNTVbnMi/gE7t0n0OxEbswnyAe+PADwHQCaDeCtAaD+XcozAwDeAaDvLnRrAKjPDJ7mhnZ9r/fYKb9Vu9PP/GksTDZ/ZW/cwmjb4bxE3Jf/PJ6Ffdf2OXMc7/U5s45NRX2wIg3nY+D5oO0D3wUqWGs7wCdAxTG8A3wI2Kpgc/KgCJ7Wp04FWJwjtH0QH6N0NH/SYzIfcAZ8DpQzy9UsTE+qp8OAMcBhHRubVXQLTk8OoQXHrbwX1GTcA9zXhbYLWPcsm/zc7e1dvdqv0oBHV/vtAU7MWpTytSooaKOSTqgucLqyRQd47VXn3qpAdYc8Yrw5DouDJxF7weDHcCXfnFypxpxhxzX1UizurT6XicUR3GbCgvZOpEJVXf8pJQuP1n/tQf5/ \ No newline at end of file diff --git "a/docs/cs-basics/data-structure/pictures/\346\240\221/\345\220\216\345\272\217\351\201\215\345\216\206.png" "b/docs/cs-basics/data-structure/pictures/\346\240\221/\345\220\216\345\272\217\351\201\215\345\216\206.png" new file mode 100644 index 00000000000..87bf512ec50 Binary files /dev/null and "b/docs/cs-basics/data-structure/pictures/\346\240\221/\345\220\216\345\272\217\351\201\215\345\216\206.png" differ diff --git "a/docs/cs-basics/data-structure/pictures/\346\240\221/\345\256\214\345\205\250\344\272\214\345\217\211\346\240\221.drawio" "b/docs/cs-basics/data-structure/pictures/\346\240\221/\345\256\214\345\205\250\344\272\214\345\217\211\346\240\221.drawio" new file mode 100644 index 00000000000..107a75dd043 --- /dev/null +++ "b/docs/cs-basics/data-structure/pictures/\346\240\221/\345\256\214\345\205\250\344\272\214\345\217\211\346\240\221.drawio" @@ -0,0 +1 @@ +5VpLc+I4EP41OoaynpaOPJzsZatSNYedOW0ZWwHvGMwYM8D8+m3bsrGMCQwhhAyVQ9QtoUf3p+5PDYgOZ5un1F9M/05CHSPihBtER4gQjB0B/3LNttRIRUrFJI1CM2in+BL90kbpGO0qCvXSGpglSZxFC1sZJPO5DjJL56dpsraHvSSxverCn+g9xZfAj/e1/0RhNjWnIO5O/5eOJtNqZSxU2TPzq8HmJMupHybrhop6iA7TJMnK1mwz1HFuvMou5eceD/TWG0v1PDvlA5GOgn9/JWv68PTfdumwH6Px8sHM8tOPV+bAiIgY5huMoTHJG/Dfny2gMR8vF6VcDHhJYF04VrY1thI/VknV8bAsPNmHAYQvNrvOalanmgY2XM5Ur1apGzsg1kIEDgb+B2GwnkaZ/rLwg7xnDRAE3TSbxSBhaPrLRQmKl2ijw3xvURwPkzhJi4noy4sWQQD6ZZYm33WjJ3TV2HHqxZtmrmym00xvGipj9iedzHSWbmGI6aXCQMDcAVLJ6waijGraAFOl8w2GJ/XMOzdDw3j6N7xOOrzeNvE87OfXB6R5Mte2WcEU6fZrU/jWFEb5uZ1a2hrpgrZfJqs00K+ckJpQ4acTnR3Hvw6tKLDvyYaneIenKl2qYz+Lftqxo8t9ZoXnJCouUQUUZgOF8xYCynObTzXvensi1ZrIaU1UGmZvogJN9bHPBxg9KaxcIIyQOwojTArLqZR/cBhhB728XPjz8526hxXc7c5aVy73Z3iZUOe2vMyvdZfpHd1lzG0vM/rBXhbX8jK/Iy8zzG7Ly+5bid8myr422t8qogftHevLhYr01VSxFm6NKrI/gyqKM6kid6SNUUauShXlWyHZ+RZxjgCsArLTADJ+Fci3CEl+W5Bs57SzXy9S9ohkxMWEuUwQTFuMqLv7SoBVlwLszUZEcSL86E3Bj1PVE5RyyiQH8oGxDUasegorxST0MOG450GTMfsNxtl1H9ZVWfT931zsjt5cFN8YG8ddddm3ErXX81t3WDqWR28xK1bOvJG4RB0rXWFlJzMX91zMXSJdDiFMtqY/OWXSzmmqRVjnFq4Vs8jBmHXht6W4o7clF7cWs7qKvm9n8pcnRjX372GXNx+yPaeWD8RIEJ51GoHBdGp058ez6l58Mp7FlOwpIYjCDgOqJbkNQ+H0uMvyb0g5kVxwcV5A49QmWuzaROtwcfvCQcu9o6DV/lrqo2vb+HBx+8J0Wt4Rna5/8tCuTX2Ym7uq2+e92Xv805SZjhNl1plYTkhd/CMTEJbwlFc113WlXWTnGBK50ygPnZmBsBA9Lg5WoTilPUZ3u7gyp36PSv7VkLkHuONQ5Z8BmZRdBZntcsVe7f+dwSc6wOdxNPBQ30MeQ4NH1MfIEwjSvRoijyBZNGy6FNSI2SVPQJVSlO7n06com67G+ZzSQ0oiTyHpIgWryHzRfDmOpESKHGJTZhejOjOnp2R3zDqzOyymBkh5eaPPkBxd5JDPo8eju4fzggWANObnfURKmL2A8XNTuKhPGzZx84ZyC18M0aBfDH4sGm4+oMq4jagBOT6zQ4V9wU0oaUYDo/LjaDIHMYDrnj+PBjljiAI/7puOWRSG8SEWkyareZhzliLYxP5YxwM/+D4p9O3FwTTmp6KQw0q5EYAGxd+FSoPuccpa851mSCG/T2ZA3P0ctLysux/VUu9/ \ No newline at end of file diff --git "a/docs/cs-basics/data-structure/pictures/\346\240\221/\345\256\214\345\205\250\344\272\214\345\217\211\346\240\221.png" "b/docs/cs-basics/data-structure/pictures/\346\240\221/\345\256\214\345\205\250\344\272\214\345\217\211\346\240\221.png" new file mode 100644 index 00000000000..bc0fe0dce14 Binary files /dev/null and "b/docs/cs-basics/data-structure/pictures/\346\240\221/\345\256\214\345\205\250\344\272\214\345\217\211\346\240\221.png" differ diff --git "a/docs/cs-basics/data-structure/pictures/\346\240\221/\345\271\263\350\241\241\344\272\214\345\217\211\346\240\221.drawio" "b/docs/cs-basics/data-structure/pictures/\346\240\221/\345\271\263\350\241\241\344\272\214\345\217\211\346\240\221.drawio" new file mode 100644 index 00000000000..11133b532ad --- /dev/null +++ "b/docs/cs-basics/data-structure/pictures/\346\240\221/\345\271\263\350\241\241\344\272\214\345\217\211\346\240\221.drawio" @@ -0,0 +1 @@ +7VnJdpswFP0aL+OjiWmZOEm7SIdzsmjSHQbZcAqIynKM+/UVRmIysR2SYKfuCr0r8TTcq6eHGOFJnH3ibhp8YT6NRgj42QhfjxCCEJjykSPrAnEcqwDmPPRVowq4D/9QBQKFLkOfLhoNBWORCNMm6LEkoZ5oYC7nbNVsNmNRs9fUndMt4N5zo230R+iLoEBtZFX4ZxrOA90zNJ2iJnZ1YzWTReD6bFWD8M0ITzhjoijF2YRG+eLpdSneu32mthwYp4k45IU7eumBOPrJb52v09m3AKzusgvl5cmNlmrCI2RG0t/VVBbmeUE+3TiVhWS6SAt702DGZL9yWmKt1sr8vWS64mKxYfJSNkBGmlWV2ivQbuSAC09lbxqujQA1OkJyYpJ/aVytglDQ+9T18pqVlKDEAhFH0oKy6C7SQhSzMKN+PrYwiiYsYnzjCM9m1PQ8iS8EZ79orca3nCkAZedPlAuaPbvysORTbgTKYir4WjZRL2BTSUDtAaTtVU1RCgpqYtKYqzQ8Lz1XNMuCYvoFrKMO1ttLnPiX+faRVsIS2lxWOW++fqgbj3XjOp83KK21svquPfW3tmhr5eXI2ZJ7dMeUsYodLp9TsW9DbDNZY8roYEpjnEauCJ+aw+2iT/XwnYWbTaSFQppCMYyWAoppqrfqe73tyGk5Ai1HxTpsOdqoqZx2f4Hhg8LKG4QRdEZhhLTUUarlWGGEPMvyInWT/qRuaQV201liRXf/BsslXafCsjHUXsZntJcRaLJM0JFZNodi2Tgjlg10Yixbr038slA81MqPOtGT5Srryw2d9JWpYmmcfKpIPmSqaPZMFQ1gNzVK0KCpov1aSXZ+i4A9AtNCBjUhw51C/hCSNI4pSdI+00hPSRJsj5FNkAURsYiJIG5lRN3VAwnWeRfBnnRENA+UHz6q/Bw8NjE2pDzkuYvKm0etRuCMHeg4xEYQEhNYPbXZErmBh/2y1vei7//RRc7oo6t9Q3f0RA12Xcy+NlPbfcB1Z2r7DtIPcSxC0M3+QKma0TivoNM8zUw4tqBhIdsyZDSxW+4PvvGzO93oTnDnEIaKWWiomGWeUcxqXxSVd7xHi1ldt77/Y1b3ddr+mIVON2YRuDOcvE3MImRnYOwds6RZ/XQtmle/rvHNXw== \ No newline at end of file diff --git "a/docs/cs-basics/data-structure/pictures/\346\240\221/\345\271\263\350\241\241\344\272\214\345\217\211\346\240\221.png" "b/docs/cs-basics/data-structure/pictures/\346\240\221/\345\271\263\350\241\241\344\272\214\345\217\211\346\240\221.png" new file mode 100644 index 00000000000..673f3e32beb Binary files /dev/null and "b/docs/cs-basics/data-structure/pictures/\346\240\221/\345\271\263\350\241\241\344\272\214\345\217\211\346\240\221.png" differ diff --git "a/docs/cs-basics/data-structure/pictures/\346\240\221/\346\226\234\346\240\221.drawio" "b/docs/cs-basics/data-structure/pictures/\346\240\221/\346\226\234\346\240\221.drawio" new file mode 100644 index 00000000000..6eeaa610144 --- /dev/null +++ "b/docs/cs-basics/data-structure/pictures/\346\240\221/\346\226\234\346\240\221.drawio" @@ -0,0 +1 @@ +5VhNc9owEP01HMnY+rCtY0LSdibNTKc5NOnN2AJ7KixXiGD667vGsi0bSGlKcTI5sfskrbT73grBCE8WxUcV5smdjLkYIScuRvh6hJDrOh58lMimQhjzK2Cu0thMaoH79Bc3oGPQVRrzZWeillLoNO+CkcwyHukOFiol191pMym6u+bhnO8A91EodtFvaayTCg2Q3+KfeDpP6p1dj1Uji7CebDJZJmEs1xaEb0Z4oqTUlbUoJlyUxavrUq37cGC0OZjimT5mwfT2s7i+U1/V7ePDOLv8TokYj02Up1CsTMIj5AmIdzUFY14a8BkucjCy6TKv/O2EmYR9IS29MbXyfq5kPTBebpm8hAmI5kU7WEd16jBw4CpSs1sNWydAnY0QJAb8g3O1TlLN7/MwKkfWIEHAEr0Q4Llghsu8EsUsLXhcni0VYiKFVNtAeDbjXhQBvtRK/uDWSOyzqeM0mz9xpXlxsPJuwyc0ApcLrtUGppgFxDcSMD2AqPHXlqIMlFhiqrHQaHjeRG5pBsMw/Resoz2s90ucxZdl+4CXyYx3ywp5q82D7TzaznWZt9N4G+O9tPY83mnRXuXh5HKlIv5MytjcHaGac/2nhthl0mKK7mGqxhQXoU6fusfdR5/Z4YtMt01UC4V2hUJxTwFVmmaV3eu9QNTpBiJ9KVV12Am0VVOT9ssFho+6Vk5wjbjv6BqhPXVgPPA1Qg6y/G+k7mgF7afzAPNvm2UP91rXHZhleq5exu+ol323xzIbmGXvXCyT98Qy632f+wOz7A/y8ONFqh8s+9Gy2yWl8yqeiuTIpyJ+VU9FcqqnIjvvUzE4lSQdW5LOkZJ0LUm6b1+SdEhJUoYvPIwpJgGF2991u69Vn10wlzESwAjxHP+FciXBBQoIfIHCz2riod4mqDeKz6plNsj1OqgyvbegTM95VpnBaZRJn1Um/k/KBLf9D7Ga3v4Ti29+Aw== \ No newline at end of file diff --git "a/docs/cs-basics/data-structure/pictures/\346\240\221/\346\226\234\346\240\221.png" "b/docs/cs-basics/data-structure/pictures/\346\240\221/\346\226\234\346\240\221.png" new file mode 100644 index 00000000000..af12915808e Binary files /dev/null and "b/docs/cs-basics/data-structure/pictures/\346\240\221/\346\226\234\346\240\221.png" differ diff --git "a/docs/cs-basics/data-structure/pictures/\346\240\221/\346\273\241\344\272\214\345\217\211\346\240\221.drawio" "b/docs/cs-basics/data-structure/pictures/\346\240\221/\346\273\241\344\272\214\345\217\211\346\240\221.drawio" new file mode 100644 index 00000000000..8379028d2a9 --- /dev/null +++ "b/docs/cs-basics/data-structure/pictures/\346\240\221/\346\273\241\344\272\214\345\217\211\346\240\221.drawio" @@ -0,0 +1 @@ +5VnLcpswFP0aL+PRG1gmTpq2M5nJTBZNuiNGNkwxogLHOF9fYSSMME5c2/WjXqF7JK4e5+jqCnp4MCnupZ+GDyLgcQ+BoOjh2x5CEAKmHiUyrxDPcypgLKNAN1oCT9E71yDQ6DQKeGY1zIWI8yi1waFIEj7MLcyXUszsZiMR272m/pivAE9DP15Ff0RBHlaoi5wl/pVH49D0DJlX1Ux801jPJAv9QMwaEL7r4YEUIq9Kk2LA43LxzLpU731ZU1sPTPIk3+SFZ4cW19/kzzALJmPy8P39HlxdaS9vfjzVE+4hFit/N6+qMC4L6ulPUlVIXrO0shcNRkL1q6aVz/Vasd9TYSqusgWT16oBommxrDRegXGjBlx5qnszcGMEyOoIqYkp/pVxMwujnD+l/rCsmSkJKizMJ7GyoCr6WVqJYhQVPCjHFsXxQMRCLhzh0Yiz4VDhWS7FL96oCRzvFYC68zcuc16sXXlY86k2AhcTnsu5aqJfwExLQO8BZOxZQ1EaChtiMpivNTyuPS9pVgXN9F+wjjpYby9xElyX20dZiUi4vaxq3nL+3DRemsZtOW9QW3Ntbbv2PFjZoq2VVyMXUznkH0wZ69jhyzHPP9sQq0w2mKIdTBlM8tjPozd7uF306R4eRbTYREYoxBYKpS0FVNPUbzX3etuR13IEWo6qdVhxtFBTPe3tBYY3Cit7CCPogsIIcZlFKqZHDiNkLctZ6ifbk7qiFdhNZ41V3f0fLCMMTotleqi9jC9oL0Nqs0zwkVlmh2KZXhDLBJLTYtnZNfErovy5UX4xiZ4qL7O+0jBJX50q1sbJp4rkLFNFtmWqSIFra5Sgg6aK7q6S7LyLgE8EZoQMGkKGHwr5LCRJjyrJ9pm29e3FdfvIJciBiDiEIYhbGVF39YEE6+1LsOcTEdmG8sPHlB/FXp9hTDFxqUo+ILTFCL2+Bz2PuKqGMOBsJ01C7DsYJYe9WJvPov/+zkUu6M6F4Yll47Dru+yuidrH51t3WPrsHD2LUxGCbvYPdCwC67iCnn2YObDvQOog16EqhLkt9xsfmbjTjemEdA7hUDFr/XeiPd8t2QXdLSk7tZjV9Qlh90x+/4lRnfv3oUObF9k+qO01MVIZj1xGasG41Nge4xncNKAdNc8intv3GEMeBESlWi61ZchAnzqk/ENKkUsZZdsFNIrtRIvsLdFS5vKna9V8+esa3/0B \ No newline at end of file diff --git "a/docs/cs-basics/data-structure/pictures/\346\240\221/\346\273\241\344\272\214\345\217\211\346\240\221.png" "b/docs/cs-basics/data-structure/pictures/\346\240\221/\346\273\241\344\272\214\345\217\211\346\240\221.png" new file mode 100644 index 00000000000..c0f30c04c56 Binary files /dev/null and "b/docs/cs-basics/data-structure/pictures/\346\240\221/\346\273\241\344\272\214\345\217\211\346\240\221.png" differ diff --git "a/docs/cs-basics/data-structure/pictures/\346\240\221/\351\223\276\345\274\217\345\255\230\345\202\250\344\272\214\345\217\211\346\240\221.drawio" "b/docs/cs-basics/data-structure/pictures/\346\240\221/\351\223\276\345\274\217\345\255\230\345\202\250\344\272\214\345\217\211\346\240\221.drawio" new file mode 100644 index 00000000000..37585459182 --- /dev/null +++ "b/docs/cs-basics/data-structure/pictures/\346\240\221/\351\223\276\345\274\217\345\255\230\345\202\250\344\272\214\345\217\211\346\240\221.drawio" @@ -0,0 +1 @@ +7Zxbb9owFMc/DY+bcg95LPQyaUya2kntHl1iiFcTZ8bc+ul3HBxIloXCgMQPFkjEx5fE/h38z3EMPXc4Wz9wlCXfWIxpz7Hidc+97TmObVsBfEjLZmuJonBrmHISq0J7wxN5x8poKeuCxHheKSgYo4JkVeOYpSkei4oNcc5W1WITRqtnzdAU1wxPY0Tr1mcSi2Rr7Tvh3v4Fk2lSnNkOom3ODBWFVU/mCYrZqmRy73rukDMmtkez9RBTOXjFuGzr3Tfk7i6M41QcU2HgfX9xfi98h44e3r/es+dF9PbJUdcmNkWHcQz9V8mUpfAx4GyRxlg2Y0GKcZGwKUsRHTGWgdEG4y8sxEbRQwvBwJSIGVW5cIV88yLrf/aL5E/VXJ64XVdSG5WaC87e8JBRxvOLcy0rCPw+5ExYKkp2fyhfYN92R/ahcZSUac4WfIwPDU1fuRviUywOFfR2NOFrgNkMQx+gIscUCbKsXglS/jjdldsjgwNF7QSCriF4NkE76JKgZwge/modQbDfJUDfADwboOt0STAwBA/PjcdMop0SDA3BswmWbks7IKjEeonoQp3pFglUwwq30Zk8FOhVmsp0VgkR+ClD+WisIB7JRx5xoXh6EgUECgKRFHNVacwoRdmc5K3lsMYJofEIbdhCFOcpUjmuwqlkbUTJNIXjMVCRTQ6WmAsC4cONypiROM6vc0IoLYF27KF145/hGvJEeH3YOeooVQWvCK9UVOb1VXq1j3HsInBJSvFNaF2JftQIGnolCKKPEN2hdHoM8zrSmLPsR+H+0pAxIoHdLWHA5spWJqQmDJHPCzKT4klR95UJwWYqwdXY7BrNB8YfwBuGaijnCR96M4S0vU/DWxbnwDcFBwB/lG1gNBcrPBfX84pT7p0K1zjSM9xreUbhqqWJYSRhXNJf8rUDtPeXs12BAYgJzcP9BGYAnLbMNPo30xLEoFWGdo3hY35aA/F0iOsqwM6YOkawWxPsMNRNsO36wpNR7JYmhqZQSxvJ9oxknw7V1UyzfaPZl6Ooi2gHRrRbE+3+X6Ltel7Xol1fJjOi3dbM0PCQSRvRri/AGdH+EGqomWhHRrQvR1ET0XbqK2BGtK8l2pF2kfbuQY8R7dZFu+mRmC6i7dQX4Yxofwi1YQbobH53jWhfjqIuol1fAzOifS3R9m3dIm2nvinMiHZbM0PDhlxtRLu+CGdE+0OovmaiHRrRvhxFXUTbbEJrT7SDqCrau1/KdCfaZhdad6Kt+Ta0omEj2qdA1Wwfmmv2oV2Qoiai7dbXwIxoX020tds57pqNaJ2JdtOvtrQRbbMR7T+garYRzTUb0S5I8eqiDcn9nxrkeaW/hnDv/gA= \ No newline at end of file diff --git "a/docs/cs-basics/data-structure/pictures/\346\240\221/\351\223\276\345\274\217\345\255\230\345\202\250\344\272\214\345\217\211\346\240\221.png" "b/docs/cs-basics/data-structure/pictures/\346\240\221/\351\223\276\345\274\217\345\255\230\345\202\250\344\272\214\345\217\211\346\240\221.png" new file mode 100644 index 00000000000..c0ce15b72e4 Binary files /dev/null and "b/docs/cs-basics/data-structure/pictures/\346\240\221/\351\223\276\345\274\217\345\255\230\345\202\250\344\272\214\345\217\211\346\240\221.png" differ diff --git "a/docs/cs-basics/data-structure/pictures/\346\240\221/\351\241\272\345\272\217\345\255\230\345\202\250.drawio" "b/docs/cs-basics/data-structure/pictures/\346\240\221/\351\241\272\345\272\217\345\255\230\345\202\250.drawio" new file mode 100644 index 00000000000..1ddbb02dc6e --- /dev/null +++ "b/docs/cs-basics/data-structure/pictures/\346\240\221/\351\241\272\345\272\217\345\255\230\345\202\250.drawio" @@ -0,0 +1 @@ +7V1dc5s4FP01PDYDSAh49FfSh3amu+nMto8yyDYtRi6WE3t//UogMGCwiSHgjZlkJuiCJXHP0dXVMSgKmKz3TyHerL5Sl/iKrrp7BUwVXdc0FfE/wnKILbZtxoZl6LnyoqPh2fuXSKMqrTvPJdvchYxSn3mbvNGhQUAclrPhMKSv+csW1M+3usFLcmJ4drB/av3Hc9kqtlq6ebR/Jt5ylbSsITs+s8bJxfJOtivs0teMCcwUMAkpZfHRej8hvnBe4pf4c48VZ9OOhSRgdT7w9OMPePm6oQxPv88OwRr9+uvwSY9recH+Tt6woiOf1zeeiy6zg/QD+rMT/RwvaMA+bSOURvwC3djsjyf50VL8HSV18M7ME6N0QlqjznvHQeSF8evKY+R5gx1x5pXziNtWbO3zksYP8XYTI7vw9sQVnfB8f0J9GkYVgcWCIMfh9i0L6W+SOeOa9lxV08ZfSMjIvtJ9WgoKZzOha8LCA79EfsBMcJREBglDXzO0kKZVhhGJDUsiLtOaj1jxAwnXG6ADJdAVXRy4IzEGeCmgAcm7ld93ePiRLfzMFqbivtW0dJCluA3inoyagh95P+gudMiZG4ByOONwSdgljp7ikvG7UeL3xBYSHzPvJd/dMjBkC9+ox28khR0l8UrCjvQCnvFtyk9lh1+hItMyHnQL6qamQxOipCcJm2wrfxbkW4mddNJKRJzUJ9dzCVaGge0GB9dHgkwwiQ2T8tCQ2uLmPkbEsMx8xIB9RwyjK5THd4SyYd8YyqgrlKf3hLJWQNnuGWWzK5Sf7ghl27gxlK2mOd7eYz8yxz+TnI4fHxM8UUjyuzQrTAsdZ4XG/yIrLBAFgSuzQkuzchUZmt5p4mc3JVjpIkK9QJeElmqGltpZWvZAMNQnwczCfJPOP29edkDrzLIDar0uO5Kbupp+LdLCrEkL2CctLE17QAAYAFoGn8G1PJqGqj3Ymm1Di5+BSDWvjEk6OkMZQ1V7pYzWVeIzu6PEBxWXqn0nPsk02Grmc36KKc98Lk1lPUxMWgWWHaU+KDdlaHaeOEB7MDXD1C3T0A1gFaqvG4KQXVpN0oha2oWuIlCZ8PouEejzHUUgCAoJj9l3BCrTRK+JQPWT3OuS6RYjEKobgcANRyDrbHBoJwIZ2tkw994RqFrIFYGmxQikXYhAcXMVEYgHA5YfEvkIIodMNtxIE/a9ZcCLDmcw4faxCC2eg/2RPLH2XNevim0h3QWuiGTTtrIjKx+bgH4am2AJ34tfFbUXm6o13pYJoA8EEMMdFtLj3glQLf+2TAAwEEBkGfqtEaBMGX4XAsCBAALcwgLZUPsmQJly+y4EMAYCKBmF/1YIkFT8/gSwBgIop98AGyUSWbcEKFNCC97frvBGHDI89wvL0zKnbfnChclnMIXbHI4s9gLh/egzDvV9vNl6UWXxFSvPd7/gA92xpJmkVNQRXEysRamOgByLzBdtBWqUgwkh4wQmpHYpJCSw1MGJ3yfzsP83cRgOlnUgO4XEDenme7KCF4aNWIeScPbCXbiVtpLxxuhGnvTJIvnsnDJG17IQSm+llUauMsb8lztvoj4YisHvZsLL2rHMf8XlIZvQgEOPvQhIgrfslWxZXdTPDIGzOkQp1vDdsK7WBmsHZbVWUPZ4dNs3CcxNKBc9ao2PlGvMJsrRX/iRkLbiUZ0EzWih16BFl6yofryyZVaoAyPexIh9ng29EaQFQa8eQRoJevdLEK1kvd8tQ1pQ/OoxpJHid8cMsfpmSAuSYD2GNJIE75chKfS9MaQFzbAeQxpphvfLEFCiKXXLkBZExXoMaSQq3jFD+s5UQQuqYz2GoIEh1zCk7JupbhlS/YBmywwxB4ZcxZC+M1VQJoi+C0MafXNxvwwx+s5UQY132wfJvFXJ/JCHtDcFHXSmlcYtDAGiegDejoIOygTSAY4bka9BZ+Jkxc4yw3g9T5De5WvQmTg5HhhyFUN6XxR0Jk5e2oJmYMhtytegM3FyOjDkGob0Ll/DzsTJS+8GDwy5TfkadiZOPg4MuYYhvcvXsDNx8tLGSgNDblO+htXPeJ7A2IwynyvZUGN71ftlSO/yNYQnaIjXs59lUXow/4YCDdmKLmmA/S80cq1A5xdh7CCfx8c7RvPYHTeseDCUfjbrksHy2s26ar8I3gyOzva9vDTpf6QNG8zivpd9bxkDy1TIoo9r7WWmvmU0vX2LvRbHH6y7Z0yvu1bZ+b0UzPyGDQYAZWffumGDfX6jM7vXXatgZ+9rN3ps5sO8rGeifHDq/W1N2Nn72o2eivkwBLD1GyOAUaJNzQxlPFNGM2UGFZ47jDRlhhQ+jdoTZaYrVnSQJ4mTzuVHHvD53rZFSlykxpPHVru5qNOaKbalzGzFMhWbt2KJRkVzhmJZiq1X0UP2ItVD52EdomqwlKi8MXus2DNxMIKKNW3lJr9NHy/2nt8v9wAfGeJ+HxUbyb5w5wtXmMoIZHxiigPbjLCYKONRdPFjdGCKC5IE5uaGjY/nxB9j5/cyshcb566RSwkNynImNRxHP+0MPlTYLgWVDL50pDUcfbx4/Bcq8XR9/Ec0YPYf \ No newline at end of file diff --git "a/docs/cs-basics/data-structure/pictures/\346\240\221/\351\241\272\345\272\217\345\255\230\345\202\250.png" "b/docs/cs-basics/data-structure/pictures/\346\240\221/\351\241\272\345\272\217\345\255\230\345\202\250.png" new file mode 100644 index 00000000000..33f3c6e3ff3 Binary files /dev/null and "b/docs/cs-basics/data-structure/pictures/\346\240\221/\351\241\272\345\272\217\345\255\230\345\202\250.png" differ diff --git "a/docs/cs-basics/data-structure/pictures/\346\240\221/\351\241\272\345\272\217\345\255\230\345\202\2502.drawio" "b/docs/cs-basics/data-structure/pictures/\346\240\221/\351\241\272\345\272\217\345\255\230\345\202\2502.drawio" new file mode 100644 index 00000000000..8048a1a724c --- /dev/null +++ "b/docs/cs-basics/data-structure/pictures/\346\240\221/\351\241\272\345\272\217\345\255\230\345\202\2502.drawio" @@ -0,0 +1 @@ +7V1dc5s4FP01PDaDAPHxaDtOOp12p7PZ2W32ZUc2ss2WWC6WE3t//UogMGBhE4OBFqaZKbrCCO45ulwdybKiT172jwHarL4QF/uKprp7Rb9XNA0A1WT/ccshsjiOFRmWgeeKk46GJ+8/LIyqsO48F28zJ1JCfOptssY5Wa/xnGZsKAjIW/a0BfGzrW7QEp8YnubIP7X+5bl0FVltzTraP2JvuYpbBqYT1byg+GTxJNsVcslbyqRPFX0SEEKjo5f9BPvcebFfos89FNQmNxbgNS3zgd/G33/s9s92oH3Bn/w9/DH+MvsgrvKK/J14YEUzfXa98YzfMj0IP5g/dvw+xwuyph+2IUojdoIGN/tjJTta8v9H8TXYzcxio3BCckWN3R0DkRXGbyuP4qcNmvOaN8YjZlvRF5+VADtE202E7MLbY5ffhOf7E+KTILyQvlhgcz5n9i0NyHecqnEtZ6aqSeNpX8UPjgOK9ymT8N0jJi+YBgd2iqi1ocBREFmPcX1L0UKYVilGxDYkiLhMrnzEih0IuN4BnSaBLu/itTvifYCV1mSNs25lrggO39KF53Thnj+3mpQOolToyS3ZBXN85n510XtRsMT0MiWxm+mYp7ik/A4lfo9tAfYR9V6z3VkGhmjhK/HYkx1hj3u6gN3Uc3hGzy0+le5+uQs5AN5ptqFZQDMsw4zvRFzWUO1srZ5tJfLaSSshcRKfXM8lvTAMbDdofX0kSAWTyDCRh4bEFjX3a0QMoKrZkGG0HTKMpmAe9whmS+sYyrAplO97hLJpZFGGassom02h/NAjlIFqdwxmq2qWt/fot9Txc5zVseNjiscLcYaX5IVJ4bZ5ofFT5oVWjihJfHh3XmjYWcbFCDeU+tlVCSYdRqgX6BLTUk3REpyl5e0JBjtFMDv/wtGuJJht2ecGHlqrAw+nIvuuZ4VZkhV6p1jhGODO1HWoGzYjhAayYEIA7hzgsJDCagxTta4MSdA8wxgI1DYZEwuDt098HnuU+OQHMdBuOe8BMmWyauJz/g0jT3wuvcmuj0CwbOKjdioEWU7mjQGc7PuEBSgLQIu9dqAGdTt3+dIvLU16mbgRIL2FpiKQ1lQE+tijCHSilrUfgmSq6K8VguKofzkGaT9TDJLX1huDoLy2qRhULOXyUFNjDAIXYlDUXEEMYn2fZvtENoaIPpMOOMKEfG+5ZsU54zRm9jGPJN4c+SNR8eK5rl8U3QKyW7s8lp3vH++Y/QPZ4KTrp8HJkPA9P2irLzgVq7w1E0AbCMBqTCun8rdOgGIBuGYC6AMBFD4o7hoBZNLwTQhgDATgESCfn4K2CSCTbm9CAGcgACdAXvKXzA01SwDnxNk8P38SReHFrB9IQFdkSdbI/0zIRgDyL6b0INbeoR0lilzhV++g0siUULzQr64podKjjWoLshpTJqc90gWcvDLZ9oysVlmZvGqC9f0Tudf3v9KyQLcmRwDIjsmtrCwADV1W+15ZAKhnJ9QYP9ucHonJePukwBySAh5mnI5lhVrxWs6aCWANBAjDAewaA5rTBgdpIExRzI4NDDSZOJjz/naFNvyQopmfS1BkTtuy9xYVQwTutjlDFnlr7v3wM3Pi+2iz9cKLRWesPN/9jA5kR+Nm4lI+k3QRthfSTNKc23i2qAemRLERMFmSjuqojaaSMg2vACf26NRD/u8sJUfrZRnITiFxA7L5I87puGHD0xAcTF+ZV7fCJulvNBwp8kofL+LPzgil5EUUAuGt5KKhq+CY/THnTfjIEbKnmbAyOJbZHz89oBOyZtAjL8QWoy19w1sqRf083y9z4RLW+WV89WFdg1ynlorKHotu+yqBuQrlwm/hoSPlKrOJMFAXfjiUWrGojtfvoIV5DS3MRllRg4ZXjhXqwIh3MWKfZUNrBJGtkLwJQSpN9PaXIEDydZ9GGRJnNbdniDYw5CqGSBYyNcuQ4m9518yQSuPB/jIkgb41htSgGpZjSKW55P4yRJdICs0ypAZZsRxD4MCQqxjSdqaq1yA7lmNIpZmH/jJE9sX0ZhlSw5rFcgypNDXRY4a0nqnWsKixHEPsgSHXMAS2nqkWy6iz6+lRsMBtgD2/9rE12It10gqwgwJRdMA9xr31pLJY/qyCe4HWOeCe/zpwW7gbxaJmFdwLFMwB9/yuJq3hXnVDSjnuBbrkgHt+s5HWcJcJkDXCM6yEOIH+kIW0tYURRmPKYtTCMO479rbuLowwZGriAEdHViUYjSl5BXtJD/2146sSjMaUvPHAkKsY0nqq39iCyEubTg8M6eaqBKOxxZH3A0OuYUjrqxKMEvtH9hiettNEWKzilf5GdLkOXOkb0f1lSOtLAmCx3lczQyptY95jhrSdJsIbK4M/Nzytz8fDGn46plwHrrQdb38Z0vrUPTQGNLozoQ7hgEZ3prmhOaDRnclnWKxI1fwuq7Sxc38Z0uQ0NWtt/s/u9dMfSH3Wta+Pf/+528h+LnMKFTb6HE2VqaGwQcYIKFNTcVTFmShTTbHDg6xoNU+2NzjyRF8sHId/xyJPnUePrnYzfk17qji2MnUU21Ic1orNG+XNQcW2FUdTCuQqcReJxDULyhAZGFIis8acseJM+cHIUOz7Wh7y6/3Dxbtnz8s8MLbC531QHFPcC3M+d4WljPSUTyx+4FghFhNlPApPfggPLH5CHGo6tx2Jj2bYH6P592VozzfOXCM24QCGKKd2yxiH/5IeeNKxJBtoXI7G8aYmkswl2cGk4q4mrHj8HdxoJ6zjrwnr0/8B \ No newline at end of file diff --git "a/docs/cs-basics/data-structure/pictures/\346\240\221/\351\241\272\345\272\217\345\255\230\345\202\2502.png" "b/docs/cs-basics/data-structure/pictures/\346\240\221/\351\241\272\345\272\217\345\255\230\345\202\2502.png" new file mode 100644 index 00000000000..70c6da26d22 Binary files /dev/null and "b/docs/cs-basics/data-structure/pictures/\346\240\221/\351\241\272\345\272\217\345\255\230\345\202\2502.png" differ diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\345\215\225\351\223\276\350\241\2502.png" "b/docs/cs-basics/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\345\215\225\351\223\276\350\241\2502.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\345\215\225\351\223\276\350\241\2502.png" rename to "docs/cs-basics/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\345\215\225\351\223\276\350\241\2502.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\345\217\214\345\220\221\345\276\252\347\216\257\351\223\276\350\241\250.png" "b/docs/cs-basics/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\345\217\214\345\220\221\345\276\252\347\216\257\351\223\276\350\241\250.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\345\217\214\345\220\221\345\276\252\347\216\257\351\223\276\350\241\250.png" rename to "docs/cs-basics/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\345\217\214\345\220\221\345\276\252\347\216\257\351\223\276\350\241\250.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\345\217\214\345\220\221\351\223\276\350\241\250.png" "b/docs/cs-basics/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\345\217\214\345\220\221\351\223\276\350\241\250.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\345\217\214\345\220\221\351\223\276\350\241\250.png" rename to "docs/cs-basics/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\345\217\214\345\220\221\351\223\276\350\241\250.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\345\276\252\347\216\257\351\230\237\345\210\227-\345\240\206\346\273\241.png" "b/docs/cs-basics/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\345\276\252\347\216\257\351\230\237\345\210\227-\345\240\206\346\273\241.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\345\276\252\347\216\257\351\230\237\345\210\227-\345\240\206\346\273\241.png" rename to "docs/cs-basics/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\345\276\252\347\216\257\351\230\237\345\210\227-\345\240\206\346\273\241.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\346\225\260\347\273\204.png" "b/docs/cs-basics/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\346\225\260\347\273\204.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\346\225\260\347\273\204.png" rename to "docs/cs-basics/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\346\225\260\347\273\204.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\346\240\210.png" "b/docs/cs-basics/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\346\240\210.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\346\240\210.png" rename to "docs/cs-basics/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\346\240\210.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\346\240\210\345\256\236\347\216\260\346\265\217\350\247\210\345\231\250\345\200\222\351\200\200\345\222\214\345\211\215\350\277\233.drawio" "b/docs/cs-basics/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\346\240\210\345\256\236\347\216\260\346\265\217\350\247\210\345\231\250\345\200\222\351\200\200\345\222\214\345\211\215\350\277\233.drawio" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\346\240\210\345\256\236\347\216\260\346\265\217\350\247\210\345\231\250\345\200\222\351\200\200\345\222\214\345\211\215\350\277\233.drawio" rename to "docs/cs-basics/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\346\240\210\345\256\236\347\216\260\346\265\217\350\247\210\345\231\250\345\200\222\351\200\200\345\222\214\345\211\215\350\277\233.drawio" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\346\240\210\345\256\236\347\216\260\346\265\217\350\247\210\345\231\250\345\200\222\351\200\200\345\222\214\345\211\215\350\277\233.png" "b/docs/cs-basics/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\346\240\210\345\256\236\347\216\260\346\265\217\350\247\210\345\231\250\345\200\222\351\200\200\345\222\214\345\211\215\350\277\233.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\346\240\210\345\256\236\347\216\260\346\265\217\350\247\210\345\231\250\345\200\222\351\200\200\345\222\214\345\211\215\350\277\233.png" rename to "docs/cs-basics/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\346\240\210\345\256\236\347\216\260\346\265\217\350\247\210\345\231\250\345\200\222\351\200\200\345\222\214\345\211\215\350\277\233.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\351\230\237\345\210\227.png" "b/docs/cs-basics/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\351\230\237\345\210\227.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\351\230\237\345\210\227.png" rename to "docs/cs-basics/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\351\230\237\345\210\227.png" diff --git "a/docs/dataStructures-algorithms/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\351\241\272\345\272\217\351\230\237\345\210\227\345\201\207\346\272\242\345\207\272.png" "b/docs/cs-basics/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\351\241\272\345\272\217\351\230\237\345\210\227\345\201\207\346\272\242\345\207\272.png" similarity index 100% rename from "docs/dataStructures-algorithms/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\351\241\272\345\272\217\351\230\237\345\210\227\345\201\207\346\272\242\345\207\272.png" rename to "docs/cs-basics/data-structure/pictures/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204/\351\241\272\345\272\217\351\230\237\345\210\227\345\201\207\346\272\242\345\207\272.png" diff --git "a/docs/dataStructures-algorithms/data-structure/\345\233\276.md" "b/docs/cs-basics/data-structure/\345\233\276.md" similarity index 98% rename from "docs/dataStructures-algorithms/data-structure/\345\233\276.md" rename to "docs/cs-basics/data-structure/\345\233\276.md" index 71a00d8f4f2..cb9f55c1f88 100644 --- "a/docs/dataStructures-algorithms/data-structure/\345\233\276.md" +++ "b/docs/cs-basics/data-structure/\345\233\276.md" @@ -1,3 +1,9 @@ +--- +category: 计算机基础 +tag: + - 数据结构 +--- + # 图 > 开头还是求点赞,求转发!原创优质公众号,希望大家能让更多人看到我们的文章。 @@ -11,7 +17,7 @@ - 线性数据结构的元素满足唯一的线性关系,每个元素(除第一个和最后一个外)只有一个直接前趋和一个直接后继。 - 树形数据结构的元素之间有着明显的层次关系。 -但是,树形结构的元素之间的关系是任意的。 +但是,图形结构的元素之间的关系是任意的。 **何为图呢?** 简单来说,图就是由顶点的有穷非空集合和顶点之间的边组成的集合。通常表示为:**G(V,E)**,其中,G表示一个图,V表示顶点的集合,E表示边的集合。 diff --git "a/docs/dataStructures-algorithms/data-structure/\345\240\206.md" "b/docs/cs-basics/data-structure/\345\240\206.md" similarity index 97% rename from "docs/dataStructures-algorithms/data-structure/\345\240\206.md" rename to "docs/cs-basics/data-structure/\345\240\206.md" index 7e8f9811878..f86308fafe4 100644 --- "a/docs/dataStructures-algorithms/data-structure/\345\240\206.md" +++ "b/docs/cs-basics/data-structure/\345\240\206.md" @@ -1,4 +1,13 @@ +--- +category: 计算机基础 +tag: + - 数据结构 +--- + +# 堆 + ## 什么是堆 + 堆是一种满足以下条件的树: 堆中的每一个节点值都大于等于(或小于等于)子树中所有节点的值。或者说,任意一个节点的值都大于等于(或小于等于)所有子节点的值。 @@ -10,7 +19,7 @@ - 很多博客说堆是完全二叉树,其实并非如此,**堆不一定是完全二叉树**,只是为了方便存储和索引,我们通常用完全二叉树的形式来表示堆,事实上,广为人知的斐波那契堆和二项堆就不是完全二叉树,它们甚至都不是二叉树。 - (**二叉**)堆是一个数组,它可以被看成是一个 **近似的完全二叉树**。——《算法导论》第三版 -大家可以尝试判断下面给出的图是否是二叉树? +大家可以尝试判断下面给出的图是否是堆? ![](pictures/堆/堆1.png) @@ -37,7 +46,7 @@ ## 堆的存储 -之前介绍树的时候说过,由于完全二叉树的优秀性质,利用数组存储二叉树即节省空间,又方便索引(若根结点的序号为1,那么对于树中任意节点i,其左子节点序号为 `2\*i`,右子节点序号为 `2\*i+1`)。 +之前介绍树的时候说过,由于完全二叉树的优秀性质,利用数组存储二叉树即节省空间,又方便索引(若根结点的序号为1,那么对于树中任意节点i,其左子节点序号为 `2*i`,右子节点序号为 `2*i+1`)。 为了方便存储和索引,(二叉)堆可以用完全二叉树的形式进行存储。存储的方式如下图所示: @@ -186,4 +195,4 @@ ![堆排序6](pictures/堆/堆排序6.png) -堆排序完成! \ No newline at end of file +堆排序完成! diff --git "a/docs/cs-basics/data-structure/\346\240\221.md" "b/docs/cs-basics/data-structure/\346\240\221.md" new file mode 100644 index 00000000000..34f7d49dba9 --- /dev/null +++ "b/docs/cs-basics/data-structure/\346\240\221.md" @@ -0,0 +1,180 @@ +--- +category: 计算机基础 +tag: + - 数据结构 +--- + +# 树 + +树就是一种类似现实生活中的树的数据结构(倒置的树)。任何一颗非空树只有一个根节点。 + +一棵树具有以下特点: + +1. 一棵树中的任意两个结点有且仅有唯一的一条路径连通。 +2. 一棵树如果有 n 个结点,那么它一定恰好有 n-1 条边。 +3. 一棵树不包含回路。 + +下图就是一颗树,并且是一颗二叉树。 + +![二叉树](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-6/二叉树-2.png) + +如上图所示,通过上面这张图说明一下树中的常用概念: + +- **节点** :树中的每个元素都可以统称为节点。 +- **根节点** :顶层节点或者说没有父节点的节点。上图中 A 节点就是根节点。 +- **父节点** :若一个节点含有子节点,则这个节点称为其子节点的父节点。上图中的 B 节点是 D 节点、E 节点的父节点。 +- **子节点** :一个节点含有的子树的根节点称为该节点的子节点。上图中 D 节点、E 节点是 B 节点的子节点。 +- **兄弟节点** :具有相同父节点的节点互称为兄弟节点。上图中 D 节点、E 节点的共同父节点是 B 节点,故 D 和 E 为兄弟节点。 +- **叶子节点** :没有子节点的节点。上图中的 D、F、H、I 都是叶子节点。 +- **节点的高度** :该节点到叶子节点的最长路径所包含的边数。 +- **节点的深度** :根节点到该节点的路径所包含的边数 +- **节点的层数** :节点的深度+1。 +- **树的高度** :根节点的高度。 + +## 二叉树的分类 + +**二叉树**(Binary tree)是每个节点最多只有两个分支(即不存在分支度大于 2 的节点)的树结构。 + +**二叉树** 的分支通常被称作“**左子树**”或“**右子树**”。并且,**二叉树** 的分支具有左右次序,不能随意颠倒。 + +**二叉树** 的第 i 层至多拥有 `2^(i-1)` 个节点,深度为 k 的二叉树至多总共有 `2^k-1` 个节点 + +### 满二叉树 + +一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是 **满二叉树**。也就是说,如果一个二叉树的层数为 K,且结点总数是(2^k) -1 ,则它就是 **满二叉树**。如下图所示: + +![](./pictures/树/满二叉树.png) + +### 完全二叉树 + +除最后一层外,若其余层都是满的,并且最后一层或者是满的,或者是在右边缺少连续若干节点,则这个二叉树就是 **完全二叉树** 。 + +大家可以想象为一棵树从根结点开始扩展,扩展完左子节点才能开始扩展右子节点,每扩展完一层,才能继续扩展下一层。如下图所示: + +![](./pictures/树/完全二叉树.png) + +完全二叉树有一个很好的性质:**父结点和子节点的序号有着对应关系。** + +细心的小伙伴可能发现了,当根节点的值为 1 的情况下,若父结点的序号是 i,那么左子节点的序号就是 2i,右子节点的序号是 2i+1。这个性质使得完全二叉树利用数组存储时可以极大地节省空间,以及利用序号找到某个节点的父结点和子节点,后续二叉树的存储会详细介绍。 + +### 平衡二叉树 + +**平衡二叉树** 是一棵二叉排序树,且具有以下性质: + +1. 可以是一棵空树 +2. 如果不是空树,它的左右两个子树的高度差的绝对值不超过 1,并且左右两个子树都是一棵平衡二叉树。 + +平衡二叉树的常用实现方法有 **红黑树**、**AVL 树**、**替罪羊树**、**加权平衡树**、**伸展树** 等。 + +在给大家展示平衡二叉树之前,先给大家看一棵树: + +![](./pictures/树/斜树.png) + +**你管这玩意儿叫树???** + +没错,这玩意儿还真叫树,只不过这棵树已经退化为一个链表了,我们管它叫 **斜树**。 + +**如果这样,那我为啥不直接用链表呢?** + +谁说不是呢? + +二叉树相比于链表,由于父子节点以及兄弟节点之间往往具有某种特殊的关系,这种关系使得我们在树中对数据进行**搜索**和**修改**时,相对于链表更加快捷便利。 + +但是,如果二叉树退化为一个链表了,那么那么树所具有的优秀性质就难以表现出来,效率也会大打折,为了避免这样的情况,我们希望每个做 “家长”(父结点) 的,都 **一碗水端平**,分给左儿子和分给右儿子的尽可能一样多,相差最多不超过一层,如下图所示: + +![](./pictures/树/平衡二叉树.png) + +## 二叉树的存储 + +二叉树的存储主要分为 **链式存储** 和 **顺序存储** 两种: + +### 链式存储 + +和链表类似,二叉树的链式存储依靠指针将各个节点串联起来,不需要连续的存储空间。 + +每个节点包括三个属性: + +- 数据 data。data 不一定是单一的数据,根据不同情况,可以是多个具有不同类型的数据。 +- 左节点指针 left +- 右节点指针 right。 + +可是 JAVA 没有指针啊! + +那就直接引用对象呗(别问我对象哪里找) + +![](./pictures/树/链式存储二叉树.png) + +### 顺序存储 + +顺序存储就是利用数组进行存储,数组中的每一个位置仅存储节点的 data,不存储左右子节点的指针,子节点的索引通过数组下标完成。根结点的序号为 1,对于每个节点 Node,假设它存储在数组中下标为 i 的位置,那么它的左子节点就存储在 2 _ i 的位置,它的右子节点存储在下标为 2 _ i+1 的位置。 + +一棵完全二叉树的数组顺序存储如下图所示: + +![](./pictures/树/顺序存储.png) + +大家可以试着填写一下存储如下二叉树的数组,比较一下和完全二叉树的顺序存储有何区别: + +![](./pictures/树/顺序存储2.png) + +可以看到,如果我们要存储的二叉树不是完全二叉树,在数组中就会出现空隙,导致内存利用率降低 + +## 二叉树的遍历 + +### 先序遍历 + +![](./pictures/树/先序遍历.png) + +二叉树的先序遍历,就是先输出根结点,再遍历左子树,最后遍历右子树,遍历左子树和右子树的时候,同样遵循先序遍历的规则,也就是说,我们可以递归实现先序遍历。 + +代码如下: + +```java +public void preOrder(TreeNode root){ + if(root == null){ + return; + } + system.out.println(root.data); + preOrder(root.left); + preOrder(root.right); +} +``` + +### 中序遍历 + +![](./pictures/树/中序遍历.png) + +二叉树的中序遍历,就是先递归中序遍历左子树,再输出根结点的值,再递归中序遍历右子树,大家可以想象成一巴掌把树压扁,父结点被拍到了左子节点和右子节点的中间,如下图所示: + +![](./pictures/树/中序遍历2.png) + +代码如下: + +```java +public void inOrder(TreeNode root){ + if(root == null){ + return; + } + inOrder(root.left); + system.out.println(root.data); + inOrder(root.right); +} +``` + +### 后序遍历 + +![](./pictures/树/后序遍历.png) + +二叉树的后序遍历,就是先递归后序遍历左子树,再递归后序遍历右子树,最后输出根结点的值 + +代码如下: + +```java +public void postOrder(TreeNode root){ + if(root == null){ + return; + } + postOrder(root.left); + postOrder(root.right); + system.out.println(root.data); +} +``` \ No newline at end of file diff --git "a/docs/cs-basics/data-structure/\347\272\242\351\273\221\346\240\221.md" "b/docs/cs-basics/data-structure/\347\272\242\351\273\221\346\240\221.md" new file mode 100644 index 00000000000..ce18d6e0138 --- /dev/null +++ "b/docs/cs-basics/data-structure/\347\272\242\351\273\221\346\240\221.md" @@ -0,0 +1,22 @@ +--- +category: 计算机基础 +tag: + - 数据结构 +--- + +# 红黑树 + +**红黑树特点** : + +1. 每个节点非红即黑; +2. 根节点总是黑色的; +3. 每个叶子节点都是黑色的空节点(NIL节点); +4. 如果节点是红色的,则它的子节点必须是黑色的(反之不一定); +5. 从根节点到叶节点或空子节点的每条路径,必须包含相同数目的黑色节点(即相同的黑色高度)。 + +**红黑树的应用** :TreeMap、TreeSet以及JDK1.8的HashMap底层都用到了红黑树。 + +**为什么要用红黑树?** 简单来说红黑树就是为了解决二叉查找树的缺陷,因为二叉查找树在某些情况下会退化成一个线性结构。详细了解可以查看 [漫画:什么是红黑树?](https://juejin.im/post/5a27c6946fb9a04509096248#comment)(也介绍到了二叉查找树,非常推荐) + +**相关阅读** :[《红黑树深入剖析及Java实现》](https://zhuanlan.zhihu.com/p/24367771)(美团点评技术团队) + diff --git "a/docs/dataStructures-algorithms/data-structure/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204.md" "b/docs/cs-basics/data-structure/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204.md" similarity index 98% rename from "docs/dataStructures-algorithms/data-structure/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204.md" rename to "docs/cs-basics/data-structure/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204.md" index f00264aa6e5..5a55d496696 100644 --- "a/docs/dataStructures-algorithms/data-structure/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204.md" +++ "b/docs/cs-basics/data-structure/\347\272\277\346\200\247\346\225\260\346\215\256\347\273\223\346\236\204.md" @@ -1,4 +1,10 @@ -# 线性数据结构 +--- +category: 计算机基础 +tag: + - 数据结构 +--- + +# 线性数据结构 :数组、链表、栈、队列 > 开头还是求点赞,求转发!原创优质公众号,希望大家能让更多人看到我们的文章。 > @@ -305,6 +311,6 @@ myStack.pop();//报错:java.lang.IllegalArgumentException: Stack is empty. - **阻塞队列:** 阻塞队列可以看成在队列基础上加了阻塞操作的队列。当队列为空的时候,出队操作阻塞,当队列满的时候,入队操作阻塞。使用阻塞队列我们可以很容易实现“生产者 - 消费者“模型。 - **线程池中的请求/任务队列:** 线程池中没有空闲线程时,新的任务请求线程资源时,线程池该如何处理呢?答案是将这些请求放在队列中,当有空闲线程的时候,会循环中反复从队列中获取任务来执行。队列分为无界队列(基于链表)和有界队列(基于数组)。无界队列的特点就是可以一直入列,除非系统资源耗尽,比如 :`FixedThreadPool` 使用无界队列 `LinkedBlockingQueue`。但是有界队列就不一样了,当队列满的话后面再有任务/请求就会拒绝,在 Java 中的体现就是会抛出`java.util.concurrent.RejectedExecutionException` 异常。 - Linux 内核进程队列(按优先级排队) -- 现实生活中的派对,播放器上的播放列表; +- 现实生活中的排队,播放器上的播放列表; - 消息队列 - 等等...... diff --git "a/docs/network/HTTPS\344\270\255\347\232\204TLS.md" "b/docs/cs-basics/network/HTTPS\344\270\255\347\232\204TLS.md" similarity index 85% rename from "docs/network/HTTPS\344\270\255\347\232\204TLS.md" rename to "docs/cs-basics/network/HTTPS\344\270\255\347\232\204TLS.md" index 641d7baf501..f665eb22da4 100644 --- "a/docs/network/HTTPS\344\270\255\347\232\204TLS.md" +++ "b/docs/cs-basics/network/HTTPS\344\270\255\347\232\204TLS.md" @@ -1,22 +1,9 @@ - - -- [1. SSL 与 TLS](#1-ssl-%E4%B8%8E-tls) -- [2. 从网络协议的角度理解 HTTPS](#2-%E4%BB%8E%E7%BD%91%E7%BB%9C%E5%8D%8F%E8%AE%AE%E7%9A%84%E8%A7%92%E5%BA%A6%E7%90%86%E8%A7%A3-https) -- [3. 从密码学的角度理解 HTTPS](#3-%E4%BB%8E%E5%AF%86%E7%A0%81%E5%AD%A6%E7%9A%84%E8%A7%92%E5%BA%A6%E7%90%86%E8%A7%A3-https) - - [3.1. TLS 工作流程](#31-tls-%E5%B7%A5%E4%BD%9C%E6%B5%81%E7%A8%8B) - - [3.2. 密码基础](#32-%E5%AF%86%E7%A0%81%E5%9F%BA%E7%A1%80) - - [3.2.1. 伪随机数生成器](#321-%E4%BC%AA%E9%9A%8F%E6%9C%BA%E6%95%B0%E7%94%9F%E6%88%90%E5%99%A8) - - [3.2.2. 消息认证码](#322-%E6%B6%88%E6%81%AF%E8%AE%A4%E8%AF%81%E7%A0%81) - - [3.2.3. 数字签名](#323-%E6%95%B0%E5%AD%97%E7%AD%BE%E5%90%8D) - - [3.2.4. 公钥密码](#324-%E5%85%AC%E9%92%A5%E5%AF%86%E7%A0%81) - - [3.2.5. 证书](#325-%E8%AF%81%E4%B9%A6) - - [3.2.6. 密码小结](#326-%E5%AF%86%E7%A0%81%E5%B0%8F%E7%BB%93) - - [3.3. TLS 使用的密码技术](#33-tls-%E4%BD%BF%E7%94%A8%E7%9A%84%E5%AF%86%E7%A0%81%E6%8A%80%E6%9C%AF) - - [3.4. TLS 总结](#34-tls-%E6%80%BB%E7%BB%93) -- [4. RSA 简单示例](#4-rsa-%E7%AE%80%E5%8D%95%E7%A4%BA%E4%BE%8B) -- [5. 参考](#5-%E5%8F%82%E8%80%83) - - +--- +title: HTTPS中的TLS +category: 计算机基础 +tag: + - 计算机网络 +--- # 1. SSL 与 TLS diff --git a/docs/network/images/Cut-Trough-Switching_0.gif b/docs/cs-basics/network/images/Cut-Trough-Switching_0.gif similarity index 100% rename from docs/network/images/Cut-Trough-Switching_0.gif rename to docs/cs-basics/network/images/Cut-Trough-Switching_0.gif diff --git a/docs/network/images/isp.png b/docs/cs-basics/network/images/isp.png similarity index 100% rename from docs/network/images/isp.png rename to docs/cs-basics/network/images/isp.png diff --git "a/docs/network/images/\344\270\203\345\261\202\344\275\223\347\263\273\347\273\223\346\236\204\345\233\276.png" "b/docs/cs-basics/network/images/\344\270\203\345\261\202\344\275\223\347\263\273\347\273\223\346\236\204\345\233\276.png" similarity index 100% rename from "docs/network/images/\344\270\203\345\261\202\344\275\223\347\263\273\347\273\223\346\236\204\345\233\276.png" rename to "docs/cs-basics/network/images/\344\270\203\345\261\202\344\275\223\347\263\273\347\273\223\346\236\204\345\233\276.png" diff --git "a/docs/network/images/\344\274\240\350\276\223\345\261\202.png" "b/docs/cs-basics/network/images/\344\274\240\350\276\223\345\261\202.png" similarity index 100% rename from "docs/network/images/\344\274\240\350\276\223\345\261\202.png" rename to "docs/cs-basics/network/images/\344\274\240\350\276\223\345\261\202.png" diff --git "a/docs/network/images/\345\272\224\347\224\250\345\261\202.png" "b/docs/cs-basics/network/images/\345\272\224\347\224\250\345\261\202.png" similarity index 100% rename from "docs/network/images/\345\272\224\347\224\250\345\261\202.png" rename to "docs/cs-basics/network/images/\345\272\224\347\224\250\345\261\202.png" diff --git "a/docs/network/images/\346\225\260\346\215\256\351\223\276\350\267\257\345\261\202.png" "b/docs/cs-basics/network/images/\346\225\260\346\215\256\351\223\276\350\267\257\345\261\202.png" similarity index 100% rename from "docs/network/images/\346\225\260\346\215\256\351\223\276\350\267\257\345\261\202.png" rename to "docs/cs-basics/network/images/\346\225\260\346\215\256\351\223\276\350\267\257\345\261\202.png" diff --git "a/docs/network/images/\347\211\251\347\220\206\345\261\202.png" "b/docs/cs-basics/network/images/\347\211\251\347\220\206\345\261\202.png" similarity index 100% rename from "docs/network/images/\347\211\251\347\220\206\345\261\202.png" rename to "docs/cs-basics/network/images/\347\211\251\347\220\206\345\261\202.png" diff --git "a/docs/network/images/\347\275\221\347\273\234\345\261\202.png" "b/docs/cs-basics/network/images/\347\275\221\347\273\234\345\261\202.png" similarity index 100% rename from "docs/network/images/\347\275\221\347\273\234\345\261\202.png" rename to "docs/cs-basics/network/images/\347\275\221\347\273\234\345\261\202.png" diff --git "a/docs/network/images/\350\256\241\347\256\227\346\234\272\347\275\221\347\273\234\347\237\245\350\257\206\347\202\271\346\200\273\347\273\223/\344\270\207\347\273\264\347\275\221\347\232\204\345\244\247\350\207\264\345\267\245\344\275\234\345\267\245\347\250\213.png" "b/docs/cs-basics/network/images/\350\256\241\347\256\227\346\234\272\347\275\221\347\273\234\347\237\245\350\257\206\347\202\271\346\200\273\347\273\223/\344\270\207\347\273\264\347\275\221\347\232\204\345\244\247\350\207\264\345\267\245\344\275\234\345\267\245\347\250\213.png" similarity index 100% rename from "docs/network/images/\350\256\241\347\256\227\346\234\272\347\275\221\347\273\234\347\237\245\350\257\206\347\202\271\346\200\273\347\273\223/\344\270\207\347\273\264\347\275\221\347\232\204\345\244\247\350\207\264\345\267\245\344\275\234\345\267\245\347\250\213.png" rename to "docs/cs-basics/network/images/\350\256\241\347\256\227\346\234\272\347\275\221\347\273\234\347\237\245\350\257\206\347\202\271\346\200\273\347\273\223/\344\270\207\347\273\264\347\275\221\347\232\204\345\244\247\350\207\264\345\267\245\344\275\234\345\267\245\347\250\213.png" diff --git "a/docs/cs-basics/network/\350\256\241\347\256\227\346\234\272\347\275\221\347\273\234\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230.md" "b/docs/cs-basics/network/\350\256\241\347\256\227\346\234\272\347\275\221\347\273\234\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230.md" new file mode 100644 index 00000000000..ef63192cb18 --- /dev/null +++ "b/docs/cs-basics/network/\350\256\241\347\256\227\346\234\272\347\275\221\347\273\234\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230.md" @@ -0,0 +1,309 @@ +--- +title: 计算机网络常见面试题 +category: 计算机基础 +tag: + - 计算机网络 +--- + +## 一 OSI 与 TCP/IP 各层的结构与功能, 都有哪些协议? + +学习计算机网络时我们一般采用折中的办法,也就是中和 OSI 和 TCP/IP 的优点,采用一种只有五层协议的体系结构,这样既简洁又能将概念阐述清楚。 + +![五层体系结构](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019/7/五层体系结构.png) + +结合互联网的情况,自上而下地,非常简要的介绍一下各层的作用。 + +### 1.1 应用层 + +**应用层(application-layer)的任务是通过应用进程间的交互来完成特定网络应用。**应用层协议定义的是应用进程(进程:主机中正在运行的程序)间的通信和交互的规则。对于不同的网络应用需要不同的应用层协议。在互联网中应用层协议很多,如**域名系统 DNS**,支持万维网应用的 **HTTP 协议**,支持电子邮件的 **SMTP 协议**等等。我们把应用层交互的数据单元称为报文。 + +**域名系统** + +> 域名系统(Domain Name System 缩写 DNS,Domain Name 被译为域名)是因特网的一项核心服务,它作为可以将域名和 IP 地址相互映射的一个分布式数据库,能够使人更方便的访问互联网,而不用去记住能够被机器直接读取的 IP 数串。(百度百科)例如:一个公司的 Web 网站可看作是它在网上的门户,而域名就相当于其门牌地址,通常域名都使用该公司的名称或简称。例如上面提到的微软公司的域名,类似的还有:IBM 公司的域名是 www.ibm.com、Oracle 公司的域名是 www.oracle.com、Cisco 公司的域名是 www.cisco.com 等。 + +**HTTP 协议** + +> 超文本传输协议(HTTP,HyperText Transfer Protocol)是互联网上应用最为广泛的一种网络协议。所有的 WWW(万维网) 文件都必须遵守这个标准。设计 HTTP 最初的目的是为了提供一种发布和接收 HTML 页面的方法。(百度百科) + +### 1.2 运输层 + +**运输层(transport layer)的主要任务就是负责向两台主机进程之间的通信提供通用的数据传输服务**。应用进程利用该服务传送应用层报文。“通用的”是指并不针对某一个特定的网络应用,而是多种应用可以使用同一个运输层服务。由于一台主机可同时运行多个线程,因此运输层有复用和分用的功能。所谓复用就是指多个应用层进程可同时使用下面运输层的服务,分用和复用相反,是运输层把收到的信息分别交付上面应用层中的相应进程。 + +**运输层主要使用以下两种协议:** + +1. **传输控制协议 TCP**(Transmission Control Protocol)--提供**面向连接**的,**可靠的**数据传输服务。 +2. **用户数据协议 UDP**(User Datagram Protocol)--提供**无连接**的,尽最大努力的数据传输服务(**不保证数据传输的可靠性**)。 + +**TCP 与 UDP 的对比见问题三。** + +### 1.3 网络层 + +**在计算机网络中进行通信的两个计算机之间可能会经过很多个数据链路,也可能还要经过很多通信子网。网络层的任务就是选择合适的网间路由和交换结点, 确保数据及时传送。** 在发送数据时,网络层把运输层产生的报文段或用户数据报封装成分组和包进行传送。在 TCP/IP 体系结构中,由于网络层使用 **IP 协议**,因此分组也叫 **IP 数据报** ,简称 **数据报**。 + +这里要注意:**不要把运输层的“用户数据报 UDP ”和网络层的“ IP 数据报”弄混**。另外,无论是哪一层的数据单元,都可笼统地用“分组”来表示。 + +这里强调指出,网络层中的“网络”二字已经不是我们通常谈到的具体网络,而是指计算机网络体系结构模型中第三层的名称. + +互联网是由大量的异构(heterogeneous)网络通过路由器(router)相互连接起来的。互联网使用的网络层协议是无连接的网际协议(Internet Protocol)和许多路由选择协议,因此互联网的网络层也叫做**网际层**或**IP 层**。 + +### 1.4 数据链路层 + +**数据链路层(data link layer)通常简称为链路层。两台主机之间的数据传输,总是在一段一段的链路上传送的,这就需要使用专门的链路层的协议。** 在两个相邻节点之间传送数据时,**数据链路层将网络层交下来的 IP 数据报组装成帧**,在两个相邻节点间的链路上传送帧。每一帧包括数据和必要的控制信息(如同步信息,地址信息,差错控制等)。 + +在接收数据时,控制信息使接收端能够知道一个帧从哪个比特开始和到哪个比特结束。这样,数据链路层在收到一个帧后,就可从中提出数据部分,上交给网络层。 +控制信息还使接收端能够检测到所收到的帧中有无差错。如果发现差错,数据链路层就简单地丢弃这个出了差错的帧,以避免继续在网络中传送下去白白浪费网络资源。如果需要改正数据在链路层传输时出现差错(这就是说,数据链路层不仅要检错,而且还要纠错),那么就要采用可靠性传输协议来纠正出现的差错。这种方法会使链路层的协议复杂些。 + +### 1.5 物理层 + +在物理层上所传送的数据单位是比特。 + +**物理层(physical layer)的作用是实现相邻计算机节点之间比特流的透明传送,尽可能屏蔽掉具体传输介质和物理设备的差异,** 使其上面的数据链路层不必考虑网络的具体传输介质是什么。“透明传送比特流”表示经实际电路传送后的比特流没有发生变化,对传送的比特流来说,这个电路好像是看不见的。 + +在互联网使用的各种协议中最重要和最著名的就是 TCP/IP 两个协议。现在人们经常提到的 TCP/IP 并不一定单指 TCP 和 IP 这两个具体的协议,而往往表示互联网所使用的整个 TCP/IP 协议族。 + +### 1.6 总结一下 + +上面我们对计算机网络的五层体系结构有了初步的了解,下面附送一张七层体系结构图总结一下(图片来源于网络)。 + +![七层体系结构图](images/七层体系结构图.png) + +## 二 TCP 三次握手和四次挥手(面试常客) + +为了准确无误地把数据送达目标处,TCP 协议采用了三次握手策略。 + +### 2.1 TCP 三次握手漫画图解 + +如下图所示,下面的两个机器人通过 3 次握手确定了对方能正确接收和发送消息(图片来源:《图解 HTTP》)。 + +![TCP三次握手](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019/7/三次握手.png) + +**简单示意图:** + +![TCP三次握手](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019/7/三次握手2.png) + +* 客户端–发送带有 SYN 标志的数据包–一次握手–服务端 +* 服务端–发送带有 SYN/ACK 标志的数据包–二次握手–客户端 +* 客户端–发送带有带有 ACK 标志的数据包–三次握手–服务端 + +**详细示意图(图片来源不详)** + +![](https://img-blog.csdnimg.cn/img_convert/0c9f470819684156cfdc27c682db4def.png) + +### 2.2 为什么要三次握手 + +**三次握手的目的是建立可靠的通信信道,说到通讯,简单来说就是数据的发送与接收,而三次握手最主要的目的就是双方确认自己与对方的发送与接收是正常的。** + +第一次握手:Client 什么都不能确认;Server 确认了对方发送正常,自己接收正常 + +第二次握手:Client 确认了:自己发送、接收正常,对方发送、接收正常;Server 确认了:对方发送正常,自己接收正常 + +第三次握手:Client 确认了:自己发送、接收正常,对方发送、接收正常;Server 确认了:自己发送、接收正常,对方发送、接收正常 + +所以三次握手就能确认双发收发功能都正常,缺一不可。 + +### 2.3 第 2 次握手传回了 ACK,为什么还要传回 SYN? + +接收端传回发送端所发送的 ACK 是为了告诉客户端,我接收到的信息确实就是你所发送的信号了,这表明从客户端到服务端的通信是正常的。而回传 SYN 则是为了建立并确认从服务端到客户端的通信。” + +> SYN 同步序列编号(Synchronize Sequence Numbers) 是 TCP/IP 建立连接时使用的握手信号。在客户机和服务器之间建立正常的 TCP 网络连接时,客户机首先发出一个 SYN 消息,服务器使用 SYN-ACK 应答表示接收到了这个消息,最后客户机再以 ACK(Acknowledgement)消息响应。这样在客户机和服务器之间才能建立起可靠的 TCP 连接,数据才可以在客户机和服务器之间传递。 + +### 2.5 为什么要四次挥手 + +![TCP四次挥手](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019/7/TCP四次挥手.png) + +断开一个 TCP 连接则需要“四次挥手”: + +* 客户端-发送一个 FIN,用来关闭客户端到服务器的数据传送 +* 服务器-收到这个 FIN,它发回一 个 ACK,确认序号为收到的序号加 1 。和 SYN 一样,一个 FIN 将占用一个序号 +* 服务器-关闭与客户端的连接,发送一个 FIN 给客户端 +* 客户端-发回 ACK 报文确认,并将确认序号设置为收到序号加 1 + +任何一方都可以在数据传送结束后发出连接释放的通知,待对方确认后进入半关闭状态。当另一方也没有数据再发送的时候,则发出连接释放通知,对方确认后就完全关闭了 TCP 连接。 + +举个例子:A 和 B 打电话,通话即将结束后,A 说“我没啥要说的了”,B 回答“我知道了”,但是 B 可能还会有要说的话,A 不能要求 B 跟着自己的节奏结束通话,于是 B 可能又巴拉巴拉说了一通,最后 B 说“我说完了”,A 回答“知道了”,这样通话才算结束。 + +上面讲的比较概括,推荐一篇讲的比较细致的文章:[https://blog.csdn.net/qzcsu/article/details/72861891](https://blog.csdn.net/qzcsu/article/details/72861891) + +## 三 TCP, UDP 协议的区别 + +![TCP、UDP协议的区别](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-11/tcp-vs-udp.jpg) + +UDP 在传送数据之前不需要先建立连接,远地主机在收到 UDP 报文后,不需要给出任何确认。虽然 UDP 不提供可靠交付,但在某些情况下 UDP 却是一种最有效的工作方式(一般用于即时通信),比如: QQ 语音、 QQ 视频 、直播等等 + +TCP 提供面向连接的服务。在传送数据之前必须先建立连接,数据传送结束后要释放连接。 TCP 不提供广播或多播服务。由于 TCP 要提供可靠的,面向连接的传输服务(TCP 的可靠体现在 TCP 在传递数据之前,会有三次握手来建立连接,而且在数据传递时,有确认、窗口、重传、拥塞控制机制,在数据传完后,还会断开连接用来节约系统资源),这一难以避免增加了许多开销,如确认,流量控制,计时器以及连接管理等。这不仅使协议数据单元的首部增大很多,还要占用许多处理机资源。TCP 一般用于文件传输、发送和接收邮件、远程登录等场景。 + +## 四 TCP 协议如何保证可靠传输 + +1. 应用数据被分割成 TCP 认为最适合发送的数据块。 +2. TCP 给发送的每一个包进行编号,接收方对数据包进行排序,把有序数据传送给应用层。 +3. **校验和:** TCP 将保持它首部和数据的检验和。这是一个端到端的检验和,目的是检测数据在传输过程中的任何变化。如果收到段的检验和有差错,TCP 将丢弃这个报文段和不确认收到此报文段。 +4. TCP 的接收端会丢弃重复的数据。 +5. **流量控制:** TCP 连接的每一方都有固定大小的缓冲空间,TCP 的接收端只允许发送端发送接收端缓冲区能接纳的数据。当接收方来不及处理发送方的数据,能提示发送方降低发送的速率,防止包丢失。TCP 使用的流量控制协议是可变大小的滑动窗口协议。 (TCP 利用滑动窗口实现流量控制) +6. **拥塞控制:** 当网络拥塞时,减少数据的发送。 +7. **ARQ 协议:** 也是为了实现可靠传输的,它的基本原理就是每发完一个分组就停止发送,等待对方确认。在收到确认后再发下一个分组。 +8. **超时重传:** 当 TCP 发出一个段后,它启动一个定时器,等待目的端确认收到这个报文段。如果不能及时收到一个确认,将重发这个报文段。 + +### 4.1 ARQ 协议 + +**自动重传请求**(Automatic Repeat-reQuest,ARQ)是 OSI 模型中数据链路层和传输层的错误纠正协议之一。它通过使用确认和超时这两个机制,在不可靠服务的基础上实现可靠的信息传输。如果发送方在发送后一段时间之内没有收到确认帧,它通常会重新发送。ARQ 包括停止等待 ARQ 协议和连续 ARQ 协议。 + +#### 停止等待 ARQ 协议 + +停止等待协议是为了实现可靠传输的,它的基本原理就是每发完一个分组就停止发送,等待对方确认(回复 ACK)。如果过了一段时间(超时时间后),还是没有收到 ACK 确认,说明没有发送成功,需要重新发送,直到收到确认后再发下一个分组。 + +在停止等待协议中,若接收方收到重复分组,就丢弃该分组,但同时还要发送确认。 + +**优缺点:** + +* **优点:** 简单 +* **缺点:** 信道利用率低,等待时间长 + +**1) 无差错情况:** + +发送方发送分组, 接收方在规定时间内收到, 并且回复确认. 发送方再次发送。 + +**2) 出现差错情况(超时重传):** + +停止等待协议中超时重传是指只要超过一段时间仍然没有收到确认,就重传前面发送过的分组(认为刚才发送过的分组丢失了)。因此每发送完一个分组需要设置一个超时计时器,其重传时间应比数据在分组传输的平均往返时间更长一些。这种自动重传方式常称为 **自动重传请求 ARQ** 。另外在停止等待协议中若收到重复分组,就丢弃该分组,但同时还要发送确认。**连续 ARQ 协议** 可提高信道利用率。发送维持一个发送窗口,凡位于发送窗口内的分组可连续发送出去,而不需要等待对方确认。接收方一般采用累积确认,对按序到达的最后一个分组发送确认,表明到这个分组位置的所有分组都已经正确收到了。 + +**3) 确认丢失和确认迟到** + +* **确认丢失** :确认消息在传输过程丢失。当 A 发送 M1 消息,B 收到后,B 向 A 发送了一个 M1 确认消息,但却在传输过程中丢失。而 A 并不知道,在超时计时过后,A 重传 M1 消息,B 再次收到该消息后采取以下两点措施:1. 丢弃这个重复的 M1 消息,不向上层交付。 2. 向 A 发送确认消息。(不会认为已经发送过了,就不再发送。A 能重传,就证明 B 的确认消息丢失)。 +* **确认迟到** :确认消息在传输过程中迟到。A 发送 M1 消息,B 收到并发送确认。在超时时间内没有收到确认消息,A 重传 M1 消息,B 仍然收到并继续发送确认消息(B 收到了 2 份 M1)。此时 A 收到了 B 第二次发送的确认消息。接着发送其他数据。过了一会,A 收到了 B 第一次发送的对 M1 的确认消息(A 也收到了 2 份确认消息)。处理如下:1. A 收到重复的确认后,直接丢弃。2. B 收到重复的 M1 后,也直接丢弃重复的 M1。 + +#### 连续 ARQ 协议 + +连续 ARQ 协议可提高信道利用率。发送方维持一个发送窗口,凡位于发送窗口内的分组可以连续发送出去,而不需要等待对方确认。接收方一般采用累计确认,对按序到达的最后一个分组发送确认,表明到这个分组为止的所有分组都已经正确收到了。 + +**优缺点:** + +* **优点:** 信道利用率高,容易实现,即使确认丢失,也不必重传。 +* **缺点:** 不能向发送方反映出接收方已经正确收到的所有分组的信息。 比如:发送方发送了 5 条 消息,中间第三条丢失(3 号),这时接收方只能对前两个发送确认。发送方无法知道后三个分组的下落,而只好把后三个全部重传一次。这也叫 Go-Back-N(回退 N),表示需要退回来重传已经发送过的 N 个消息。 + +### 4.2 滑动窗口和流量控制 + +**TCP 利用滑动窗口实现流量控制。流量控制是为了控制发送方发送速率,保证接收方来得及接收。** 接收方发送的确认报文中的窗口字段可以用来控制发送方窗口大小,从而影响发送方的发送速率。将窗口字段设置为 0,则发送方不能发送数据。 + +### 4.3 拥塞控制 + +在某段时间,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就要变坏。这种情况就叫拥塞。拥塞控制就是为了防止过多的数据注入到网络中,这样就可以使网络中的路由器或链路不致过载。拥塞控制所要做的都有一个前提,就是网络能够承受现有的网络负荷。拥塞控制是一个全局性的过程,涉及到所有的主机,所有的路由器,以及与降低网络传输性能有关的所有因素。相反,流量控制往往是点对点通信量的控制,是个端到端的问题。流量控制所要做到的就是抑制发送端发送数据的速率,以便使接收端来得及接收。 + +为了进行拥塞控制,TCP 发送方要维持一个 **拥塞窗口(cwnd)** 的状态变量。拥塞控制窗口的大小取决于网络的拥塞程度,并且动态变化。发送方让自己的发送窗口取为拥塞窗口和接收方的接受窗口中较小的一个。 + +TCP 的拥塞控制采用了四种算法,即 **慢开始** 、 **拥塞避免** 、**快重传** 和 **快恢复**。在网络层也可以使路由器采用适当的分组丢弃策略(如主动队列管理 AQM),以减少网络拥塞的发生。 + +* **慢开始:** 慢开始算法的思路是当主机开始发送数据时,如果立即把大量数据字节注入到网络,那么可能会引起网络阻塞,因为现在还不知道网络的符合情况。经验表明,较好的方法是先探测一下,即由小到大逐渐增大发送窗口,也就是由小到大逐渐增大拥塞窗口数值。cwnd 初始值为 1,每经过一个传播轮次,cwnd 加倍。 +* **拥塞避免:** 拥塞避免算法的思路是让拥塞窗口 cwnd 缓慢增大,即每经过一个往返时间 RTT 就把发送放的 cwnd 加 1. +* **快重传与快恢复:** + 在 TCP/IP 中,快速重传和恢复(fast retransmit and recovery,FRR)是一种拥塞控制算法,它能快速恢复丢失的数据包。没有 FRR,如果数据包丢失了,TCP 将会使用定时器来要求传输暂停。在暂停的这段时间内,没有新的或复制的数据包被发送。有了 FRR,如果接收机接收到一个不按顺序的数据段,它会立即给发送机发送一个重复确认。如果发送机接收到三个重复确认,它会假定确认件指出的数据段丢失了,并立即重传这些丢失的数据段。有了 FRR,就不会因为重传时要求的暂停被耽误。  当有单独的数据包丢失时,快速重传和恢复(FRR)能最有效地工作。当有多个数据信息包在某一段很短的时间内丢失时,它则不能很有效地工作。 + +## 五 在浏览器中输入 url 地址 ->> 显示主页的过程(面试常客) + +百度好像最喜欢问这个问题。 + +> 打开一个网页,整个过程会使用哪些协议? + +图解(图片来源:《图解 HTTP》): + + + +> 上图有一个错误,请注意,是 OSPF 不是 OPSF。 OSPF(Open Shortest Path First,ospf)开放最短路径优先协议, 是由 Internet 工程任务组开发的路由选择协议 + +总体来说分为以下几个过程: + +1. DNS 解析 +2. TCP 连接 +3. 发送 HTTP 请求 +4. 服务器处理请求并返回 HTTP 报文 +5. 浏览器解析渲染页面 +6. 连接结束 + +具体可以参考下面这篇文章: + +* [https://segmentfault.com/a/1190000006879700](https://segmentfault.com/a/1190000006879700) + +## 六 状态码 + +![状态码](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019/7/状态码.png) + +## 七 各种协议与 HTTP 协议之间的关系 + +一般面试官会通过这样的问题来考察你对计算机网络知识体系的理解。 + +图片来源:《图解 HTTP》 + +![各种协议与HTTP协议之间的关系](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019/7/各种协议与HTTP协议之间的关系.png) + +## 八 HTTP 长连接, 短连接 + +在 HTTP/1.0 中默认使用短连接。也就是说,客户端和服务器每进行一次 HTTP 操作,就建立一次连接,任务结束就中断连接。当客户端浏览器访问的某个 HTML 或其他类型的 Web 页中包含有其他的 Web 资源(如 JavaScript 文件、图像文件、CSS 文件等),每遇到这样一个 Web 资源,浏览器就会重新建立一个 HTTP 会话。 + +而从 HTTP/1.1 起,默认使用长连接,用以保持连接特性。使用长连接的 HTTP 协议,会在响应头加入这行代码: + +``` +Connection:keep-alive +``` + +在使用长连接的情况下,当一个网页打开完成后,客户端和服务器之间用于传输 HTTP 数据的 TCP 连接不会关闭,客户端再次访问这个服务器时,会继续使用这一条已经建立的连接。Keep-Alive 不会永久保持连接,它有一个保持时间,可以在不同的服务器软件(如 Apache)中设定这个时间。实现长连接需要客户端和服务端都支持长连接。 + +**HTTP 协议的长连接和短连接,实质上是 TCP 协议的长连接和短连接。** + +—— [《HTTP 长连接、短连接究竟是什么?》](https://www.cnblogs.com/gotodsp/p/6366163.html) + +## 九 HTTP 是不保存状态的协议, 如何保存用户状态? + +HTTP 是一种不保存状态,即无状态(stateless)协议。也就是说 HTTP 协议自身不对请求和响应之间的通信状态进行保存。那么我们保存用户状态呢?Session 机制的存在就是为了解决这个问题,Session 的主要作用就是通过服务端记录用户的状态。典型的场景是购物车,当你要添加商品到购物车的时候,系统不知道是哪个用户操作的,因为 HTTP 协议是无状态的。服务端给特定的用户创建特定的 Session 之后就可以标识这个用户并且跟踪这个用户了(一般情况下,服务器会在一定时间内保存这个 Session,过了时间限制,就会销毁这个 Session)。 + +在服务端保存 Session 的方法很多,最常用的就是内存和数据库(比如是使用内存数据库 redis 保存)。既然 Session 存放在服务器端,那么我们如何实现 Session 跟踪呢?大部分情况下,我们都是通过在 Cookie 中附加一个 Session ID 来方式来跟踪。 + +**Cookie 被禁用怎么办?** + +最常用的就是利用 URL 重写把 Session ID 直接附加在 URL 路径的后面。 + +![HTTP是无状态协议](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-6/HTTP是无状态的.png) + +## 十 Cookie 的作用是什么? 和 Session 有什么区别? + +Cookie 和 Session 都是用来跟踪浏览器用户身份的会话方式,但是两者的应用场景不太一样。 + +**Cookie 一般用来保存用户信息** 比如 ① 我们在 Cookie 中保存已经登录过得用户信息,下次访问网站的时候页面可以自动帮你登录的一些基本信息给填了;② 一般的网站都会有保持登录也就是说下次你再访问网站的时候就不需要重新登录了,这是因为用户登录的时候我们可以存放了一个 Token 在 Cookie 中,下次登录的时候只需要根据 Token 值来查找用户即可(为了安全考虑,重新登录一般要将 Token 重写);③ 登录一次网站后访问网站其他页面不需要重新登录。**Session 的主要作用就是通过服务端记录用户的状态。** 典型的场景是购物车,当你要添加商品到购物车的时候,系统不知道是哪个用户操作的,因为 HTTP 协议是无状态的。服务端给特定的用户创建特定的 Session 之后就可以标识这个用户并且跟踪这个用户了。 + +Cookie 数据保存在客户端(浏览器端),Session 数据保存在服务器端。 + +Cookie 存储在客户端中,而 Session 存储在服务器上,相对来说 Session 安全性更高。如果要在 Cookie 中存储一些敏感信息,不要直接写入 Cookie 中,最好能将 Cookie 信息加密然后使用到的时候再去服务器端解密。 + +## 十一 HTTP 1.0 和 HTTP 1.1 的主要区别是什么? + +> 这部分回答引用这篇文章 的一些内容。 + +HTTP1.0 最早在网页中使用是在 1996 年,那个时候只是使用一些较为简单的网页上和网络请求上,而 HTTP1.1 则在 1999 年才开始广泛应用于现在的各大浏览器网络请求中,同时 HTTP1.1 也是当前使用最为广泛的 HTTP 协议。 主要区别主要体现在: + +1. **长连接** : **在 HTTP/1.0 中,默认使用的是短连接**,也就是说每次请求都要重新建立一次连接。HTTP 是基于 TCP/IP 协议的,每一次建立或者断开连接都需要三次握手四次挥手的开销,如果每次请求都要这样的话,开销会比较大。因此最好能维持一个长连接,可以用个长连接来发多个请求。**HTTP 1.1 起,默认使用长连接** ,默认开启 Connection: keep-alive。 **HTTP/1.1 的持续连接有非流水线方式和流水线方式** 。流水线方式是客户在收到 HTTP 的响应报文之前就能接着发送新的请求报文。与之相对应的非流水线方式是客户在收到前一个响应后才能发送下一个请求。 +1. **错误状态响应码** :在 HTTP1.1 中新增了 24 个错误状态响应码,如 409(Conflict)表示请求的资源与资源的当前状态发生冲突;410(Gone)表示服务器上的某个资源被永久性的删除。 +1. **缓存处理** :在 HTTP1.0 中主要使用 header 里的 If-Modified-Since,Expires 来做为缓存判断的标准,HTTP1.1 则引入了更多的缓存控制策略例如 Entity tag,If-Unmodified-Since, If-Match, If-None-Match 等更多可供选择的缓存头来控制缓存策略。 +1. **带宽优化及网络连接的使用** :HTTP1.0 中,存在一些浪费带宽的现象,例如客户端只是需要某个对象的一部分,而服务器却将整个对象送过来了,并且不支持断点续传功能,HTTP1.1 则在请求头引入了 range 头域,它允许只请求资源的某个部分,即返回码是 206(Partial Content),这样就方便了开发者自由的选择以便于充分利用带宽和连接。 + +## 十二 URI 和 URL 的区别是什么? + +* URI(Uniform Resource Identifier) 是统一资源标志符,可以唯一标识一个资源。 +* URL(Uniform Resource Locator) 是统一资源定位符,可以提供该资源的路径。它是一种具体的 URI,即 URL 可以用来标识一个资源,而且还指明了如何 locate 这个资源。 + +URI 的作用像身份证号一样,URL 的作用更像家庭住址一样。URL 是一种具体的 URI,它不仅唯一标识资源,而且还提供了定位该资源的信息。 + +## 十三 HTTP 和 HTTPS 的区别? + +1. **端口** :HTTP 的 URL 由“http://”起始且默认使用端口80,而HTTPS的URL由“https://”起始且默认使用端口443。 +2. **安全性和资源消耗:** HTTP 协议运行在 TCP 之上,所有传输的内容都是明文,客户端和服务器端都无法验证对方的身份。HTTPS 是运行在 SSL/TLS 之上的 HTTP 协议,SSL/TLS 运行在 TCP 之上。所有传输的内容都经过加密,加密采用对称加密,但对称加密的密钥用服务器方的证书进行了非对称加密。所以说,HTTP 安全性没有 HTTPS 高,但是 HTTPS 比 HTTP 耗费更多服务器资源。 + - 对称加密:密钥只有一个,加密解密为同一个密码,且加解密速度快,典型的对称加密算法有 DES、AES 等; + - 非对称加密:密钥成对出现(且根据公钥无法推知私钥,根据私钥也无法推知公钥),加密解密使用不同密钥(公钥加密需要私钥解密,私钥加密需要公钥解密),相对对称加密速度较慢,典型的非对称加密算法有 RSA、DSA 等。 + +## 建议 + +非常推荐大家看一下 《图解 HTTP》 这本书,这本书页数不多,但是内容很是充实,不管是用来系统的掌握网络方面的一些知识还是说纯粹为了应付面试都有很大帮助。下面的一些文章只是参考。大二学习这门课程的时候,我们使用的教材是 《计算机网络第七版》(谢希仁编著),不推荐大家看这本教材,书非常厚而且知识偏理论,不确定大家能不能心平气和的读完。 + +## 参考 + +* [https://blog.csdn.net/qq_16209077/article/details/52718250](https://blog.csdn.net/qq_16209077/article/details/52718250) +* [https://blog.csdn.net/zixiaomuwu/article/details/60965466](https://blog.csdn.net/zixiaomuwu/article/details/60965466) +* [https://blog.csdn.net/turn\_\_back/article/details/73743641](https://blog.csdn.net/turn__back/article/details/73743641) +* diff --git "a/docs/network/\350\256\241\347\256\227\346\234\272\347\275\221\347\273\234\347\237\245\350\257\206\346\200\273\347\273\223.md" "b/docs/cs-basics/network/\350\260\242\345\270\214\344\273\201\350\200\201\345\270\210\347\232\204\343\200\212\350\256\241\347\256\227\346\234\272\347\275\221\347\273\234\343\200\213\345\206\205\345\256\271\346\200\273\347\273\223.md" similarity index 92% rename from "docs/network/\350\256\241\347\256\227\346\234\272\347\275\221\347\273\234\347\237\245\350\257\206\346\200\273\347\273\223.md" rename to "docs/cs-basics/network/\350\260\242\345\270\214\344\273\201\350\200\201\345\270\210\347\232\204\343\200\212\350\256\241\347\256\227\346\234\272\347\275\221\347\273\234\343\200\213\345\206\205\345\256\271\346\200\273\347\273\223.md" index f64a61b1ed8..df0b07537fd 100644 --- "a/docs/network/\350\256\241\347\256\227\346\234\272\347\275\221\347\273\234\347\237\245\350\257\206\346\200\273\347\273\223.md" +++ "b/docs/cs-basics/network/\350\260\242\345\270\214\344\273\201\350\200\201\345\270\210\347\232\204\343\200\212\350\256\241\347\256\227\346\234\272\347\275\221\347\273\234\343\200\213\345\206\205\345\256\271\346\200\273\347\273\223.md" @@ -1,3 +1,11 @@ +--- +title: 谢希仁老师的《计算机网络》内容总结 +category: 计算机基础 +tag: + - 计算机网络 +--- + + 本文是我在大二学习计算机网络期间整理, 大部分内容都来自于谢希仁老师的《计算机网络》这本书。 为了内容更容易理解,我对之前的整理进行了一波重构,并配上了一些相关的示意图便于理解。 @@ -133,19 +141,19 @@ 1. **物理层的主要任务就是确定与传输媒体接口有关的一些特性,如机械特性,电气特性,功能特性,过程特性。** 2. 一个数据通信系统可划分为三大部分,即源系统,传输系统,目的系统。源系统包括源点(或源站,信源)和发送器,目的系统包括接收器和终点。 -3. **通信的目的是传送消息。如话音,文字,图像等都是消息,数据是运送消息的实体。信号则是数据的电器或电磁的表现。** +3. **通信的目的是传送消息。如话音,文字,图像等都是消息,数据是运送消息的实体。信号则是数据的电气或电磁的表现。** 4. 根据信号中代表消息的参数的取值方式不同,信号可分为模拟信号(或连续信号)和数字信号(或离散信号)。在使用时间域(简称时域)的波形表示数字信号时,代表不同离散数值的基本波形称为码元。 5. 根据双方信息交互的方式,通信可划分为单向通信(或单工通信),双向交替通信(或半双工通信),双向同时通信(全双工通信)。 6. 来自信源的信号称为基带信号。信号要在信道上传输就要经过调制。调制有基带调制和带通调制之分。最基本的带通调制方法有调幅,调频和调相。还有更复杂的调制方法,如正交振幅调制。 7. 要提高数据在信道上的传递速率,可以使用更好的传输媒体,或使用先进的调制技术。但数据传输速率不可能任意被提高。 8. 传输媒体可分为两大类,即导引型传输媒体(双绞线,同轴电缆,光纤)和非导引型传输媒体(无线,红外,大气激光)。 -9. 了有效利用光纤资源,在光纤干线和用户之间广泛使用无源光网络 PON。无源光网络无需配备电源,其长期运营成本和管理成本都很低。最流行的无源光网络是以太网无源光网络 EPON 和吉比特无源光网络 GPON。 +9. 为了有效利用光纤资源,在光纤干线和用户之间广泛使用无源光网络 PON。无源光网络无需配备电源,其长期运营成本和管理成本都很低。最流行的无源光网络是以太网无源光网络 EPON 和吉比特无源光网络 GPON。 ### 2.3. 补充 #### 2.3.1. 物理层主要做啥? -物理层主要做的事情就是 **透明地传送比特流**。也可以将物理层的主要任务描述为确定与传输媒体的接口的一些特性,即:机械特性(接口所用接线器的一些物理属性如形状尺寸),电气特性(接口电缆的各条线上出现的电压的范围),功能特性(某条线上出现的某一电平的电压的意义),过程特性(对于不同功能能的各种可能事件的出现顺序)。 +物理层主要做的事情就是 **透明地传送比特流**。也可以将物理层的主要任务描述为确定与传输媒体的接口的一些特性,即:机械特性(接口所用接线器的一些物理属性如形状和尺寸),电气特性(接口电缆的各条线上出现的电压的范围),功能特性(某条线上出现的某一电平的电压的意义),过程特性(对于不同功能的各种可能事件的出现顺序)。 **物理层考虑的是怎样才能在连接各种计算机的传输媒体上传输数据比特流,而不是指具体的传输媒体。** 现有的计算机网络中的硬件设备和传输媒体的种类非常繁多,而且通信手段也有许多不同的方式。物理层的作用正是尽可能地屏蔽掉这些传输媒体和通信手段的差异,使物理层上面的数据链路层感觉不到这些差异,这样就可以使数据链路层只考虑完成本层的协议和服务,而不必考虑网络的具体传输媒体和通信手段是什么。 @@ -159,11 +167,11 @@ #### 2.3.3. 几种常用的宽带接入技术,主要是 ADSL 和 FTTx -用户到互联网的宽带接入方法有非对称数字用户线 ADSL(用数字技术对现有的模拟电话线进行改造,而不需要重新布线。ASDL 的快速版本是甚高速数字用户线 VDSL。),光纤同轴混合网 HFC(是在目前覆盖范围很广的有线电视网的基础上开发的一种居民宽带接入网)和 FTTx(即光纤到······)。 +用户到互联网的宽带接入方法有非对称数字用户线 ADSL(用数字技术对现有的模拟电话线进行改造,而不需要重新布线。ADSL 的快速版本是甚高速数字用户线 VDSL。),光纤同轴混合网 HFC(是在目前覆盖范围很广的有线电视网的基础上开发的一种居民宽带接入网)和 FTTx(即光纤到······)。 ## 3. 数据链路层(Data Link Layer) -![数据链路层](https://img-blog.csdnimg.cn/img_convert/8d24d1684552fa9cc824ce72b3087637.png) +![数据链路层](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/java-guide-blog/2-data-link-layer.svg) ### 3.1. 基本术语 @@ -175,7 +183,7 @@ 6. **误码率 BER(Bit Error Rate )** :在一段时间内,传输错误的比特占所传输比特总数的比率。 7. **PPP(Point-to-Point Protocol )** :点对点协议。即用户计算机和 ISP 进行通信时所使用的数据链路层协议。以下是 PPP 帧的示意图: ![PPP](https://img-blog.csdnimg.cn/img_convert/298dbdeb16f98cec02c3954d8d95c1d6.png) -8. **MAC 地址(Media Access Control 或者 Medium Access Control)** :意译为媒体访问控制,或称为物理地址、硬件地址,用来定义网络设备的位置。在 OSI 模型中,第三层网络层负责 IP 地址,第二层数据链路层则负责 MAC 地址。因此一个主机会有一个 MAC 地址,而每个网络位置会有一个专属于它的 IP 地址 。地址是识别某个系统的重要标识符,“名字指出我们所要寻找的资源,地址指出资源所在的地方,路由告诉我们如何到达该处。 +8. **MAC 地址(Media Access Control 或者 Medium Access Control)** :意译为媒体访问控制,或称为物理地址、硬件地址,用来定义网络设备的位置。在 OSI 模型中,第三层网络层负责 IP 地址,第二层数据链路层则负责 MAC 地址。因此一个主机会有一个 MAC 地址,而每个网络位置会有一个专属于它的 IP 地址 。地址是识别某个系统的重要标识符,“名字指出我们所要寻找的资源,地址指出资源所在的地方,路由告诉我们如何到达该处。” ![ARP (Address Resolution Protocol) explained](https://img-blog.csdnimg.cn/img_convert/002b2e6e45d66e805008fafc310afef0.png) @@ -184,7 +192,7 @@ ### 3.2. 重要知识点总结 -1. 链路是从一个结点到相邻节点的一段物理链路,数据链路则在链路的基础上增加了一些必要的硬件(如网络适配器)和软件(如协议的实现) +1. 链路是从一个结点到相邻结点的一段物理链路,数据链路则在链路的基础上增加了一些必要的硬件(如网络适配器)和软件(如协议的实现) 2. 数据链路层使用的主要是**点对点信道**和**广播信道**两种。 3. 数据链路层传输的协议数据单元是帧。数据链路层的三个基本问题是:**封装成帧**,**透明传输**和**差错检测** 4. **循环冗余检验 CRC** 是一种检错方法,而帧检验序列 FCS 是添加在数据后面的冗余码 @@ -193,7 +201,7 @@ 7. **局域网的优点是:具有广播功能,从一个站点可方便地访问全网;便于系统的扩展和逐渐演变;提高了系统的可靠性,可用性和生存性。** 8. 计算机与外接局域网通信需要通过通信适配器(或网络适配器),它又称为网络接口卡或网卡。**计算器的硬件地址就在适配器的 ROM 中**。 9. 以太网采用的无连接的工作方式,对发送的数据帧不进行编号,也不要求对方发回确认。目的站收到有差错帧就把它丢掉,其他什么也不做 -10. 以太网采用的协议是具有冲突检测的**载波监听多点接入 CSMA/CD**。协议的特点是:**发送前先监听,边发送边监听,一旦发现总线上出现了碰撞,就立即停止发送。然后按照退避算法等待一段随机时间后再次发送。** 因此,每一个站点在自己发送数据之后的一小段时间内,存在这遭遇碰撞的可能性。以太网上的各站点平等的争用以太网信道 +10. 以太网采用的协议是具有冲突检测的**载波监听多点接入 CSMA/CD**。协议的特点是:**发送前先监听,边发送边监听,一旦发现总线上出现了碰撞,就立即停止发送。然后按照退避算法等待一段随机时间后再次发送。** 因此,每一个站点在自己发送数据之后的一小段时间内,存在着遭遇碰撞的可能性。以太网上的各站点平等地争用以太网信道 11. 以太网的适配器具有过滤功能,它只接收单播帧,广播帧和多播帧。 12. 使用集线器可以在物理层扩展以太网(扩展后的以太网仍然是一个网络) @@ -225,9 +233,9 @@ 2. 在互联网的交付有两种,一是在本网络直接交付不用经过路由器,另一种是和其他网络的间接交付,至少经过一个路由器,但最后一次一定是直接交付 3. 分类的 IP 地址由网络号字段(指明网络)和主机号字段(指明主机)组成。网络号字段最前面的类别指明 IP 地址的类别。IP 地址是一种分等级的地址结构。IP 地址管理机构分配 IP 地址时只分配网络号,主机号由得到该网络号的单位自行分配。路由器根据目的主机所连接的网络号来转发分组。一个路由器至少连接到两个网络,所以一个路由器至少应当有两个不同的 IP 地址 4. IP 数据报分为首部和数据两部分。首部的前一部分是固定长度,共 20 字节,是所有 IP 数据包必须具有的(源地址,目的地址,总长度等重要地段都固定在首部)。一些长度可变的可选字段固定在首部的后面。IP 首部中的生存时间给出了 IP 数据报在互联网中所能经过的最大路由器数。可防止 IP 数据报在互联网中无限制的兜圈子。 -5. **地址解析协议 ARP 把 IP 地址解析为硬件地址。ARP 的高速缓存可以大大减少网络上的通信量。因为这样可以使主机下次再与同样地址的主机通信时,可以直接从高速缓存中找到所需要的硬件地址而不需要再去广播方式发送 ARP 请求分组** -6. 无分类域间路由选择 CIDR 是解决目前 IP 地址紧缺的一个好办法。CIDR 记法把 IP 地址后面加上斜线“/”,然后写上前缀所所占的位数。前缀(或网络前缀用来指明网络),前缀后面的部分是后缀,用来指明主机。CIDR 把前缀都相同的连续的 IP 地址组成一个“CIDR 地址块”,IP 地址分配都以 CIDR 地址块为单位。 -7. 网际控制报文协议是 IP 层的协议。ICMP 报文作为 IP 数据报的数据,加上首部后组成 IP 数据报发送出去。使用 ICMP 数据报并不是为了实现可靠传输。ICMP 允许主机或路由器报告差错情况和提供有关异常情况的报告。ICMP 报文的种类有两种 ICMP 差错报告报文和 ICMP 询问报文。 +5. **地址解析协议 ARP 把 IP 地址解析为硬件地址。ARP 的高速缓存可以大大减少网络上的通信量。因为这样可以使主机下次再与同样地址的主机通信时,可以直接从高速缓存中找到所需要的硬件地址而不需要再去以广播方式发送 ARP 请求分组** +6. 无分类域间路由选择 CIDR 是解决目前 IP 地址紧缺的一个好办法。CIDR 记法在 IP 地址后面加上斜线“/”,然后写上前缀所占的位数。前缀(或网络前缀)用来指明网络,前缀后面的部分是后缀,用来指明主机。CIDR 把前缀都相同的连续的 IP 地址组成一个“CIDR 地址块”,IP 地址分配都以 CIDR 地址块为单位。 +7. 网际控制报文协议是 IP 层的协议。ICMP 报文作为 IP 数据报的数据,加上首部后组成 IP 数据报发送出去。使用 ICMP 数据报并不是为了实现可靠传输。ICMP 允许主机或路由器报告差错情况和提供有关异常情况的报告。ICMP 报文的种类有两种,即 ICMP 差错报告报文和 ICMP 询问报文。 8. **要解决 IP 地址耗尽的问题,最根本的办法是采用具有更大地址空间的新版本 IP 协议-IPv6。** IPv6 所带来的变化有 ① 更大的地址空间(采用 128 位地址)② 灵活的首部格式 ③ 改进的选项 ④ 支持即插即用 ⑤ 支持资源的预分配 ⑥IPv6 的首部改为 8 字节对齐。 9. **虚拟专用网络 VPN 利用公用的互联网作为本机构专用网之间的通信载体。VPN 内使用互联网的专用地址。一个 VPN 至少要有一个路由器具有合法的全球 IP 地址,这样才能和本系统的另一个 VPN 通过互联网进行通信。所有通过互联网传送的数据都需要加密。** 10. MPLS 的特点是:① 支持面向连接的服务质量 ② 支持流量工程,平衡网络负载 ③ 有效的支持虚拟专用网 VPN。MPLS 在入口节点给每一个 IP 数据报打上固定长度的“标记”,然后根据标记在第二层(链路层)用硬件进行转发(在标记交换路由器中进行标记交换),因而转发速率大大加快。 @@ -240,13 +248,13 @@ 1. **进程(process)** :指计算机中正在运行的程序实体。 2. **应用进程互相通信** :一台主机的进程和另一台主机中的一个进程交换数据的过程(另外注意通信真正的端点不是主机而是主机中的进程,也就是说端到端的通信是应用进程之间的通信)。 -3. **传输层的复用与分用** :复用指发送方不同的进程都可以通过统一个运输层协议传送数据。分用指接收方的运输层在剥去报文的首部后能把这些数据正确的交付到目的应用进程。 +3. **传输层的复用与分用** :复用指发送方不同的进程都可以通过同一个运输层协议传送数据。分用指接收方的运输层在剥去报文的首部后能把这些数据正确的交付到目的应用进程。 4. **TCP(Transmission Control Protocol)** :传输控制协议。 5. **UDP(User Datagram Protocol)** :用户数据报协议。 ![TCP和UDP](https://img-blog.csdnimg.cn/img_convert/2bd5bf90676c338864807ade87b7bdea.png) -6. **端口(port)** :端口的目的是为了确认对方机器是那个进程在于自己进行交互,比如 MSN 和 QQ 的端口不同,如果没有端口就可能出现 QQ 进程和 MSN 交互错误。端口又称协议端口号。 +6. **端口(port)** :端口的目的是为了确认对方机器的哪个进程在与自己进行交互,比如 MSN 和 QQ 的端口不同,如果没有端口就可能出现 QQ 进程和 MSN 交互错误。端口又称协议端口号。 7. **停止等待协议(stop-and-wait)** :指发送方每发送完一个分组就停止发送,等待对方确认,在收到确认之后在发送下一个分组。 8. **流量控制** : 就是让发送方的发送速率不要太快,既要让接收方来得及接收,也不要使网络发生拥塞。 9. **拥塞控制** :防止过多的数据注入到网络中,这样可以使网络中的路由器或链路不致过载。拥塞控制所要做的都有一个前提,就是网络能够承受现有的网络负荷。 @@ -256,16 +264,16 @@ 1. **运输层提供应用进程之间的逻辑通信,也就是说,运输层之间的通信并不是真正在两个运输层之间直接传输数据。运输层向应用层屏蔽了下面网络的细节(如网络拓补,所采用的路由选择协议等),它使应用进程之间看起来好像两个运输层实体之间有一条端到端的逻辑通信信道。** 2. **网络层为主机提供逻辑通信,而运输层为应用进程之间提供端到端的逻辑通信。** 3. 运输层的两个重要协议是用户数据报协议 UDP 和传输控制协议 TCP。按照 OSI 的术语,两个对等运输实体在通信时传送的数据单位叫做运输协议数据单元 TPDU(Transport Protocol Data Unit)。但在 TCP/IP 体系中,则根据所使用的协议是 TCP 或 UDP,分别称之为 TCP 报文段或 UDP 用户数据报。 -4. **UDP 在传送数据之前不需要先建立连接,远地主机在收到 UDP 报文后,不需要给出任何确认。虽然 UDP 不提供可靠交付,但在某些情况下 UDP 确是一种最有效的工作方式。 TCP 提供面向连接的服务。在传送数据之前必须先建立连接,数据传送结束后要释放连接。TCP 不提供广播或多播服务。由于 TCP 要提供可靠的,面向连接的传输服务,这一难以避免增加了许多开销,如确认,流量控制,计时器以及连接管理等。这不仅使协议数据单元的首部增大很多,还要占用许多处理机资源。** -5. 硬件端口是不同硬件设备进行交互的接口,而软件端口是应用层各种协议进程与运输实体进行层间交互的一种地址。UDP 和 TCP 的首部格式中都有源端口和目的端口这两个重要字段。当运输层收到 IP 层交上来的运输层报文时,就能够 根据其首部中的目的端口号把数据交付应用层的目的应用层。(两个进程之间进行通信不光要知道对方 IP 地址而且要知道对方的端口号(为了找到对方计算机中的应用进程)) +4. **UDP 在传送数据之前不需要先建立连接,远地主机在收到 UDP 报文后,不需要给出任何确认。虽然 UDP 不提供可靠交付,但在某些情况下 UDP 确是一种最有效的工作方式。 TCP 提供面向连接的服务。在传送数据之前必须先建立连接,数据传送结束后要释放连接。TCP 不提供广播或多播服务。由于 TCP 要提供可靠的,面向连接的传输服务,难以避免地增加了许多开销,如确认,流量控制,计时器以及连接管理等。这不仅使协议数据单元的首部增大很多,还要占用许多处理机资源。** +5. 硬件端口是不同硬件设备进行交互的接口,而软件端口是应用层各种协议进程与运输实体进行层间交互的一种地址。UDP 和 TCP 的首部格式中都有源端口和目的端口这两个重要字段。当运输层收到 IP 层交上来的运输层报文时,就能够根据其首部中的目的端口号把数据交付应用层的目的应用层。(两个进程之间进行通信不光要知道对方 IP 地址而且要知道对方的端口号(为了找到对方计算机中的应用进程)) 6. 运输层用一个 16 位端口号标志一个端口。端口号只有本地意义,它只是为了标志计算机应用层中的各个进程在和运输层交互时的层间接口。在互联网的不同计算机中,相同的端口号是没有关联的。协议端口号简称端口。虽然通信的终点是应用进程,但只要把所发送的报文交到目的主机的某个合适端口,剩下的工作(最后交付目的进程)就由 TCP 和 UDP 来完成。 -7. 运输层的端口号分为服务器端使用的端口号(0~1023 指派给熟知端口,1024~49151 是登记端口号)和客户端暂时使用的端口号(49152~65535) +7. 运输层的端口号分为服务器端使用的端口号(0˜1023 指派给熟知端口,1024˜49151 是登记端口号)和客户端暂时使用的端口号(49152˜65535) 8. **UDP 的主要特点是 ① 无连接 ② 尽最大努力交付 ③ 面向报文 ④ 无拥塞控制 ⑤ 支持一对一,一对多,多对一和多对多的交互通信 ⑥ 首部开销小(只有四个字段:源端口,目的端口,长度和检验和)** 9. **TCP 的主要特点是 ① 面向连接 ② 每一条 TCP 连接只能是一对一的 ③ 提供可靠交付 ④ 提供全双工通信 ⑤ 面向字节流** -10. **TCP 用主机的 IP 地址加上主机上的端口号作为 TCP 连接的端点。这样的端点就叫做套接字(socket)或插口。套接字用(IP 地址:端口号)来表示。每一条 TCP 连接唯一被通信两端的两个端点所确定。** +10. **TCP 用主机的 IP 地址加上主机上的端口号作为 TCP 连接的端点。这样的端点就叫做套接字(socket)或插口。套接字用(IP 地址:端口号)来表示。每一条 TCP 连接唯一地被通信两端的两个端点所确定。** 11. 停止等待协议是为了实现可靠传输的,它的基本原理就是每发完一个分组就停止发送,等待对方确认。在收到确认后再发下一个分组。 12. 为了提高传输效率,发送方可以不使用低效率的停止等待协议,而是采用流水线传输。流水线传输就是发送方可连续发送多个分组,不必每发完一个分组就停下来等待对方确认。这样可使信道上一直有数据不间断的在传送。这种传输方式可以明显提高信道利用率。 -13. 停止等待协议中超时重传是指只要超过一段时间仍然没有收到确认,就重传前面发送过的分组(认为刚才发送过的分组丢失了)。因此每发送完一个分组需要设置一个超时计时器,其重转时间应比数据在分组传输的平均往返时间更长一些。这种自动重传方式常称为自动重传请求 ARQ。另外在停止等待协议中若收到重复分组,就丢弃该分组,但同时还要发送确认。连续 ARQ 协议可提高信道利用率。发送维持一个发送窗口,凡位于发送窗口内的分组可连续发送出去,而不需要等待对方确认。接收方一般采用累积确认,对按序到达的最后一个分组发送确认,表明到这个分组位置的所有分组都已经正确收到了。 +13. 停止等待协议中超时重传是指只要超过一段时间仍然没有收到确认,就重传前面发送过的分组(认为刚才发送过的分组丢失了)。因此每发送完一个分组需要设置一个超时计时器,其重传时间应比数据在分组传输的平均往返时间更长一些。这种自动重传方式常称为自动重传请求 ARQ。另外在停止等待协议中若收到重复分组,就丢弃该分组,但同时还要发送确认。连续 ARQ 协议可提高信道利用率。发送维持一个发送窗口,凡位于发送窗口内的分组可连续发送出去,而不需要等待对方确认。接收方一般采用累积确认,对按序到达的最后一个分组发送确认,表明到这个分组位置的所有分组都已经正确收到了。 14. TCP 报文段的前 20 个字节是固定的,后面有 4n 字节是根据需要增加的选项。因此,TCP 首部的最小长度是 20 字节。 15. **TCP 使用滑动窗口机制。发送窗口里面的序号表示允许发送的序号。发送窗口后沿的后面部分表示已发送且已收到确认,而发送窗口前沿的前面部分表示不允许发送。发送窗口后沿的变化情况有两种可能,即不动(没有收到新的确认)和前移(收到了新的确认)。发送窗口的前沿通常是不断向前移动的。一般来说,我们总是希望数据传输更快一些。但如果发送方把数据发送的过快,接收方就可能来不及接收,这就会造成数据的丢失。所谓流量控制就是让发送方的发送速率不要太快,要让接收方来得及接收。** 16. 在某段时间,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就要变坏。这种情况就叫拥塞。拥塞控制就是为了防止过多的数据注入到网络中,这样就可以使网络中的路由器或链路不致过载。拥塞控制所要做的都有一个前提,就是网络能够承受现有的网络负荷。拥塞控制是一个全局性的过程,涉及到所有的主机,所有的路由器,以及与降低网络传输性能有关的所有因素。相反,流量控制往往是点对点通信量的控制,是个端到端的问题。流量控制所要做到的就是抑制发送端发送数据的速率,以便使接收端来得及接收。 @@ -297,7 +305,7 @@

https://www.seobility.net/en/wiki/HTTP_headers

-2. **文件传输协议(FTP)** :FTP 是 File TransferProtocol(文件传输协议)的英文简称,而中文简称为“文传协议”。用于 Internet 上的控制文件的双向传输。同时,它也是一个应用程序(Application)。基于不同的操作系统有不同的 FTP 应用程序,而所有这些应用程序都遵守同一种协议以传输文件。在 FTP 的使用当中,用户经常遇到两个概念:"下载"(Download)和"上传"(Upload)。 "下载"文件就是从远程主机拷贝文件至自己的计算机上;"上传"文件就是将文件从自己的计算机中拷贝至远程主机上。用 Internet 语言来说,用户可通过客户机程序向(从)远程主机上传(下载)文件。 +2. **文件传输协议(FTP)** :FTP 是 File Transfer Protocol(文件传输协议)的英文简称,而中文简称为“文传协议”。用于 Internet 上的控制文件的双向传输。同时,它也是一个应用程序(Application)。基于不同的操作系统有不同的 FTP 应用程序,而所有这些应用程序都遵守同一种协议以传输文件。在 FTP 的使用当中,用户经常遇到两个概念:"下载"(Download)和"上传"(Upload)。 "下载"文件就是从远程主机拷贝文件至自己的计算机上;"上传"文件就是将文件从自己的计算机中拷贝至远程主机上。用 Internet 语言来说,用户可通过客户机程序向(从)远程主机上传(下载)文件。 ![FTP工作过程](https://img-blog.csdnimg.cn/img_convert/3f1abf8adba4aa317eca69c489e3db23.png) @@ -332,7 +340,7 @@ HTTP 协议的本质就是一种浏览器与服务器之间约定好的通信格 ### 6.2. 重要知识点总结 -1. 文件传输协议(FTP)使用 TCP 可靠的运输服务。FTP 使用客户服务器方式。一个 FTP 服务器进程可以同时为多个用户提供服务。在进进行文件传输时,FTP 的客户和服务器之间要先建立两个并行的 TCP 连接:控制连接和数据连接。实际用于传输文件的是数据连接。 +1. 文件传输协议(FTP)使用 TCP 可靠的运输服务。FTP 使用客户服务器方式。一个 FTP 服务器进程可以同时为多个用户提供服务。在进行文件传输时,FTP 的客户和服务器之间要先建立两个并行的 TCP 连接:控制连接和数据连接。实际用于传输文件的是数据连接。 2. 万维网客户程序与服务器之间进行交互使用的协议是超文本传输协议 HTTP。HTTP 使用 TCP 连接进行可靠传输。但 HTTP 本身是无连接、无状态的。HTTP/1.1 协议使用了持续连接(分为非流水线方式和流水线方式) 3. 电子邮件把邮件发送到收件人使用的邮件服务器,并放在其中的收件人邮箱中,收件人可随时上网到自己使用的邮件服务器读取,相当于电子邮箱。 4. 一个电子邮件系统有三个重要组成构件:用户代理、邮件服务器、邮件协议(包括邮件发送协议,如 SMTP,和邮件读取协议,如 POP3 和 IMAP)。用户代理和邮件服务器都要运行这些协议。 diff --git a/docs/operating-system/images/Linux-Logo.png b/docs/cs-basics/operating-system/images/Linux-Logo.png similarity index 100% rename from docs/operating-system/images/Linux-Logo.png rename to docs/cs-basics/operating-system/images/Linux-Logo.png diff --git "a/docs/operating-system/images/Linux\344\271\213\347\210\266.png" "b/docs/cs-basics/operating-system/images/Linux\344\271\213\347\210\266.png" similarity index 100% rename from "docs/operating-system/images/Linux\344\271\213\347\210\266.png" rename to "docs/cs-basics/operating-system/images/Linux\344\271\213\347\210\266.png" diff --git "a/docs/operating-system/images/Linux\346\235\203\351\231\220\345\221\275\344\273\244.png" "b/docs/cs-basics/operating-system/images/Linux\346\235\203\351\231\220\345\221\275\344\273\244.png" similarity index 100% rename from "docs/operating-system/images/Linux\346\235\203\351\231\220\345\221\275\344\273\244.png" rename to "docs/cs-basics/operating-system/images/Linux\346\235\203\351\231\220\345\221\275\344\273\244.png" diff --git "a/docs/operating-system/images/Linux\346\235\203\351\231\220\350\247\243\350\257\273.png" "b/docs/cs-basics/operating-system/images/Linux\346\235\203\351\231\220\350\247\243\350\257\273.png" similarity index 100% rename from "docs/operating-system/images/Linux\346\235\203\351\231\220\350\247\243\350\257\273.png" rename to "docs/cs-basics/operating-system/images/Linux\346\235\203\351\231\220\350\247\243\350\257\273.png" diff --git "a/docs/operating-system/images/Linux\347\233\256\345\275\225\346\240\221.png" "b/docs/cs-basics/operating-system/images/Linux\347\233\256\345\275\225\346\240\221.png" similarity index 100% rename from "docs/operating-system/images/Linux\347\233\256\345\275\225\346\240\221.png" rename to "docs/cs-basics/operating-system/images/Linux\347\233\256\345\275\225\346\240\221.png" diff --git a/docs/operating-system/images/linux.png b/docs/cs-basics/operating-system/images/linux.png similarity index 100% rename from docs/operating-system/images/linux.png rename to docs/cs-basics/operating-system/images/linux.png diff --git a/docs/operating-system/images/macos.png b/docs/cs-basics/operating-system/images/macos.png similarity index 100% rename from docs/operating-system/images/macos.png rename to docs/cs-basics/operating-system/images/macos.png diff --git a/docs/operating-system/images/unix.png b/docs/cs-basics/operating-system/images/unix.png similarity index 100% rename from docs/operating-system/images/unix.png rename to docs/cs-basics/operating-system/images/unix.png diff --git a/docs/operating-system/images/windows.png b/docs/cs-basics/operating-system/images/windows.png similarity index 100% rename from docs/operating-system/images/windows.png rename to docs/cs-basics/operating-system/images/windows.png diff --git "a/docs/operating-system/images/\344\277\256\346\224\271\346\226\207\344\273\266\346\235\203\351\231\220.png" "b/docs/cs-basics/operating-system/images/\344\277\256\346\224\271\346\226\207\344\273\266\346\235\203\351\231\220.png" similarity index 100% rename from "docs/operating-system/images/\344\277\256\346\224\271\346\226\207\344\273\266\346\235\203\351\231\220.png" rename to "docs/cs-basics/operating-system/images/\344\277\256\346\224\271\346\226\207\344\273\266\346\235\203\351\231\220.png" diff --git "a/docs/operating-system/images/\346\226\207\344\273\266inode\344\277\241\346\201\257.png" "b/docs/cs-basics/operating-system/images/\346\226\207\344\273\266inode\344\277\241\346\201\257.png" similarity index 100% rename from "docs/operating-system/images/\346\226\207\344\273\266inode\344\277\241\346\201\257.png" rename to "docs/cs-basics/operating-system/images/\346\226\207\344\273\266inode\344\277\241\346\201\257.png" diff --git "a/docs/operating-system/images/\347\224\250\346\210\267\346\200\201\344\270\216\345\206\205\346\240\270\346\200\201.png" "b/docs/cs-basics/operating-system/images/\347\224\250\346\210\267\346\200\201\344\270\216\345\206\205\346\240\270\346\200\201.png" similarity index 100% rename from "docs/operating-system/images/\347\224\250\346\210\267\346\200\201\344\270\216\345\206\205\346\240\270\346\200\201.png" rename to "docs/cs-basics/operating-system/images/\347\224\250\346\210\267\346\200\201\344\270\216\345\206\205\346\240\270\346\200\201.png" diff --git a/docs/operating-system/linux.md b/docs/cs-basics/operating-system/linux-intro.md similarity index 90% rename from docs/operating-system/linux.md rename to docs/cs-basics/operating-system/linux-intro.md index 80b52fba951..723cd9b7e88 100644 --- a/docs/operating-system/linux.md +++ b/docs/cs-basics/operating-system/linux-intro.md @@ -1,45 +1,12 @@ -点击关注[公众号](#公众号)及时获取笔主最新更新文章,并可免费领取本文档配套的《Java 面试突击》以及 Java 工程师必备学习资源。 - - - - - - -- [1. 从认识操作系统开始](#1-从认识操作系统开始) - - [1.1. 操作系统简介](#11-操作系统简介) - - [1.2. 操作系统简单分类](#12-操作系统简单分类) - - [1.2.1. Windows](#121-windows) - - [1.2.2. Unix](#122-unix) - - [1.2.3. Linux](#123-linux) - - [1.2.4. Mac OS](#124-mac-os) - - [1.3. 操作系统的内核(Kernel)](#13-操作系统的内核kernel) - - [1.4. 中央处理器(CPU,Central Processing Unit)](#14-中央处理器cpucentral-processing-unit) - - [1.5. CPU vs Kernel(内核)](#15-cpu-vs-kernel内核) - - [1.6. 系统调用](#16-系统调用) -- [2. 初探 Linux](#2-初探-linux) - - [2.1. Linux 简介](#21-linux-简介) - - [2.2. Linux 诞生](#22-linux-诞生) - - [2.3. 常见 Linux 发行版本有哪些?](#23-常见-linux-发行版本有哪些) -- [3. Linux 文件系统概览](#3-linux-文件系统概览) - - [3.1. Linux 文件系统简介](#31-linux-文件系统简介) - - [3.2. inode 介绍](#32-inode-介绍) - - [3.3. Linux 文件类型](#33-linux-文件类型) - - [3.4. Linux 目录树](#34-linux-目录树) -- [4. Linux 基本命令](#4-linux-基本命令) - - [4.1. 目录切换命令](#41-目录切换命令) - - [4.2. 目录的操作命令(增删改查)](#42-目录的操作命令增删改查) - - [4.3. 文件的操作命令(增删改查)](#43-文件的操作命令增删改查) - - [4.4. 压缩文件的操作命令](#44-压缩文件的操作命令) - - [4.5. Linux 的权限命令](#45-linux-的权限命令) - - [4.6. Linux 用户管理](#46-linux-用户管理) - - [4.7. Linux 系统用户组的管理](#47-linux-系统用户组的管理) - - [4.8. 其他常用命令](#48-其他常用命令) -- [5. 公众号](#5-公众号) - - - - -今天这篇文章中简单介绍一下一个 Java 程序员必知的 Linux 的一些概念以及常见命令。 +--- +title: 后端程序员必备的 Linux 基础知识总结 +category: 计算机基础 +tag: + - 操作系统 + - Linux +--- + +简单介绍一下 Java 程序员必知的 Linux 的一些概念以及常见命令。 _如果文章有任何需要改善和完善的地方,欢迎在评论区指出,共同进步!笔芯!_ @@ -224,7 +191,7 @@ Linux 支持很多文件类型,其中非常重要的文件类型有: **普通 - **普通文件(-)** : 用于存储信息和数据, Linux 用户可以根据访问权限对普通文件进行查看、更改和删除。比如:图片、声音、PDF、text、视频、源代码等等。 - **目录文件(d,directory file)** :目录也是文件的一种,用于表示和管理系统中的文件,目录文件中包含一些文件名和子目录名。打开目录事实上就是打开目录文件。 - **符号链接文件(l,symbolic link)** :保留了指向文件的地址而不是文件本身。 -- **字符设备(c,char)** :用来访问字符设备比如硬盘。 +- **字符设备(c,char)** :用来访问字符设备比如键盘。 - **设备文件(b,block)** : 用来访问块设备比如硬盘、软盘。 - **管道文件(p,pipe)** : 一种特殊类型的文件,用于进程之间的通信。 - **套接字(s,socket)** :用于进程间的网络通信,也可以用于本机之间的非网络通信。 @@ -443,13 +410,3 @@ Linux 系统是一个多用户多任务的分时操作系统,任何一个要 - **`shutdown`:** `shutdown -h now`: 指定现在立即关机;`shutdown +5 "System will shutdown after 5 minutes"`:指定 5 分钟后关机,同时送出警告信息给登入用户。 - **`reboot`:** **`reboot`:** 重开机。**`reboot -w`:** 做个重开机的模拟(只有纪录并不会真的重开机)。 - -## 5. 公众号 - -如果大家想要实时关注我更新的文章以及分享的干货的话,可以关注我的公众号。 - -**《Java 面试突击》:** 由本文档衍生的专为面试而生的《Java 面试突击》V3.0 PDF 版本[公众号](#公众号)后台回复 **"Java 面试突击"** 即可免费领取! - -**Java 工程师必备学习资源:** 一些 Java 工程师常用学习资源公众号后台回复关键字 **“1”** 即可免费无套路获取。 - -![我的公众号](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-6/167598cd2e17b8ec.png) diff --git a/docs/operating-system/Shell.md b/docs/cs-basics/operating-system/shell-intro.md similarity index 88% rename from docs/operating-system/Shell.md rename to docs/cs-basics/operating-system/shell-intro.md index 099bcaf6678..074f7bfbe55 100644 --- a/docs/operating-system/Shell.md +++ b/docs/cs-basics/operating-system/shell-intro.md @@ -1,33 +1,10 @@ - - - -- [Shell 编程入门](#shell-编程入门) - - [走进 Shell 编程的大门](#走进-shell-编程的大门) - - [为什么要学Shell?](#为什么要学shell) - - [什么是 Shell?](#什么是-shell) - - [Shell 编程的 Hello World](#shell-编程的-hello-world) - - [Shell 变量](#shell-变量) - - [Shell 编程中的变量介绍](#shell-编程中的变量介绍) - - [Shell 字符串入门](#shell-字符串入门) - - [Shell 字符串常见操作](#shell-字符串常见操作) - - [Shell 数组](#shell-数组) - - [Shell 基本运算符](#shell-基本运算符) - - [算数运算符](#算数运算符) - - [关系运算符](#关系运算符) - - [逻辑运算符](#逻辑运算符) - - [布尔运算符](#布尔运算符) - - [字符串运算符](#字符串运算符) - - [文件相关运算符](#文件相关运算符) - - [shell流程控制](#shell流程控制) - - [if 条件语句](#if-条件语句) - - [for 循环语句](#for-循环语句) - - [while 语句](#while-语句) - - [shell 函数](#shell-函数) - - [不带参数没有返回值的函数](#不带参数没有返回值的函数) - - [有返回值的函数](#有返回值的函数) - - [带参数的函数](#带参数的函数) - - +--- +title: Shell 编程入门 +category: 计算机基础 +tag: + - 操作系统 + - Linux +--- # Shell 编程入门 @@ -57,7 +34,7 @@ W3Cschool 上的一篇文章是这样介绍 Shell的,如下图所示。 ### Shell 编程的 Hello World -学习任何一门编程语言第一件事就是输出HelloWord了!下面我会从新建文件到shell代码编写来说下Shell 编程如何输出Hello World。 +学习任何一门编程语言第一件事就是输出HelloWorld了!下面我会从新建文件到shell代码编写来说下Shell 编程如何输出Hello World。 (1)新建一个文件 helloworld.sh :`touch helloworld.sh`,扩展名为 sh(sh代表Shell)(扩展名并不影响脚本执行,见名知意就好,如果你用 php 写 shell 脚本,扩展名就用 php 好了) @@ -94,14 +71,14 @@ shell中 # 符号表示注释。**shell 的第一行比较特殊,一般都会 3. **Shell变量** :Shell变量是由 Shell 程序设置的特殊变量。Shell 变量中有一部分是环境变量,有一部分是局部变量,这些变量保证了 Shell 的正常运行 **常用的环境变量:** -> PATH 决定了shell将到哪些目录中寻找命令或程序 -HOME 当前用户主目录 -HISTSIZE 历史记录数 -LOGNAME 当前用户的登录名 -HOSTNAME 指主机的名称 -SHELL 当前用户Shell类型 -LANGUGE  语言相关的环境变量,多语言可以修改此环境变量 -MAIL 当前用户的邮件存放目录 +> PATH 决定了shell将到哪些目录中寻找命令或程序 +HOME 当前用户主目录 +HISTSIZE 历史记录数 +LOGNAME 当前用户的登录名 +HOSTNAME 指主机的名称 +SHELL 当前用户Shell类型 +LANGUAGE  语言相关的环境变量,多语言可以修改此环境变量 +MAIL 当前用户的邮件存放目录 PS1 基本提示符,对于root用户是#,对于普通用户是$ **使用 Linux 已定义的环境变量:** diff --git a/docs/operating-system/basis.md "b/docs/cs-basics/operating-system/\346\223\215\344\275\234\347\263\273\347\273\237\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230&\347\237\245\350\257\206\347\202\271\346\200\273\347\273\223.md" similarity index 96% rename from docs/operating-system/basis.md rename to "docs/cs-basics/operating-system/\346\223\215\344\275\234\347\263\273\347\273\237\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230&\347\237\245\350\257\206\347\202\271\346\200\273\347\273\223.md" index 49048648439..db158c68faf 100644 --- a/docs/operating-system/basis.md +++ "b/docs/cs-basics/operating-system/\346\223\215\344\275\234\347\263\273\347\273\237\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230&\347\237\245\350\257\206\347\202\271\346\200\273\347\273\223.md" @@ -1,3 +1,10 @@ +--- +title: 操作系统常见面试题总结 +category: 计算机基础 +tag: + - 操作系统 +--- + 大家好,我是 Guide 哥! 很多读者抱怨计算操作系统的知识点比较繁杂,自己也没有多少耐心去看,但是面试的时候又经常会遇到。所以,我带着我整理好的操作系统的常见问题来啦!这篇文章总结了一些我觉得比较重要的操作系统相关的问题比如**进程管理**、**内存管理**、**虚拟内存**等等。 @@ -102,7 +109,7 @@ 1. **管道/匿名管道(Pipes)** :用于具有亲缘关系的父子进程间或者兄弟进程之间的通信。 1. **有名管道(Names Pipes)** : 匿名管道由于没有名字,只能用于亲缘关系的进程间通信。为了克服这个缺点,提出了有名管道。有名管道严格遵循**先进先出(first in first out)**。有名管道以磁盘文件的方式存在,可以实现本机任意两个进程通信。 1. **信号(Signal)** :信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生; -1. **消息队列(Message Queuing)** :消息队列是消息的链表,具有特定的格式,存放在内存中并由消息队列标识符标识。管道和消息队列的通信数据都是先进先出的原则。与管道(无名管道:只存在于内存中的文件;命名管道:存在于实际的磁盘介质或者文件系统)不同的是消息队列存放在内核中,只有在内核重启(即,操作系统重启)或者显示地删除一个消息队列时,该消息队列才会被真正的删除。消息队列可以实现消息的随机查询,消息不一定要以先进先出的次序读取,也可以按消息的类型读取.比 FIFO 更有优势。**消息队列克服了信号承载信息量少,管道只能承载无格式字 节流以及缓冲区大小受限等缺。** +1. **消息队列(Message Queuing)** :消息队列是消息的链表,具有特定的格式,存放在内存中并由消息队列标识符标识。管道和消息队列的通信数据都是先进先出的原则。与管道(无名管道:只存在于内存中的文件;命名管道:存在于实际的磁盘介质或者文件系统)不同的是消息队列存放在内核中,只有在内核重启(即,操作系统重启)或者显式地删除一个消息队列时,该消息队列才会被真正的删除。消息队列可以实现消息的随机查询,消息不一定要以先进先出的次序读取,也可以按消息的类型读取.比 FIFO 更有优势。**消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺点。** 1. **信号量(Semaphores)** :信号量是一个计数器,用于多进程对共享数据的访问,信号量的意图在于进程间同步。这种通信方式主要用于解决与同步相关的问题并避免竞争条件。 1. **共享内存(Shared memory)** :使得多个进程可以访问同一块内存空间,不同进程可以及时看到对方进程中对共享内存中数据的更新。这种方式需要依靠某种同步操作,如互斥锁和信号量等。可以说这是最有用的进程间通信方式。 1. **套接字(Sockets)** : 此方法主要用于在客户端和服务器之间通过网络进行通信。套接字是支持 TCP/IP 的网络通信的基本操作单元,可以看做是不同主机之间的进程进行双向通信的端点,简单的说就是通信的两方的一种约定,用套接字中的相关函数来完成通信过程。 @@ -113,9 +120,9 @@ 🙋 **我** :线程同步是两个或多个共享关键资源的线程的并发执行。应该同步线程以避免关键的资源使用冲突。操作系统一般有下面三种线程同步的方式: -1. **互斥量(Mutex)**:采用互斥对象机制,只有拥有互斥对象的线程才有访问公共资源的权限。因为互斥对象只有一个,所以可以保证公共资源不会被多个线程同时访问。比如 Java 中的 synchronized 关键词和各种 Lock 都是这种机制。 -1. **信号量(Semphares)** :它允许同一时刻多个线程访问同一资源,但是需要控制同一时刻访问此资源的最大线程数量 -1. **事件(Event)** :Wait/Notify:通过通知操作的方式来保持多线程同步,还可以方便的实现多线程优先级的比较操 +1. **互斥量(Mutex)** :采用互斥对象机制,只有拥有互斥对象的线程才有访问公共资源的权限。因为互斥对象只有一个,所以可以保证公共资源不会被多个线程同时访问。比如 Java 中的 synchronized 关键词和各种 Lock 都是这种机制。 +1. **信号量(Semphares)** :它允许同一时刻多个线程访问同一资源,但是需要控制同一时刻访问此资源的最大线程数量。 +1. **事件(Event)** :Wait/Notify:通过通知操作的方式来保持多线程同步,还可以方便地实现多线程优先级的比较操作。 ### 2.5 进程的调度算法 @@ -135,7 +142,7 @@ 👨‍💻**面试官** :**你知道什么是死锁吗?** -🙋 **我** :多个进程可以竞争有限数量的资源。当一个进程申请资源时,如果这时没有可用资源,那么这个进程进入等待状态。有时,如果所申请的资源被其他等待进程占有,那么该等待进程有可能再也无法改变状态。这种情况成为**死锁**。 +🙋 **我** :多个进程可以竞争有限数量的资源。当一个进程申请资源时,如果这时没有可用资源,那么这个进程进入等待状态。有时,如果所申请的资源被其他等待进程占有,那么该等待进程有可能再也无法改变状态。这种情况称为**死锁**。 ### 2.7 死锁的四个条件 @@ -213,7 +220,7 @@ 🙋 **我** : 1. **共同点** : - - 分页机制和分段机制都是为了提高内存利用率,较少内存碎片。 + - 分页机制和分段机制都是为了提高内存利用率,减少内存碎片。 - 页和段都是离散存储的,所以两者都是离散分配内存的方式。但是,每个页和段中的内存是连续的。 2. **区别** : - 页的大小是固定的,由操作系统决定;而段的大小不固定,取决于我们当前运行的程序。 @@ -337,7 +344,7 @@ - **OPT 页面置换算法(最佳页面置换算法)** :最佳(Optimal, OPT)置换算法所选择的被淘汰页面将是以后永不使用的,或者是在最长时间内不再被访问的页面,这样可以保证获得最低的缺页率。但由于人们目前无法预知进程在内存下的若千页面中哪个是未来最长时间内不再被访问的,因而该算法无法实现。一般作为衡量其他置换算法的方法。 - **FIFO(First In First Out) 页面置换算法(先进先出页面置换算法)** : 总是淘汰最先进入内存的页面,即选择在内存中驻留时间最久的页面进行淘汰。 -- **LRU (Least Currently Used)页面置换算法(最近最久未使用页面置换算法)** :LRU算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间 T,当须淘汰一个页面时,选择现有页面中其 T 值最大的,即最近最久未使用的页面予以淘汰。 +- **LRU (Least Recently Used)页面置换算法(最近最久未使用页面置换算法)** :LRU算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间 T,当须淘汰一个页面时,选择现有页面中其 T 值最大的,即最近最久未使用的页面予以淘汰。 - **LFU (Least Frequently Used)页面置换算法(最少使用页面置换算法)** : 该置换算法选择在之前时期使用最少的页面作为淘汰页。 ## Reference diff --git "a/docs/dataStructures-algorithms/\346\225\260\346\215\256\347\273\223\346\236\204.md" "b/docs/dataStructures-algorithms/\346\225\260\346\215\256\347\273\223\346\236\204.md" deleted file mode 100644 index 5caffaac901..00000000000 --- "a/docs/dataStructures-algorithms/\346\225\260\346\215\256\347\273\223\346\236\204.md" +++ /dev/null @@ -1,179 +0,0 @@ -> 注意!!!这部分内容会进行重构,以下内容仅作为参考。 -> - -- [Queue](#queue) - - [什么是队列](#什么是队列) - - [队列的种类](#队列的种类) - - [Java 集合框架中的队列 Queue](#java-集合框架中的队列-queue) - - [推荐文章](#推荐文章) -- [Set](#set) - - [什么是 Set](#什么是-set) - - [补充:有序集合与无序集合说明](#补充:有序集合与无序集合说明) - - [HashSet 和 TreeSet 底层数据结构](#hashset-和-treeset-底层数据结构) - - [推荐文章](#推荐文章-1) -- [List](#list) - - [什么是List](#什么是list) - - [List的常见实现类](#list的常见实现类) - - [ArrayList 和 LinkedList 源码学习](#arraylist-和-linkedlist-源码学习) - - [推荐阅读](#推荐阅读) -- [Map](#map) -- [树](#树) - - - - -## Queue - -### 什么是队列 -队列是数据结构中比较重要的一种类型,它支持 FIFO,尾部添加、头部删除(先进队列的元素先出队列),跟我们生活中的排队类似。 - -### 队列的种类 - -- **单队列**(单队列就是常见的队列, 每次添加元素时,都是添加到队尾,存在“假溢出”的问题也就是明明有位置却不能添加的情况) -- **循环队列**(避免了“假溢出”的问题) - -### Java 集合框架中的队列 Queue - -Java 集合中的 Queue 继承自 Collection 接口 ,Deque, LinkedList, PriorityQueue, BlockingQueue 等类都实现了它。 -Queue 用来存放 等待处理元素 的集合,这种场景一般用于缓冲、并发访问。 -除了继承 Collection 接口的一些方法,Queue 还添加了额外的 添加、删除、查询操作。 - -## Set - -### 什么是 Set -Set 继承于 Collection 接口,是一个不允许出现重复元素,并且无序的集合,主要 HashSet 和 TreeSet 两大实现类。 - -在判断重复元素的时候,HashSet 集合会调用 hashCode()和 equal()方法来实现;TreeSet 集合会调用compareTo方法来实现。 - -### 补充:有序集合与无序集合说明 -- 有序集合:集合里的元素可以根据 key 或 index 访问 (List、Map) -- 无序集合:集合里的元素只能遍历。(Set) - - -### HashSet 和 TreeSet 底层数据结构 - -**HashSet** 是哈希表结构,主要利用 HashMap 的 key 来存储元素,计算插入元素的 hashCode 来获取元素在集合中的位置; - -**TreeSet** 是红黑树结构,每一个元素都是树中的一个节点,插入的元素都会进行排序; - -## List - -### 什么是List - -在 List 中,用户可以精确控制列表中每个元素的插入位置,另外用户可以通过整数索引(列表中的位置)访问元素,并搜索列表中的元素。 与 Set 不同,List 通常允许重复的元素。 另外 List 是有序集合而 Set 是无序集合。 - -### List的常见实现类 - -**ArrayList** 是一个数组队列,相当于动态数组。它由数组实现,随机访问效率高,随机插入、随机删除效率低。 - -**LinkedList** 是一个双向链表。它也可以被当作堆栈、队列或双端队列进行操作。LinkedList随机访问效率低,但随机插入、随机删除效率高。 - -**Vector** 是矢量队列,和ArrayList一样,它也是一个动态数组,由数组实现。但是ArrayList是非线程安全的,而Vector是线程安全的。 - -**Stack** 是栈,它继承于Vector。它的特性是:先进后出(FILO, First In Last Out)。 - -## 树 - -### 1 二叉树 - -[二叉树](https://baike.baidu.com/item/%E4%BA%8C%E5%8F%89%E6%A0%91)(百度百科) - -(1)[完全二叉树](https://baike.baidu.com/item/%E5%AE%8C%E5%85%A8%E4%BA%8C%E5%8F%89%E6%A0%91)——若设二叉树的高度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第h层有叶子结点,并且叶子结点都是从左到右依次排布,这就是完全二叉树。 - -(2)[满二叉树](https://baike.baidu.com/item/%E6%BB%A1%E4%BA%8C%E5%8F%89%E6%A0%91)——除了叶结点外每一个结点都有左右子叶且叶子结点都处在最底层的二叉树。 - -(3)[平衡二叉树](https://baike.baidu.com/item/%E5%B9%B3%E8%A1%A1%E4%BA%8C%E5%8F%89%E6%A0%91/10421057)——平衡二叉树又被称为AVL树(区别于AVL算法),它是一棵二叉排序树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。 - -### 2 完全二叉树 - -[完全二叉树](https://baike.baidu.com/item/%E5%AE%8C%E5%85%A8%E4%BA%8C%E5%8F%89%E6%A0%91)(百度百科) - -完全二叉树:叶节点只能出现在最下层和次下层,并且最下面一层的结点都集中在该层最左边的若干位置的二叉树。 - -### 3 满二叉树 - -[满二叉树](https://baike.baidu.com/item/%E6%BB%A1%E4%BA%8C%E5%8F%89%E6%A0%91)(百度百科,国内外的定义不同) - -国内教程定义:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是(2^k) -1 ,则它就是满二叉树。 - -### 堆 - -[数据结构之堆的定义](https://blog.csdn.net/qq_33186366/article/details/51876191) - -堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。 - -### 4 二叉查找树(BST) - -[浅谈算法和数据结构: 七 二叉查找树](https://www.yycoding.xyz/post/2014/3/24/introduce-binary-search-tree) - -二叉查找树的特点: - -1. 若任意节点的左子树不空,则左子树上所有结点的 值均小于它的根结点的值; -2. 若任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值; -3. 任意节点的左、右子树也分别为二叉查找树; -4. 没有键值相等的节点(no duplicate nodes)。 - -### 5 平衡二叉树(Self-balancing binary search tree) - -[ 平衡二叉树](https://baike.baidu.com/item/%E5%B9%B3%E8%A1%A1%E4%BA%8C%E5%8F%89%E6%A0%91)(百度百科,平衡二叉树的常用实现方法有红黑树、AVL、替罪羊树、Treap、伸展树等) - -### 6 红黑树 - -红黑树特点: - -1. 每个节点非红即黑; -2. 根节点总是黑色的; -3. 每个叶子节点都是黑色的空节点(NIL节点); -4. 如果节点是红色的,则它的子节点必须是黑色的(反之不一定); -5. 从根节点到叶节点或空子节点的每条路径,必须包含相同数目的黑色节点(即相同的黑色高度)。 - - -红黑树的应用: - -TreeMap、TreeSet以及JDK1.8的HashMap底层都用到了红黑树。 - -**为什么要用红黑树?** - - -简单来说红黑树就是为了解决二叉查找树的缺陷,因为二叉查找树在某些情况下会退化成一个线性结构。详细了解可以查看 [漫画:什么是红黑树?](https://juejin.im/post/5a27c6946fb9a04509096248#comment)(也介绍到了二叉查找树,非常推荐) - -推荐文章: - -- [漫画:什么是红黑树?](https://juejin.im/post/5a27c6946fb9a04509096248#comment)(也介绍到了二叉查找树,非常推荐) -- [寻找红黑树的操作手册](http://dandanlove.com/2018/03/18/red-black-tree/)(文章排版以及思路真的不错) -- [红黑树深入剖析及Java实现](https://zhuanlan.zhihu.com/p/24367771)(美团点评技术团队) - -### 7 B-,B+,B*树 - -[二叉树学习笔记之B树、B+树、B*树 ](https://yq.aliyun.com/articles/38345) - -[《B-树,B+树,B*树详解》](https://blog.csdn.net/aqzwss/article/details/53074186) - -[《B-树,B+树与B*树的优缺点比较》](https://blog.csdn.net/bigtree_3721/article/details/73632405) - -B-树(或B树)是一种平衡的多路查找(又称排序)树,在文件系统中有所应用。主要用作文件的索引。其中的B就表示平衡(Balance) - -1. B+ 树的叶子节点链表结构相比于 B- 树便于扫库,和范围检索。 -2. B+树支持range-query(区间查询)非常方便,而B树不支持。这是数据库选用B+树的最主要原因。 -3. B\*树 是B+树的变体,B\*树分配新结点的概率比B+树要低,空间使用率更高; - -### 8 LSM 树 - -[[HBase] LSM树 VS B+树](https://blog.csdn.net/dbanote/article/details/8897599) - -B+树最大的性能问题是会产生大量的随机IO - -为了克服B+树的弱点,HBase引入了LSM树的概念,即Log-Structured Merge-Trees。 - -[LSM树由来、设计思想以及应用到HBase的索引](https://www.cnblogs.com/yanghuahui/p/3483754.html) - - -## 图 - - - - -## BFS及DFS - -- [《使用BFS及DFS遍历树和图的思路及实现》](https://blog.csdn.net/Gene1994/article/details/85097507) - diff --git a/docs/database/MySQL Index.md b/docs/database/MySQL Index.md deleted file mode 100644 index 32d8838886f..00000000000 --- a/docs/database/MySQL Index.md +++ /dev/null @@ -1,99 +0,0 @@ - - -## Mysql索引主要使用的两种数据结构 - -### 哈希索引 - -对于哈希索引来说,底层的数据结构就是哈希表,因此在绝大多数需求为单条记录查询的时候,可以选择哈希索引,查询性能最快;其余大部分场景,建议选择BTree索引。 - -### BTree索引 - - - -## 覆盖索引介绍 - -### 什么是覆盖索引 - -如果一个索引包含(或者说覆盖)所有需要查询的字段的值,我们就称之为“覆盖索引”。我们知道InnoDB存储引擎中,如果不是主键索引,叶子节点存储的是主键+列值。最终还是要“回表”,也就是要通过主键再查找一次。这样就会比较慢覆盖索引就是把要查询出的列和索引是对应的,不做回表操作! - -### 覆盖索引使用实例 - -现在我创建了索引(username,age),我们执行下面的 sql 语句 - -```sql -select username , age from user where username = 'Java' and age = 22 -``` - -在查询数据的时候:要查询出的列在叶子节点都存在!所以,就不用回表。 - -## 选择索引和编写利用这些索引的查询的3个原则 - -1. 单行访问是很慢的。特别是在机械硬盘存储中(SSD的随机I/O要快很多,不过这一点仍然成立)。如果服务器从存储中读取一个数据块只是为了获取其中一行,那么就浪费了很多工作。最好读取的块中能包含尽可能多所需要的行。使用索引可以创建位置引,用以提升效率。 -2. 按顺序访问范围数据是很快的,这有两个原因。第一,顺序 I/O 不需要多次磁盘寻道,所以比随机I/O要快很多(特别是对机械硬盘)。第二,如果服务器能够按需要顺序读取数据,那么就不再需要额外的排序操作,并且GROUPBY查询也无须再做排序和将行按组进行聚合计算了。 -3. 索引覆盖查询是很快的。如果一个索引包含了查询需要的所有列,那么存储引擎就不需要再回表查找行。这避免了大量的单行访问,而上面的第1点已经写明单行访问是很慢的。 - -## 为什么索引能提高查询速度 - -> 以下内容整理自: -> 地址: https://juejin.im/post/5b55b842f265da0f9e589e79 -> 作者 :Java3y - -### 先从 MySQL 的基本存储结构说起 - -MySQL的基本存储结构是页(记录都存在页里边): - -![MySQL的基本存储结构是页](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/18-10-2/28559421.jpg) - -![](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/18-10-2/82053134.jpg) - - - **各个数据页可以组成一个双向链表** - - **每个数据页中的记录又可以组成一个单向链表** - - 每个数据页都会为存储在它里边儿的记录生成一个页目录,在通过主键查找某条记录的时候可以在页目录中使用二分法快速定位到对应的槽,然后再遍历该槽对应分组中的记录即可快速找到指定的记录 - - 以其他列(非主键)作为搜索条件:只能从最小记录开始依次遍历单链表中的每条记录。 - -所以说,如果我们写select * from user where indexname = 'xxx'这样没有进行任何优化的sql语句,默认会这样做: - -1. **定位到记录所在的页:需要遍历双向链表,找到所在的页** -2. **从所在的页内中查找相应的记录:由于不是根据主键查询,只能遍历所在页的单链表了** - -很明显,在数据量很大的情况下这样查找会很慢!这样的时间复杂度为O(n)。 - - -### 使用索引之后 - -索引做了些什么可以让我们查询加快速度呢?其实就是将无序的数据变成有序(相对): - -![](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/18-10-2/5373082.jpg) - -要找到id为8的记录简要步骤: - -![](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/18-10-2/89338047.jpg) - -很明显的是:没有用索引我们是需要遍历双向链表来定位对应的页,现在通过 **“目录”** 就可以很快地定位到对应的页上了!(二分查找,时间复杂度近似为O(logn)) - -其实底层结构就是B+树,B+树作为树的一种实现,能够让我们很快地查找出对应的记录。 - -## 关于索引其他重要的内容补充 - -> 以下内容整理自:《Java工程师修炼之道》 - - -### 最左前缀原则 - -MySQL中的索引可以以一定顺序引用多列,这种索引叫作联合索引。如User表的name和city加联合索引就是(name,city),而最左前缀原则指的是,如果查询的时候查询条件精确匹配索引的左边连续一列或几列,则此列就可以被用到。如下: - -``` -select * from user where name=xx and city=xx ; //可以命中索引 -select * from user where name=xx ; // 可以命中索引 -select * from user where city=xx ; // 无法命中索引 -``` -这里需要注意的是,查询的时候如果两个条件都用上了,但是顺序不同,如 `city= xx and name =xx`,那么现在的查询引擎会自动优化为匹配联合索引的顺序,这样是能够命中索引的。 - -由于最左前缀原则,在创建联合索引时,索引字段的顺序需要考虑字段值去重之后的个数,较多的放前面。ORDER BY子句也遵循此规则。 - -### 注意避免冗余索引 - -冗余索引指的是索引的功能相同,能够命中索引(a, b)就肯定能命中索引(a) ,那么索引(a)就是冗余索引。如(name,city)和(name)这两个索引就是冗余索引,能够命中前者的查询肯定是能够命中后者。在大多数情况下,都应该尽量扩展已有的索引而不是创建新索引。 - -MySQL 5.7 版本后,可以通过查询 sys 库的 `schema_redundant_indexes` 表来查看冗余索引。 - diff --git "a/docs/database/Redis/Redis\346\214\201\344\271\205\345\214\226.md" "b/docs/database/Redis/Redis\346\214\201\344\271\205\345\214\226.md" deleted file mode 100644 index 2da52eec186..00000000000 --- "a/docs/database/Redis/Redis\346\214\201\344\271\205\345\214\226.md" +++ /dev/null @@ -1,111 +0,0 @@ - -非常感谢《redis实战》真本书,本文大多内容也参考了书中的内容。非常推荐大家看一下《redis实战》这本书,感觉书中的很多理论性东西还是很不错的。 - -为什么本文的名字要加上春夏秋冬又一春,哈哈 ,这是一部韩国的电影,我感觉电影不错,所以就用在文章名字上了,没有什么特别的含义,然后下面的有些配图也是电影相关镜头。 - -![春夏秋冬又一春](https://user-gold-cdn.xitu.io/2018/6/13/163f97071d71f6de?w=1280&h=720&f=jpeg&s=205252) - -**很多时候我们需要持久化数据也就是将内存中的数据写入到硬盘里面,大部分原因是为了之后重用数据(比如重启机器、机器故障之后回复数据),或者是为了防止系统故障而将数据备份到一个远程位置。** - -Redis不同于Memcached的很重要一点就是,**Redis支持持久化**,而且支持两种不同的持久化操作。Redis的一种持久化方式叫**快照(snapshotting,RDB)**,另一种方式是**只追加文件(append-only file,AOF)**。这两种方法各有千秋,下面我会详细这两种持久化方法是什么,怎么用,如何选择适合自己的持久化方法。 - -## 快照(snapshotting)持久化 - -Redis可以通过创建快照来获得存储在内存里面的数据在某个时间点上的副本。Redis创建快照之后,可以对快照进行备份,可以将快照复制到其他服务器从而创建具有相同数据的服务器副本(Redis主从结构,主要用来提高Redis性能),还可以将快照留在原地以便重启服务器的时候使用。 - -![春夏秋冬又一春](https://user-gold-cdn.xitu.io/2018/6/13/163f97568281782a?w=600&h=329&f=jpeg&s=88616) - -**快照持久化是Redis默认采用的持久化方式**,在redis.conf配置文件中默认有此下配置: - -``` -save 900 1 #在900秒(15分钟)之后,如果至少有1个key发生变化,Redis就会自动触发BGSAVE命令创建快照。 - -save 300 10 #在300秒(5分钟)之后,如果至少有10个key发生变化,Redis就会自动触发BGSAVE命令创建快照。 - -save 60 10000 #在60秒(1分钟)之后,如果至少有10000个key发生变化,Redis就会自动触发BGSAVE命令创建快照。 -``` - -根据配置,快照将被写入dbfilename选项指定的文件里面,并存储在dir选项指定的路径上面。如果在新的快照文件创建完毕之前,Redis、系统或者硬件这三者中的任意一个崩溃了,那么Redis将丢失最近一次创建快照写入的所有数据。 - -举个例子:假设Redis的上一个快照是2:35开始创建的,并且已经创建成功。下午3:06时,Redis又开始创建新的快照,并且在下午3:08快照创建完毕之前,有35个键进行了更新。如果在下午3:06到3:08期间,系统发生了崩溃,导致Redis无法完成新快照的创建工作,那么Redis将丢失下午2:35之后写入的所有数据。另一方面,如果系统恰好在新的快照文件创建完毕之后崩溃,那么Redis将丢失35个键的更新数据。 - -**创建快照的办法有如下几种:** - -- **BGSAVE命令:** 客户端向Redis发送 **BGSAVE命令** 来创建一个快照。对于支持BGSAVE命令的平台来说(基本上所有平台支持,除了Windows平台),Redis会调用fork来创建一个子进程,然后子进程负责将快照写入硬盘,而父进程则继续处理命令请求。 -- **SAVE命令:** 客户端还可以向Redis发送 **SAVE命令** 来创建一个快照,接到SAVE命令的Redis服务器在快照创建完毕之前不会再响应任何其他命令。SAVE命令不常用,我们通常只会在没有足够内存去执行BGSAVE命令的情况下,又或者即使等待持久化操作执行完毕也无所谓的情况下,才会使用这个命令。 -- **save选项:** 如果用户设置了save选项(一般会默认设置),比如 **save 60 10000**,那么从Redis最近一次创建快照之后开始算起,当“60秒之内有10000次写入”这个条件被满足时,Redis就会自动触发BGSAVE命令。 -- **SHUTDOWN命令:** 当Redis通过SHUTDOWN命令接收到关闭服务器的请求时,或者接收到标准TERM信号时,会执行一个SAVE命令,阻塞所有客户端,不再执行客户端发送的任何命令,并在SAVE命令执行完毕之后关闭服务器。 -- **一个Redis服务器连接到另一个Redis服务器:** 当一个Redis服务器连接到另一个Redis服务器,并向对方发送SYNC命令来开始一次复制操作的时候,如果主服务器目前没有执行BGSAVE操作,或者主服务器并非刚刚执行完BGSAVE操作,那么主服务器就会执行BGSAVE命令 - -如果系统真的发生崩溃,用户将丢失最近一次生成快照之后更改的所有数据。因此,快照持久化只适用于即使丢失一部分数据也不会造成一些大问题的应用程序。不能接受这个缺点的话,可以考虑AOF持久化。 - -## **AOF(append-only file)持久化** -与快照持久化相比,AOF持久化 的实时性更好,因此已成为主流的持久化方案。默认情况下Redis没有开启AOF(append only file)方式的持久化,可以通过appendonly参数开启: - -``` -appendonly yes -``` - -开启AOF持久化后每执行一条会更改Redis中的数据的命令,Redis就会将该命令写入硬盘中的AOF文件。AOF文件的保存位置和RDB文件的位置相同,都是通过dir参数设置的,默认的文件名是appendonly.aof。 - -![春夏秋冬又一春](https://user-gold-cdn.xitu.io/2018/6/13/163f976818876166?w=400&h=219&f=jpeg&s=91022) - -**在Redis的配置文件中存在三种同步方式,它们分别是:** - -``` -appendfsync always #每次有数据修改发生时都会写入AOF文件,这样会严重降低Redis的速度 -appendfsync everysec #每秒钟同步一次,显示地将多个写命令同步到硬盘 -appendfsync no #让操作系统决定何时进行同步 -``` - -**appendfsync always** 可以实现将数据丢失减到最少,不过这种方式需要对硬盘进行大量的写入而且每次只写入一个命令,十分影响Redis的速度。另外使用固态硬盘的用户谨慎使用appendfsync always选项,因为这会明显降低固态硬盘的使用寿命。 - -为了兼顾数据和写入性能,用户可以考虑 **appendfsync everysec选项** ,让Redis每秒同步一次AOF文件,Redis性能几乎没受到任何影响。而且这样即使出现系统崩溃,用户最多只会丢失一秒之内产生的数据。当硬盘忙于执行写入操作的时候,Redis还会优雅的放慢自己的速度以便适应硬盘的最大写入速度。 - -**appendfsync no** 选项一般不推荐,这种方案会使Redis丢失不定量的数据而且如果用户的硬盘处理写入操作的速度不够的话,那么当缓冲区被等待写入的数据填满时,Redis的写入操作将被阻塞,这会导致Redis的请求速度变慢。 - -**虽然AOF持久化非常灵活地提供了多种不同的选项来满足不同应用程序对数据安全的不同要求,但AOF持久化也有缺陷——AOF文件的体积太大。** - -## 重写/压缩AOF - -AOF虽然在某个角度可以将数据丢失降低到最小而且对性能影响也很小,但是极端的情况下,体积不断增大的AOF文件很可能会用完硬盘空间。另外,如果AOF体积过大,那么还原操作执行时间就可能会非常长。 - -为了解决AOF体积过大的问题,用户可以向Redis发送 **BGREWRITEAOF命令** ,这个命令会通过移除AOF文件中的冗余命令来重写(rewrite)AOF文件来减小AOF文件的体积。BGREWRITEAOF命令和BGSAVE创建快照原理十分相似,所以AOF文件重写也需要用到子进程,这样会导致性能问题和内存占用问题,和快照持久化一样。更糟糕的是,如果不加以控制的话,AOF文件的体积可能会比快照文件大好几倍。 - -**文件重写流程:** - -![文件重写流程](https://user-gold-cdn.xitu.io/2018/6/13/163f97f9bd0eea50?w=380&h=345&f=jpeg&s=14501) -和快照持久化可以通过设置save选项来自动执行BGSAVE一样,AOF持久化也可以通过设置 - -``` -auto-aof-rewrite-percentage -``` - -选项和 - -``` -auto-aof-rewrite-min-size -``` - -选项自动执行BGREWRITEAOF命令。举例:假设用户对Redis设置了如下配置选项并且启用了AOF持久化。那么当AOF文件体积大于64mb,并且AOF的体积比上一次重写之后的体积大了至少一倍(100%)的时候,Redis将执行BGREWRITEAOF命令。 - -``` -auto-aof-rewrite-percentage 100 -auto-aof-rewrite-min-size 64mb -``` - -无论是AOF持久化还是快照持久化,将数据持久化到硬盘上都是非常有必要的,但除了进行持久化外,用户还必须对持久化得到的文件进行备份(最好是备份到不同的地方),这样才能尽量避免数据丢失事故发生。如果条件允许的话,最好能将快照文件和重新重写的AOF文件备份到不同的服务器上面。 - -随着负载量的上升,或者数据的完整性变得越来越重要时,用户可能需要使用到复制特性。 - -## Redis 4.0 对于持久化机制的优化 -Redis 4.0 开始支持 RDB 和 AOF 的混合持久化(默认关闭,可以通过配置项 `aof-use-rdb-preamble` 开启)。 - -如果把混合持久化打开,AOF 重写的时候就直接把 RDB 的内容写到 AOF 文件开头。这样做的好处是可以结合 RDB 和 AOF 的优点, 快速加载同时避免丢失过多的数据。当然缺点也是有的, AOF 里面的 RDB 部分就是压缩格式不再是 AOF 格式,可读性较差。 - -参考: - -《Redis实战》 - -[深入学习Redis(2):持久化](https://www.cnblogs.com/kismetv/p/9137897.html) - diff --git "a/docs/database/Redis/Redlock\345\210\206\345\270\203\345\274\217\351\224\201.md" "b/docs/database/Redis/Redlock\345\210\206\345\270\203\345\274\217\351\224\201.md" deleted file mode 100644 index 86a15ff6faf..00000000000 --- "a/docs/database/Redis/Redlock\345\210\206\345\270\203\345\274\217\351\224\201.md" +++ /dev/null @@ -1,47 +0,0 @@ -这篇文章主要是对 Redis 官方网站刊登的 [Distributed locks with Redis](https://redis.io/topics/distlock) 部分内容的总结和翻译。 - -## 什么是 RedLock - -Redis 官方站这篇文章提出了一种权威的基于 Redis 实现分布式锁的方式名叫 *Redlock*,此种方式比原先的单节点的方法更安全。它可以保证以下特性: - -1. 安全特性:互斥访问,即永远只有一个 client 能拿到锁 -2. 避免死锁:最终 client 都可能拿到锁,不会出现死锁的情况,即使原本锁住某资源的 client crash 了或者出现了网络分区 -3. 容错性:只要大部分 Redis 节点存活就可以正常提供服务 - -## 怎么在单节点上实现分布式锁 - -> SET resource_name my_random_value NX PX 30000 - -主要依靠上述命令,该命令仅当 Key 不存在时(NX保证)set 值,并且设置过期时间 3000ms (PX保证),值 my_random_value 必须是所有 client 和所有锁请求发生期间唯一的,释放锁的逻辑是: - -```lua -if redis.call("get",KEYS[1]) == ARGV[1] then - return redis.call("del",KEYS[1]) -else - return 0 -end -``` - -上述实现可以避免释放另一个client创建的锁,如果只有 del 命令的话,那么如果 client1 拿到 lock1 之后因为某些操作阻塞了很长时间,此时 Redis 端 lock1 已经过期了并且已经被重新分配给了 client2,那么 client1 此时再去释放这把锁就会造成 client2 原本获取到的锁被 client1 无故释放了,但现在为每个 client 分配一个 unique 的 string 值可以避免这个问题。至于如何去生成这个 unique string,方法很多随意选择一种就行了。 - -## Redlock 算法 - -算法很易懂,起 5 个 master 节点,分布在不同的机房尽量保证可用性。为了获得锁,client 会进行如下操作: - -1. 得到当前的时间,微秒单位 -2. 尝试顺序地在 5 个实例上申请锁,当然需要使用相同的 key 和 random value,这里一个 client 需要合理设置与 master 节点沟通的 timeout 大小,避免长时间和一个 fail 了的节点浪费时间 -3. 当 client 在大于等于 3 个 master 上成功申请到锁的时候,且它会计算申请锁消耗了多少时间,这部分消耗的时间采用获得锁的当下时间减去第一步获得的时间戳得到,如果锁的持续时长(lock validity time)比流逝的时间多的话,那么锁就真正获取到了。 -4. 如果锁申请到了,那么锁真正的 lock validity time 应该是 origin(lock validity time) - 申请锁期间流逝的时间 -5. 如果 client 申请锁失败了,那么它就会在少部分申请成功锁的 master 节点上执行释放锁的操作,重置状态 - -## 失败重试 - -如果一个 client 申请锁失败了,那么它需要稍等一会在重试避免多个 client 同时申请锁的情况,最好的情况是一个 client 需要几乎同时向 5 个 master 发起锁申请。另外就是如果 client 申请锁失败了它需要尽快在它曾经申请到锁的 master 上执行 unlock 操作,便于其他 client 获得这把锁,避免这些锁过期造成的时间浪费,当然如果这时候网络分区使得 client 无法联系上这些 master,那么这种浪费就是不得不付出的代价了。 - -## 放锁 - -放锁操作很简单,就是依次释放所有节点上的锁就行了 - -## 性能、崩溃恢复和 fsync - -如果我们的节点没有持久化机制,client 从 5 个 master 中的 3 个处获得了锁,然后其中一个重启了,这是注意 **整个环境中又出现了 3 个 master 可供另一个 client 申请同一把锁!** 违反了互斥性。如果我们开启了 AOF 持久化那么情况会稍微好转一些,因为 Redis 的过期机制是语义层面实现的,所以在 server 挂了的时候时间依旧在流逝,重启之后锁状态不会受到污染。但是考虑断电之后呢,AOF部分命令没来得及刷回磁盘直接丢失了,除非我们配置刷回策略为 fsnyc = always,但这会损伤性能。解决这个问题的方法是,当一个节点重启之后,我们规定在 max TTL 期间它是不可用的,这样它就不会干扰原本已经申请到的锁,等到它 crash 前的那部分锁都过期了,环境不存在历史锁了,那么再把这个节点加进来正常工作。 diff --git "a/docs/database/Redis/redis\351\233\206\347\276\244\344\273\245\345\217\212\345\272\224\347\224\250\345\234\272\346\231\257.md" "b/docs/database/Redis/redis\351\233\206\347\276\244\344\273\245\345\217\212\345\272\224\347\224\250\345\234\272\346\231\257.md" deleted file mode 100644 index cd54f067f2c..00000000000 --- "a/docs/database/Redis/redis\351\233\206\347\276\244\344\273\245\345\217\212\345\272\224\347\224\250\345\234\272\346\231\257.md" +++ /dev/null @@ -1,269 +0,0 @@ -相关阅读: - -- [史上最全Redis高可用技术解决方案大全](https://mp.weixin.qq.com/s?__biz=Mzg2OTA0Njk0OA==&mid=2247484850&idx=1&sn=3238360bfa8105cf758dcf7354af2814&chksm=cea24a79f9d5c36fb2399aafa91d7fb2699b5006d8d037fe8aaf2e5577ff20ae322868b04a87&token=1082669959&lang=zh_CN&scene=21#wechat_redirect) -- [Raft协议实战之Redis Sentinel的选举Leader源码解析](http://weizijun.cn/2015/04/30/Raft%E5%8D%8F%E8%AE%AE%E5%AE%9E%E6%88%98%E4%B9%8BRedis%20Sentinel%E7%9A%84%E9%80%89%E4%B8%BELeader%E6%BA%90%E7%A0%81%E8%A7%A3%E6%9E%90/) - -目录: - - - -- [Redis 集群以及应用](#redis-集群以及应用) - - [集群](#集群) - - [主从复制](#主从复制) - - [主从链(拓扑结构)](#主从链拓扑结构) - - [复制模式](#复制模式) - - [问题点](#问题点) - - [哨兵机制](#哨兵机制) - - [拓扑图](#拓扑图) - - [节点下线](#节点下线) - - [Leader选举](#Leader选举) - - [故障转移](#故障转移) - - [读写分离](#读写分离) - - [定时任务](#定时任务) - - [分布式集群(Cluster)](#分布式集群cluster) - - [拓扑图](#拓扑图) - - [通讯](#通讯) - - [集中式](#集中式) - - [Gossip](#gossip) - - [寻址分片](#寻址分片) - - [hash取模](#hash取模) - - [一致性hash](#一致性hash) - - [hash槽](#hash槽) - - [使用场景](#使用场景) - - [热点数据](#热点数据) - - [会话维持 Session](#会话维持-session) - - [分布式锁 SETNX](#分布式锁-setnx) - - [表缓存](#表缓存) - - [消息队列 list](#消息队列-list) - - [计数器 string](#计数器-string) - - [缓存设计](#缓存设计) - - [更新策略](#更新策略) - - [更新一致性](#更新一致性) - - [缓存粒度](#缓存粒度) - - [缓存穿透](#缓存穿透) - - [解决方案](#解决方案) - - [缓存雪崩](#缓存雪崩) - - [出现后应对](#出现后应对) - - [请求过程](#请求过程) - - - -# Redis 集群以及应用 - -## 集群 - -### 主从复制 - -#### 主从链(拓扑结构) - - - -![主从](https://user-images.githubusercontent.com/26766909/67539461-d1a26c00-f714-11e9-81ae-61fa89faf156.png) - -![主从](https://user-images.githubusercontent.com/26766909/67539485-e0891e80-f714-11e9-8980-d253239fcd8b.png) - -#### 复制模式 -- 全量复制:Master 全部同步到 Slave -- 部分复制:Slave 数据丢失进行备份 - -#### 问题点 -- 同步故障 - - 复制数据延迟(不一致) - - 读取过期数据(Slave 不能删除数据) - - 从节点故障 - - 主节点故障 -- 配置不一致 - - maxmemory 不一致:丢失数据 - - 优化参数不一致:内存不一致. -- 避免全量复制 - - 选择小主节点(分片)、低峰期间操作. - - 如果节点运行 id 不匹配(如主节点重启、运行 id 发生变化),此时要执行全量复制,应该配合哨兵和集群解决. - - 主从复制挤压缓冲区不足产生的问题(网络中断,部分复制无法满足),可增大复制缓冲区( rel_backlog_size 参数). -- 复制风暴 - -### 哨兵机制 - -#### 拓扑图 - -![哨兵机制-拓扑图](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-11/哨兵机制-拓扑图.png) - -#### 节点下线 - -- 主观下线 - - 即 Sentinel 节点对 Redis 节点失败的偏见,超出超时时间认为 Master 已经宕机。 - - Sentinel 集群的每一个 Sentinel 节点会定时对 Redis 集群的所有节点发心跳包检测节点是否正常。如果一个节点在 `down-after-milliseconds` 时间内没有回复 Sentinel 节点的心跳包,则该 Redis 节点被该 Sentinel 节点主观下线。 -- 客观下线 - - 所有 Sentinel 节点对 Redis 节点失败要达成共识,即超过 quorum 个统一。 - - 当节点被一个 Sentinel 节点记为主观下线时,并不意味着该节点肯定故障了,还需要 Sentinel 集群的其他 Sentinel 节点共同判断为主观下线才行。 - - 该 Sentinel 节点会询问其它 Sentinel 节点,如果 Sentinel 集群中超过 quorum 数量的 Sentinel 节点认为该 Redis 节点主观下线,则该 Redis 客观下线。 - -#### Leader选举 - -- 选举出一个 Sentinel 作为 Leader:集群中至少有三个 Sentinel 节点,但只有其中一个节点可完成故障转移.通过以下命令可以进行失败判定或领导者选举。 -- 选举流程 - 1. 每个主观下线的 Sentinel 节点向其他 Sentinel 节点发送命令,要求设置它为领导者. - 2. 收到命令的 Sentinel 节点如果没有同意通过其他 Sentinel 节点发送的命令,则同意该请求,否则拒绝。 - 3. 如果该 Sentinel 节点发现自己的票数已经超过 Sentinel 集合半数且超过 quorum,则它成为领导者。 - 4. 如果此过程有多个 Sentinel 节点成为领导者,则等待一段时间再重新进行选举。 - -#### 故障转移 - -- 转移流程 - 1. Sentinel 选出一个合适的 Slave 作为新的 Master(slaveof no one 命令)。 - 2. 向其余 Slave 发出通知,让它们成为新 Master 的 Slave( parallel-syncs 参数)。 - 3. 等待旧 Master 复活,并使之成为新 Master 的 Slave。 - 4. 向客户端通知 Master 变化。 -- 从 Slave 中选择新 Master 节点的规则(slave 升级成 master 之后) - 1. 选择 slave-priority 最高的节点。 - 2. 选择复制偏移量最大的节点(同步数据最多)。 - 3. 选择 runId 最小的节点。 - ->Sentinel 集群运行过程中故障转移完成,所有 Sentinel 又会恢复平等。Leader 仅仅是故障转移操作出现的角色。 - -#### 读写分离 - -#### 定时任务 - -- 每 1s 每个 Sentinel 对其他 Sentinel 和 Redis 执行 ping,进行心跳检测。 -- 每 2s 每个 Sentinel 通过 Master 的 Channel 交换信息(pub - sub)。 -- 每 10s 每个 Sentinel 对 Master 和 Slave 执行 info,目的是发现 Slave 节点、确定主从关系。 - -### 分布式集群(Cluster) - -#### 拓扑图 - -![image](https://user-images.githubusercontent.com/26766909/67539510-f8f93900-f714-11e9-9d8d-08afdecff95a.png) - -#### 通讯 - -##### 集中式 - -> 将集群元数据(节点信息、故障等等)集中存储在某个节点上。 -- 优势 - 1. 元数据的更新读取具有很强的时效性,元数据修改立即更新 -- 劣势 - 1. 数据集中存储 - -##### Gossip - -![image](https://user-images.githubusercontent.com/26766909/67539546-16c69e00-f715-11e9-9891-1e81b6af624c.png) - -- [Gossip 协议](https://www.jianshu.com/p/8279d6fd65bb) - -#### 寻址分片 - -##### hash取模 - -- hash(key)%机器数量 -- 问题 - 1. 机器宕机,造成数据丢失,数据读取失败 - 1. 伸缩性 - -##### 一致性hash - -- ![image](https://user-images.githubusercontent.com/26766909/67539595-352c9980-f715-11e9-8e4a-9d9c04027785.png) - -- 问题 - 1. 一致性哈希算法在节点太少时,容易因为节点分布不均匀而造成缓存热点的问题。 - - 解决方案 - - 可以通过引入虚拟节点机制解决:即对每一个节点计算多个 hash,每个计算结果位置都放置一个虚拟节点。这样就实现了数据的均匀分布,负载均衡。 - -##### hash槽 - -- CRC16(key)%16384 -- -![image](https://user-images.githubusercontent.com/26766909/67539610-3fe72e80-f715-11e9-8e0d-ea58bc965795.png) - -## 使用场景 - -### 热点数据 - -存取数据优先从 Redis 操作,如果不存在再从文件(例如 MySQL)中操作,从文件操作完后将数据存储到 Redis 中并返回。同时有个定时任务后台定时扫描 Redis 的 key,根据业务规则进行淘汰,防止某些只访问一两次的数据一直存在 Redis 中。 ->例如使用 Zset 数据结构,存储 Key 的访问次数/最后访问时间作为 Score,最后做排序,来淘汰那些最少访问的 Key。 - -如果企业级应用,可以参考:[阿里云的 Redis 混合存储版][1] - -### 会话维持 Session - -会话维持 Session 场景,即使用 Redis 作为分布式场景下的登录中心存储应用。每次不同的服务在登录的时候,都会去统一的 Redis 去验证 Session 是否正确。但是在微服务场景,一般会考虑 Redis + JWT 做 Oauth2 模块。 ->其中 Redis 存储 JWT 的相关信息主要是留出口子,方便以后做统一的防刷接口,或者做登录设备限制等。 - -### 分布式锁 SETNX - -命令格式:`SETNX key value`:当且仅当 key 不存在,将 key 的值设为 value。若给定的 key 已经存在,则 SETNX 不做任何动作。 - -1. 超时时间设置:获取锁的同时,启动守护线程,使用 expire 进行定时更新超时时间。如果该业务机器宕机,守护线程也挂掉,这样也会自动过期。如果该业务不是宕机,而是真的需要这么久的操作时间,那么增加超时时间在业务上也是可以接受的,但是肯定有个最大的阈值。 -2. 但是为了增加高可用,需要使用多台 Redis,就增加了复杂性,就可以参考 Redlock:[Redlock分布式锁](Redlock分布式锁.md#怎么在单节点上实现分布式锁) - -### 表缓存 - -Redis 缓存表的场景有黑名单、禁言表等。访问频率较高,即读高。根据业务需求,可以使用后台定时任务定时刷新 Redis 的缓存表数据。 - -### 消息队列 list - -主要使用了 List 数据结构。 -List 支持在头部和尾部操作,因此可以实现简单的消息队列。 -1. 发消息:在 List 尾部塞入数据。 -2. 消费消息:在 List 头部拿出数据。 - -同时可以使用多个 List,来实现多个队列,根据不同的业务消息,塞入不同的 List,来增加吞吐量。 - -### 计数器 string - -主要使用了 INCR、DECR、INCRBY、DECRBY 方法。 - -INCR key:给 key 的 value 值增加一 -DECR key:给 key 的 value 值减去一 - -## 缓存设计 - -### 更新策略 - -- LRU、LFU、FIFO 算法自动清除:一致性最差,维护成本低。 -- 超时自动清除(key expire):一致性较差,维护成本低。 -- 主动更新:代码层面控制生命周期,一致性最好,维护成本高。 - -在 Redis 根据在 redis.conf 的参数 `maxmemory` 来做更新淘汰策略: -1. noeviction: 不删除策略, 达到最大内存限制时, 如果需要更多内存, 直接返回错误信息。大多数写命令都会导致占用更多的内存(有极少数会例外, 如 DEL 命令)。 -2. allkeys-lru: 所有 key 通用; 优先删除最近最少使用(less recently used ,LRU) 的 key。 -3. volatile-lru: 只限于设置了 expire 的部分; 优先删除最近最少使用(less recently used ,LRU) 的 key。 -4. allkeys-random: 所有key通用; 随机删除一部分 key。 -5. volatile-random: 只限于设置了 expire 的部分; 随机删除一部分 key。 -6. volatile-ttl: 只限于设置了 expire 的部分; 优先删除剩余时间(time to live,TTL) 短的key。 - -### 更新一致性 - -- 读请求:先读缓存,缓存没有的话,就读数据库,然后取出数据后放入缓存,同时返回响应。 -- 写请求:先删除缓存,然后再更新数据库(避免大量地写、却又不经常读的数据导致缓存频繁更新)。 - -### 缓存粒度 - -- 通用性:全量属性更好。 -- 占用空间:部分属性更好。 -- 代码维护成本。 - -### 缓存穿透 - -> 当大量的请求无命中缓存、直接请求到后端数据库(业务代码的 bug、或恶意攻击),同时后端数据库也没有查询到相应的记录、无法添加缓存。 -> 这种状态会一直维持,流量一直打到存储层上,无法利用缓存、还会给存储层带来巨大压力。 - -#### 解决方案 - -1. 请求无法命中缓存、同时数据库记录为空时在缓存添加该 key 的空对象(设置过期时间),缺点是可能会在缓存中添加大量的空值键(比如遭到恶意攻击或爬虫),而且缓存层和存储层数据短期内不一致; -2. 使用布隆过滤器在缓存层前拦截非法请求、自动为空值添加黑名单(同时可能要为误判的记录添加白名单).但需要考虑布隆过滤器的维护(离线生成/ 实时生成)。 - -### 缓存雪崩 - -> 缓存崩溃时请求会直接落到数据库上,很可能由于无法承受大量的并发请求而崩溃,此时如果只重启数据库,或因为缓存重启后没有数据,新的流量进来很快又会把数据库击倒。 - -#### 出现后应对 - -- 事前:Redis 高可用,主从 + 哨兵,Redis Cluster,避免全盘崩溃。 -- 事中:本地 ehcache 缓存 + hystrix 限流 & 降级,避免数据库承受太多压力。 -- 事后:Redis 持久化,一旦重启,自动从磁盘上加载数据,快速恢复缓存数据。 - -#### 请求过程 - -1. 用户请求先访问本地缓存,无命中后再访问 Redis,如果本地缓存和 Redis 都没有再查数据库,并把数据添加到本地缓存和 Redis; -2. 由于设置了限流,一段时间范围内超出的请求走降级处理(返回默认值,或给出友情提示)。 - diff --git "a/docs/database/Redis/\345\246\202\344\275\225\345\201\232\345\217\257\351\235\240\347\232\204\345\210\206\345\270\203\345\274\217\351\224\201\357\274\214Redlock\347\234\237\347\232\204\345\217\257\350\241\214\344\271\210.md" "b/docs/database/Redis/\345\246\202\344\275\225\345\201\232\345\217\257\351\235\240\347\232\204\345\210\206\345\270\203\345\274\217\351\224\201\357\274\214Redlock\347\234\237\347\232\204\345\217\257\350\241\214\344\271\210.md" deleted file mode 100644 index 043df96566d..00000000000 --- "a/docs/database/Redis/\345\246\202\344\275\225\345\201\232\345\217\257\351\235\240\347\232\204\345\210\206\345\270\203\345\274\217\351\224\201\357\274\214Redlock\347\234\237\347\232\204\345\217\257\350\241\214\344\271\210.md" +++ /dev/null @@ -1,91 +0,0 @@ -本文是对 [Martin Kleppmann](https://martin.kleppmann.com/) 的文章 [How to do distributed locking](https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html) 部分内容的翻译和总结,上次写 Redlock 的原因就是看到了 Martin 的这篇文章,写得很好,特此翻译和总结。感兴趣的同学可以翻看原文,相信会收获良多。 - -开篇作者认为现在 Redis 逐渐被使用到数据管理领域,这个领域需要更强的数据一致性和耐久性,这使得他感到担心,因为这不是 Redis 最初设计的初衷(事实上这也是很多业界程序员的误区,越来越把 Redis 当成数据库在使用),其中基于 Redis 的分布式锁就是令人担心的其一。 - -Martin 指出首先你要明确你为什么使用分布式锁,为了性能还是正确性?为了帮你区分这二者,在这把锁 fail 了的时候你可以询问自己以下问题: -1. **要性能的:** 拥有这把锁使得你不会重复劳动(例如一个 job 做了两次),如果这把锁 fail 了,两个节点同时做了这个 Job,那么这个 Job 增加了你的成本。 -2. **要正确性的:** 拥有锁可以防止并发操作污染你的系统或者数据,如果这把锁 fail 了两个节点同时操作了一份数据,结果可能是数据不一致、数据丢失、file 冲突等,会导致严重的后果。 - -上述二者都是需求锁的正确场景,但是你必须清楚自己是因为什么原因需要分布式锁。 - -如果你只是为了性能,那没必要用 Redlock,它成本高且复杂,你只用一个 Redis 实例也够了,最多加个从防止主挂了。当然,你使用单节点的 Redis 那么断电或者一些情况下,你会丢失锁,但是你的目的只是加速性能且断电这种事情不会经常发生,这并不是什么大问题。并且如果你使用了单节点 Redis,那么很显然你这个应用需要的锁粒度是很模糊粗糙的,也不会是什么重要的服务。 - -那么是否 Redlock 对于要求正确性的场景就合适呢?Martin 列举了若干场景证明 Redlock 这种算法是不可靠的。 - -## 用锁保护资源 -这节里 Martin 先将 Redlock 放在了一边而是仅讨论总体上一个分布式锁是怎么工作的。在分布式环境下,锁比 mutex 这类复杂,因为涉及到不同节点、网络通信并且他们随时可能无征兆的 fail 。 -Martin 假设了一个场景,一个 client 要修改一个文件,它先申请得到锁,然后修改文件写回,放锁。另一个 client 再申请锁 ... 代码流程如下: - -```java -// THIS CODE IS BROKEN -function writeData(filename, data) { - var lock = lockService.acquireLock(filename); - if (!lock) { - throw 'Failed to acquire lock'; - } - - try { - var file = storage.readFile(filename); - var updated = updateContents(file, data); - storage.writeFile(filename, updated); - } finally { - lock.release(); - } -} -``` - -可惜即使你的锁服务非常完美,上述代码还是可能跪,下面的流程图会告诉你为什么: - -![](https://martin.kleppmann.com/2016/02/unsafe-lock.png) - -上述图中,得到锁的 client1 在持有锁的期间 pause 了一段时间,例如 GC 停顿。锁有过期时间(一般叫租约,为了防止某个 client 崩溃之后一直占有锁),但是如果 GC 停顿太长超过了锁租约时间,此时锁已经被另一个 client2 所得到,原先的 client1 还没有感知到锁过期,那么奇怪的结果就会发生,曾经 HBase 就发生过这种 Bug。即使你在 client1 写回之前检查一下锁是否过期也无助于解决这个问题,因为 GC 可能在任何时候发生,即使是你非常不便的时候(在最后的检查与写操作期间)。 -如果你认为自己的程序不会有长时间的 GC 停顿,还有其他原因会导致你的进程 pause。例如进程可能读取尚未进入内存的数据,所以它得到一个 page fault 并且等待 page 被加载进缓存;还有可能你依赖于网络服务;或者其他进程占用 CPU;或者其他人意外发生 SIGSTOP 等。 - -... .... 这里 Martin 又增加了一节列举各种进程 pause 的例子,为了证明上面的代码是不安全的,无论你的锁服务多完美。 - -## 使用 Fencing (栅栏)使得锁变安全 -修复问题的方法也很简单:你需要在每次写操作时加入一个 fencing token。这个场景下,fencing token 可以是一个递增的数字(lock service 可以做到),每次有 client 申请锁就递增一次: - -![](https://martin.kleppmann.com/2016/02/fencing-tokens.png) - -client1 申请锁同时拿到 token33,然后它进入长时间的停顿锁也过期了。client2 得到锁和 token34 写入数据,紧接着 client1 活过来之后尝试写入数据,自身 token33 比 34 小因此写入操作被拒绝。注意这需要存储层来检查 token,但这并不难实现。如果你使用 Zookeeper 作为 lock service 的话那么你可以使用 zxid 作为递增数字。 -但是对于 Redlock 你要知道,没什么生成 fencing token 的方式,并且怎么修改 Redlock 算法使其能产生 fencing token 呢?好像并不那么显而易见。因为产生 token 需要单调递增,除非在单节点 Redis 上完成但是这又没有高可靠性,你好像需要引进一致性协议来让 Redlock 产生可靠的 fencing token。 - -## 使用时间来解决一致性 -Redlock 无法产生 fencing token 早该成为在需求正确性的场景下弃用它的理由,但还有一些值得讨论的地方。 - -学术界有个说法,算法对时间不做假设:因为进程可能pause一段时间、数据包可能因为网络延迟延后到达、时钟可能根本就是错的。而可靠的算法依旧要在上述假设下做正确的事情。 - -对于 failure detector 来说,timeout 只能作为猜测某个节点 fail 的依据,因为网络延迟、本地时钟不正确等其他原因的限制。考虑到 Redis 使用 gettimeofday,而不是单调的时钟,会受到系统时间的影响,可能会突然前进或者后退一段时间,这会导致一个 key 更快或更慢地过期。 - -可见,Redlock 依赖于许多时间假设,它假设所有 Redis 节点都能对同一个 Key 在其过期前持有差不多的时间、跟过期时间相比网络延迟很小、跟过期时间相比进程 pause 很短。 - -## 用不可靠的时间打破 Redlock -这节 Martin 举了个因为时间问题,Redlock 不可靠的例子。 - -1. client1 从 ABC 三个节点处申请到锁,DE由于网络原因请求没有到达 -2. C节点的时钟往前推了,导致 lock 过期 -3. client2 在CDE处获得了锁,AB由于网络原因请求未到达 -4. 此时 client1 和 client2 都获得了锁 - -**在 Redlock 官方文档中也提到了这个情况,不过是C崩溃的时候,Redlock 官方本身也是知道 Redlock 算法不是完全可靠的,官方为了解决这种问题建议使用延时启动,相关内容可以看之前的[这篇文章](https://zhuanlan.zhihu.com/p/40915772)。但是 Martin 这里分析得更加全面,指出延时启动不也是依赖于时钟的正确性的么?** - -接下来 Martin 又列举了进程 Pause 时而不是时钟不可靠时会发生的问题: - -1. client1 从 ABCDE 处获得了锁 -2. 当获得锁的 response 还没到达 client1 时 client1 进入 GC 停顿 -3. 停顿期间锁已经过期了 -4. client2 在 ABCDE 处获得了锁 -5. client1 GC 完成收到了获得锁的 response,此时两个 client 又拿到了同一把锁 - -**同时长时间的网络延迟也有可能导致同样的问题。** - -## Redlock 的同步性假设 -这些例子说明了,仅有在你假设了一个同步性系统模型的基础上,Redlock 才能正常工作,也就是系统能满足以下属性: - -1. 网络延时边界,即假设数据包一定能在某个最大延时之内到达 -2. 进程停顿边界,即进程停顿一定在某个最大时间之内 -3. 时钟错误边界,即不会从一个坏的 NTP 服务器处取得时间 - -## 结论 -Martin 认为 Redlock 实在不是一个好的选择,对于需求性能的分布式锁应用它太重了且成本高;对于需求正确性的应用来说它不够安全。因为它对高危的时钟或者说其他上述列举的情况进行了不可靠的假设,如果你的应用只需要高性能的分布式锁不要求多高的正确性,那么单节点 Redis 够了;如果你的应用想要保住正确性,那么不建议 Redlock,建议使用一个合适的一致性协调系统,例如 Zookeeper,且保证存在 fencing token。 diff --git "a/docs/database/\344\270\200\345\215\203\350\241\214MySQL\345\221\275\344\273\244.md" b/docs/database/mysql/a-thousand-lines-of-mysql-study-notes.md similarity index 98% rename from "docs/database/\344\270\200\345\215\203\350\241\214MySQL\345\221\275\344\273\244.md" rename to docs/database/mysql/a-thousand-lines-of-mysql-study-notes.md index 385aa37dc7a..53350ec5ae7 100644 --- "a/docs/database/\344\270\200\345\215\203\350\241\214MySQL\345\221\275\344\273\244.md" +++ b/docs/database/mysql/a-thousand-lines-of-mysql-study-notes.md @@ -1,35 +1,15 @@ +--- +title: 一千行 MySQL 学习笔记 +category: 数据库 +tag: + - MySQL +--- + > 原文地址:https://shockerli.net/post/1000-line-mysql-note/ ,JavaGuide 对本文进行了简答排版,新增了目录。 > 作者:格物 非常不错的总结,强烈建议保存下来,需要的时候看一看。 - -- [基本操作](#基本操作) -- [数据库操作](#数据库操作) -- [表的操作](#表的操作) -- [数据操作](#数据操作) -- [字符集编码](#字符集编码) -- [数据类型(列类型)](#数据类型列类型) -- [列属性(列约束)](#列属性列约束) -- [建表规范](#建表规范) -- [SELECT](#select) -- [UNION](#union) -- [子查询](#子查询) -- [连接查询(join)](#连接查询join) -- [TRUNCATE](#truncate) -- [备份与还原](#备份与还原) -- [视图](#视图) -- [事务(transaction)](#事务transaction) -- [锁表](#锁表) -- [触发器](#触发器) -- [SQL编程](#sql编程) -- [存储过程](#存储过程) -- [用户和权限管理](#用户和权限管理) -- [表维护](#表维护) -- [杂项](#杂项) - - - ### 基本操作 ```mysql @@ -609,7 +589,7 @@ CREATE [OR REPLACE] [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}] VIEW view_name - 事务开始和结束时,外部数据一致 - 在整个事务过程中,操作是连续的 3. 隔离性(Isolation) - 多个用户并发访问数据库时,一个用户的事务不能被其它用户的事物所干扰,多个并发事务之间的数据要相互隔离。 + 多个用户并发访问数据库时,一个用户的事务不能被其它用户的事务所干扰,多个并发事务之间的数据要相互隔离。 4. 持久性(Durability) 一个事务一旦被提交,它对数据库中的数据改变就是永久性的。 -- 事务的实现 diff --git "a/docs/database/\344\270\200\346\235\241sql\350\257\255\345\217\245\345\234\250mysql\344\270\255\345\246\202\344\275\225\346\211\247\350\241\214\347\232\204.md" b/docs/database/mysql/how-sql-executed-in-mysql.md similarity index 90% rename from "docs/database/\344\270\200\346\235\241sql\350\257\255\345\217\245\345\234\250mysql\344\270\255\345\246\202\344\275\225\346\211\247\350\241\214\347\232\204.md" rename to docs/database/mysql/how-sql-executed-in-mysql.md index 9798df73c80..07404d0e930 100644 --- "a/docs/database/\344\270\200\346\235\241sql\350\257\255\345\217\245\345\234\250mysql\344\270\255\345\246\202\344\275\225\346\211\247\350\241\214\347\232\204.md" +++ b/docs/database/mysql/how-sql-executed-in-mysql.md @@ -1,22 +1,11 @@ -本文来自[木木匠](https://github.com/kinglaw1204)投稿。 - - +--- +title: 一条 SQL 语句在 MySQL 中如何被执行的? +category: 数据库 +tag: + - MySQL +--- -- [一 MySQL 基础架构分析](#一-mysql-基础架构分析) - - [1.1 MySQL 基本架构概览](#11-mysql-基本架构概览) - - [1.2 Server 层基本组件介绍](#12-server-层基本组件介绍) - - [1) 连接器](#1-连接器) - - [2) 查询缓存(MySQL 8.0 版本后移除)](#2-查询缓存mysql-80-版本后移除) - - [3) 分析器](#3-分析器) - - [4) 优化器](#4-优化器) - - [5) 执行器](#5-执行器) -- [二 语句分析](#二-语句分析) - - [2.1 查询语句](#21-查询语句) - - [2.2 更新语句](#22-更新语句) -- [三 总结](#三-总结) -- [四 参考](#四-参考) - - +本文来自[木木匠](https://github.com/kinglaw1204)投稿。 本篇文章会分析下一个 sql 语句在 MySQL 中的执行流程,包括 sql 的查询在 MySQL 内部会怎么流转,sql 语句的更新是怎么完成的。 @@ -30,13 +19,13 @@ 先简单介绍一下下图涉及的一些组件的基本作用帮助大家理解这幅图,在 1.2 节中会详细介绍到这些组件的作用。 -- **连接器:**身份认证和权限相关(登录 MySQL 的时候)。 -- **查询缓存:**执行查询语句的时候,会先查询缓存(MySQL 8.0 版本后移除,因为这个功能不太实用)。 +- **连接器:** 身份认证和权限相关(登录 MySQL 的时候)。 +- **查询缓存:** 执行查询语句的时候,会先查询缓存(MySQL 8.0 版本后移除,因为这个功能不太实用)。 - **分析器:** 没有命中缓存的话,SQL 语句就会经过分析器,分析器说白了就是要先看你的 SQL 语句要干嘛,再检查你的 SQL 语句语法是否正确。 -- **优化器:**按照 MySQL 认为最优的方案去执行。 -- **执行器:**执行语句,然后从存储引擎返回数据。 +- **优化器:** 按照 MySQL 认为最优的方案去执行。 + -![](https://user-gold-cdn.xitu.io/2019/3/23/169a8bc60a083849?w=950&h=1062&f=jpeg&s=38189) +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/javaguide/13526879-3037b144ed09eb88.png) 简单来说 MySQL 主要分为 Server 层和存储引擎层: diff --git a/docs/database/mysql/innodb-implementation-of-mvcc.md b/docs/database/mysql/innodb-implementation-of-mvcc.md new file mode 100644 index 00000000000..96fa1f7982b --- /dev/null +++ b/docs/database/mysql/innodb-implementation-of-mvcc.md @@ -0,0 +1,226 @@ +--- +title: InnoDB存储引擎对MVCC的实现 +category: 数据库 +tag: + - MySQL +--- + +## 一致性非锁定读和锁定读 + +### 一致性非锁定读 + +对于 [**一致性非锁定读(Consistent Nonlocking Reads)** ](https://dev.mysql.com/doc/refman/5.7/en/innodb-consistent-read.html)的实现,通常做法是加一个版本号或者时间戳字段,在更新数据的同时版本号 + 1 或者更新时间戳。查询时,将当前可见的版本号与对应记录的版本号进行比对,如果记录的版本小于可见版本,则表示该记录可见 + +在 `InnoDB` 存储引擎中,[多版本控制 (multi versioning)](https://dev.mysql.com/doc/refman/5.7/en/innodb-multi-versioning.html) 就是对非锁定读的实现。如果读取的行正在执行 `DELETE` 或 `UPDATE` 操作,这时读取操作不会去等待行上锁的释放。相反地,`InnoDB` 存储引擎会去读取行的一个快照数据,对于这种读取历史数据的方式,我们叫它快照读 (snapshot read) + +在 `Repeatable Read` 和 `Read Committed` 两个隔离级别下,如果是执行普通的 `select` 语句(不包括 `select ... lock in share mode` ,`select ... for update`)则会使用 `一致性非锁定读(MVCC)`。并且在 `Repeatable Read` 下 `MVCC` 实现了可重复读和防止部分幻读 + +### 锁定读 + +如果执行的是下列语句,就是 [**锁定读(Locking Reads)**](https://dev.mysql.com/doc/refman/5.7/en/innodb-locking-reads.html) + +- `select ... lock in share mode` +- `select ... for update` +- `insert`、`update`、`delete` 操作 + +在锁定读下,读取的是数据的最新版本,这种读也被称为 `当前读(current read)`。锁定读会对读取到的记录加锁: + +- `select ... lock in share mode`:对记录加 `S` 锁,其它事务也可以加`S`锁,如果加 `x` 锁则会被阻塞 + +- `select ... for update`、`insert`、`update`、`delete`:对记录加 `X` 锁,且其它事务不能加任何锁 + +在一致性非锁定读下,即使读取的记录已被其它事务加上 `X` 锁,这时记录也是可以被读取的,即读取的快照数据。上面说了,在 `Repeatable Read` 下 `MVCC` 防止了部分幻读,这边的 “部分” 是指在 `一致性非锁定读` 情况下,只能读取到第一次查询之前所插入的数据(根据 Read View 判断数据可见性,Read View 在第一次查询时生成)。但是!如果是 `当前读` ,每次读取的都是最新数据,这时如果两次查询中间有其它事务插入数据,就会产生幻读。所以, **`InnoDB` 在实现`Repeatable Read` 时,如果执行的是当前读,则会对读取的记录使用 `Next-key Lock` ,来防止其它事务在间隙间插入数据** + +## InnoDB 对 MVCC 的实现 + +`MVCC` 的实现依赖于:**隐藏字段、Read View、undo log**。在内部实现中,`InnoDB` 通过数据行的 `DB_TRX_ID` 和 `Read View` 来判断数据的可见性,如不可见,则通过数据行的 `DB_ROLL_PTR` 找到 `undo log` 中的历史版本。每个事务读到的数据版本可能是不一样的,在同一个事务中,用户只能看到该事务创建 `Read View` 之前已经提交的修改和该事务本身做的修改 + +### 隐藏字段 + +在内部,`InnoDB` 存储引擎为每行数据添加了三个 [隐藏字段](https://dev.mysql.com/doc/refman/5.7/en/innodb-multi-versioning.html): + +- `DB_TRX_ID(6字节)`:表示最后一次插入或更新该行的事务 id。此外,`delete` 操作在内部被视为更新,只不过会在记录头 `Record header` 中的 `deleted_flag` 字段将其标记为已删除 +- `DB_ROLL_PTR(7字节)` 回滚指针,指向该行的 `undo log` 。如果该行未被更新,则为空 +- `DB_ROW_ID(6字节)`:如果没有设置主键且该表没有唯一非空索引时,`InnoDB` 会使用该 id 来生成聚簇索引 + +### ReadView + +```c +class ReadView { + /* ... */ +private: + trx_id_t m_low_limit_id; /* 大于等于这个 ID 的事务均不可见 */ + + trx_id_t m_up_limit_id; /* 小于这个 ID 的事务均可见 */ + + trx_id_t m_creator_trx_id; /* 创建该 Read View 的事务ID */ + + trx_id_t m_low_limit_no; /* 事务 Number, 小于该 Number 的 Undo Logs 均可以被 Purge */ + + ids_t m_ids; /* 创建 Read View 时的活跃事务列表 */ + + m_closed; /* 标记 Read View 是否 close */ +} +``` + +[`Read View`](https://github.com/facebook/mysql-8.0/blob/8.0/storage/innobase/include/read0types.h#L298) 主要是用来做可见性判断,里面保存了 “当前对本事务不可见的其他活跃事务” + +主要有以下字段: + +- `m_low_limit_id`:目前出现过的最大的事务 ID+1,即下一个将被分配的事务 ID。大于等于这个 ID 的数据版本均不可见 +- `m_up_limit_id`:活跃事务列表 `m_ids` 中最小的事务 ID,如果 `m_ids` 为空,则 `m_up_limit_id` 为 `m_low_limit_id`。小于这个 ID 的数据版本均可见 +- `m_ids`:`Read View` 创建时其他未提交的活跃事务 ID 列表。创建 `Read View`时,将当前未提交事务 ID 记录下来,后续即使它们修改了记录行的值,对于当前事务也是不可见的。`m_ids` 不包括当前事务自己和已提交的事务(正在内存中) +- `m_creator_trx_id`:创建该 `Read View` 的事务 ID + +**事务可见性示意图**([图源](https://leviathan.vip/2019/03/20/InnoDB%E7%9A%84%E4%BA%8B%E5%8A%A1%E5%88%86%E6%9E%90-MVCC/#MVCC-1)): + +![trans_visible](https://leviathan.vip/2019/03/20/InnoDB%E7%9A%84%E4%BA%8B%E5%8A%A1%E5%88%86%E6%9E%90-MVCC/trans_visible.jpg) + +### undo-log + +`undo log` 主要有两个作用: + +- 当事务回滚时用于将数据恢复到修改前的样子 +- 另一个作用是 `MVCC` ,当读取记录时,若该记录被其他事务占用或当前版本对该事务不可见,则可以通过 `undo log` 读取之前的版本数据,以此实现非锁定读 + +**在 `InnoDB` 存储引擎中 `undo log` 分为两种: `insert undo log` 和 `update undo log`:** + +1. **`insert undo log`** :指在 `insert` 操作中产生的 `undo log`。因为 `insert` 操作的记录只对事务本身可见,对其他事务不可见,故该 `undo log` 可以在事务提交后直接删除。不需要进行 `purge` 操作 + +**`insert` 时的数据初始状态:** + +![](https://ddmcc-1255635056.file.myqcloud.com/317e91e1-1ee1-42ad-9412-9098d5c6a9ad.png) + +2. **`update undo log`** :`update` 或 `delete` 操作中产生的 `undo log`。该 `undo log`可能需要提供 `MVCC` 机制,因此不能在事务提交时就进行删除。提交时放入 `undo log` 链表,等待 `purge线程` 进行最后的删除 + +**数据第一次被修改时:** + +![](https://ddmcc-1255635056.file.myqcloud.com/c52ff79f-10e6-46cb-b5d4-3c9cbcc1934a.png) + +**数据第二次被修改时:** + +![](https://ddmcc-1255635056.file.myqcloud.com/6a276e7a-b0da-4c7b-bdf7-c0c7b7b3b31c.png) + +不同事务或者相同事务的对同一记录行的修改,会使该记录行的 `undo log` 成为一条链表,链首就是最新的记录,链尾就是最早的旧记录。 + +### 数据可见性算法 + +在 `InnoDB` 存储引擎中,创建一个新事务后,执行每个 `select` 语句前,都会创建一个快照(Read View),**快照中保存了当前数据库系统中正处于活跃(没有 commit)的事务的 ID 号**。其实简单的说保存的是系统中当前不应该被本事务看到的其他事务 ID 列表(即 m_ids)。当用户在这个事务中要读取某个记录行的时候,`InnoDB` 会将该记录行的 `DB_TRX_ID` 与 `Read View` 中的一些变量及当前事务 ID 进行比较,判断是否满足可见性条件 + +[具体的比较算法](https://github.com/facebook/mysql-8.0/blob/8.0/storage/innobase/include/read0types.h#L161)如下:[图源](https://leviathan.vip/2019/03/20/InnoDB%E7%9A%84%E4%BA%8B%E5%8A%A1%E5%88%86%E6%9E%90-MVCC/#MVCC-1) + +![](https://ddmcc-1255635056.file.myqcloud.com/8778836b-34a8-480b-b8c7-654fe207a8c2.png) + +1. 如果记录 DB_TRX_ID < m_up_limit_id,那么表明最新修改该行的事务(DB_TRX_ID)在当前事务创建快照之前就提交了,所以该记录行的值对当前事务是可见的 + +2. 如果 DB_TRX_ID >= m_low_limit_id,那么表明最新修改该行的事务(DB_TRX_ID)在当前事务创建快照之后才修改该行,所以该记录行的值对当前事务不可见。跳到步骤 5 + +3. m_ids 为空,则表明在当前事务创建快照之前,修改该行的事务就已经提交了,所以该记录行的值对当前事务是可见的 + +4. 如果 m_up_limit_id <= DB_TRX_ID < m_low_limit_id,表明最新修改该行的事务(DB_TRX_ID)在当前事务创建快照的时候可能处于“活动状态”或者“已提交状态”;所以就要对活跃事务列表 m_ids 进行查找(源码中是用的二分查找,因为是有序的) + + - 如果在活跃事务列表 m_ids 中能找到 DB_TRX_ID,表明:① 在当前事务创建快照前,该记录行的值被事务 ID 为 DB_TRX_ID 的事务修改了,但没有提交;或者 ② 在当前事务创建快照后,该记录行的值被事务 ID 为 DB_TRX_ID 的事务修改了。这些情况下,这个记录行的值对当前事务都是不可见的。跳到步骤 5 + + - 在活跃事务列表中找不到,则表明“id 为 trx_id 的事务”在修改“该记录行的值”后,在“当前事务”创建快照前就已经提交了,所以记录行对当前事务可见 + +5. 在该记录行的 DB_ROLL_PTR 指针所指向的 `undo log` 取出快照记录,用快照记录的 DB_TRX_ID 跳到步骤 1 重新开始判断,直到找到满足的快照版本或返回空 + +## RC 和 RR 隔离级别下 MVCC 的差异 + +在事务隔离级别 `RC` 和 `RR` (InnoDB 存储引擎的默认事务隔离级别)下,`InnoDB` 存储引擎使用 `MVCC`(非锁定一致性读),但它们生成 `Read View` 的时机却不同 + +- 在 RC 隔离级别下的 **`每次select`** 查询前都生成一个`Read View` (m_ids 列表) +- 在 RR 隔离级别下只在事务开始后 **`第一次select`** 数据前生成一个`Read View`(m_ids 列表) + +## MVCC 解决不可重复读问题 + +虽然 RC 和 RR 都通过 `MVCC` 来读取快照数据,但由于 **生成 Read View 时机不同**,从而在 RR 级别下实现可重复读 + +举个例子: + +![](https://ddmcc-1255635056.file.myqcloud.com/6fb2b9a1-5f14-4dec-a797-e4cf388ed413.png) + +### 在 RC 下 ReadView 生成情况 + +1. **`假设时间线来到 T4 ,那么此时数据行 id = 1 的版本链为`:** + + ![](https://ddmcc-1255635056.file.myqcloud.com/a3fd1ec6-8f37-42fa-b090-7446d488fd04.png) + +由于 RC 级别下每次查询都会生成`Read View` ,并且事务 101、102 并未提交,此时 `103` 事务生成的 `Read View` 中活跃的事务 **`m_ids` 为:[101,102]** ,`m_low_limit_id`为:104,`m_up_limit_id`为:101,`m_creator_trx_id` 为:103 + +- 此时最新记录的 `DB_TRX_ID` 为 101,m_up_limit_id <= 101 < m_low_limit_id,所以要在 `m_ids` 列表中查找,发现 `DB_TRX_ID` 存在列表中,那么这个记录不可见 +- 根据 `DB_ROLL_PTR` 找到 `undo log` 中的上一版本记录,上一条记录的 `DB_TRX_ID` 还是 101,不可见 +- 继续找上一条 `DB_TRX_ID`为 1,满足 1 < m_up_limit_id,可见,所以事务 103 查询到数据为 `name = 菜花` + +2. **`时间线来到 T6 ,数据的版本链为`:** + + ![markdown](https://ddmcc-1255635056.file.myqcloud.com/528559e9-dae8-4d14-b78d-a5b657c88391.png) + +因为在 RC 级别下,重新生成 `Read View`,这时事务 101 已经提交,102 并未提交,所以此时 `Read View` 中活跃的事务 **`m_ids`:[102]** ,`m_low_limit_id`为:104,`m_up_limit_id`为:102,`m_creator_trx_id`为:103 + +- 此时最新记录的 `DB_TRX_ID` 为 102,m_up_limit_id <= 102 < m_low_limit_id,所以要在 `m_ids` 列表中查找,发现 `DB_TRX_ID` 存在列表中,那么这个记录不可见 + +- 根据 `DB_ROLL_PTR` 找到 `undo log` 中的上一版本记录,上一条记录的 `DB_TRX_ID` 为 101,满足 101 < m_up_limit_id,记录可见,所以在 `T6` 时间点查询到数据为 `name = 李四`,与时间 T4 查询到的结果不一致,不可重复读! + +3. **`时间线来到 T9 ,数据的版本链为`:** + +![markdown](https://ddmcc-1255635056.file.myqcloud.com/6f82703c-36a1-4458-90fe-d7f4edbac71a.png) + +重新生成 `Read View`, 这时事务 101 和 102 都已经提交,所以 **m_ids** 为空,则 m_up_limit_id = m_low_limit_id = 104,最新版本事务 ID 为 102,满足 102 < m_low_limit_id,可见,查询结果为 `name = 赵六` + +> **总结:** **在 RC 隔离级别下,事务在每次查询开始时都会生成并设置新的 Read View,所以导致不可重复读** + +### 在 RR 下 ReadView 生成情况 + +**在可重复读级别下,只会在事务开始后第一次读取数据时生成一个 Read View(m_ids 列表)** + +1. **`在 T4 情况下的版本链为`:** + +![markdown](https://ddmcc-1255635056.file.myqcloud.com/0e906b95-c916-4f30-beda-9cb3e49746bf.png) + +在当前执行 `select` 语句时生成一个 `Read View`,此时 **`m_ids`:[101,102]** ,`m_low_limit_id`为:104,`m_up_limit_id`为:101,`m_creator_trx_id` 为:103 + +此时和 RC 级别下一样: + +- 最新记录的 `DB_TRX_ID` 为 101,m_up_limit_id <= 101 < m_low_limit_id,所以要在 `m_ids` 列表中查找,发现 `DB_TRX_ID` 存在列表中,那么这个记录不可见 +- 根据 `DB_ROLL_PTR` 找到 `undo log` 中的上一版本记录,上一条记录的 `DB_TRX_ID` 还是 101,不可见 +- 继续找上一条 `DB_TRX_ID`为 1,满足 1 < m_up_limit_id,可见,所以事务 103 查询到数据为 `name = 菜花` + +2. **`时间点 T6 情况下`:** + + ![markdown](https://ddmcc-1255635056.file.myqcloud.com/79ed6142-7664-4e0b-9023-cf546586aa39.png) + + 在 RR 级别下只会生成一次`Read View`,所以此时依然沿用 **`m_ids` :[101,102]** ,`m_low_limit_id`为:104,`m_up_limit_id`为:101,`m_creator_trx_id` 为:103 + +- 最新记录的 `DB_TRX_ID` 为 102,m_up_limit_id <= 102 < m_low_limit_id,所以要在 `m_ids` 列表中查找,发现 `DB_TRX_ID` 存在列表中,那么这个记录不可见 + +- 根据 `DB_ROLL_PTR` 找到 `undo log` 中的上一版本记录,上一条记录的 `DB_TRX_ID` 为 101,不可见 + +- 继续根据 `DB_ROLL_PTR` 找到 `undo log` 中的上一版本记录,上一条记录的 `DB_TRX_ID` 还是 101,不可见 + +- 继续找上一条 `DB_TRX_ID`为 1,满足 1 < m_up_limit_id,可见,所以事务 103 查询到数据为 `name = 菜花` + +3. **时间点 T9 情况下:** + +![markdown](https://ddmcc-1255635056.file.myqcloud.com/cbbedbc5-0e3c-4711-aafd-7f3d68a4ed4e.png) + +此时情况跟 T6 完全一样,由于已经生成了 `Read View`,此时依然沿用 **`m_ids` :[101,102]** ,所以查询结果依然是 `name = 菜花` + +## MVCC➕Next-key-Lock 防止幻读 + +`InnoDB`存储引擎在 RR 级别下通过 `MVCC`和 `Next-key Lock` 来解决幻读问题: + +**1、执行普通 `select`,此时会以 `MVCC` 快照读的方式读取数据** + +在快照读的情况下,RR 隔离级别只会在事务开启后的第一次查询生成 `Read View` ,并使用至事务提交。所以在生成 `Read View` 之后其它事务所做的更新、插入记录版本对当前事务并不可见,实现了可重复读和防止快照读下的 “幻读” + +**2、执行 select...for update/lock in share mode、insert、update、delete 等当前读** + +在当前读下,读取的都是最新的数据,如果其它事务有插入新的记录,并且刚好在当前事务查询范围内,就会产生幻读!`InnoDB` 使用 [Next-key Lock](https://dev.mysql.com/doc/refman/5.7/en/innodb-locking.html#innodb-next-key-locks) 来防止这种情况。当执行当前读时,会锁定读取到的记录的同时,锁定它们的间隙,防止其它事务在查询范围内插入数据。只要我不让你插入,就不会发生幻读 + +## 参考 + +- **《MySQL 技术内幕 InnoDB 存储引擎第 2 版》** +- [Innodb 中的事务隔离级别和锁的关系](https://tech.meituan.com/2014/08/20/innodb-lock.html) +- [MySQL 事务与 MVCC 如何实现的隔离级别](https://blog.csdn.net/qq_35190492/article/details/109044141) +- [InnoDB 事务分析-MVCC](https://leviathan.vip/2019/03/20/InnoDB%E7%9A%84%E4%BA%8B%E5%8A%A1%E5%88%86%E6%9E%90-MVCC/) diff --git "a/docs/database/MySQL\351\253\230\346\200\247\350\203\275\344\274\230\345\214\226\350\247\204\350\214\203\345\273\272\350\256\256.md" b/docs/database/mysql/mysql-high-performance-optimization-specification-recommendations.md similarity index 76% rename from "docs/database/MySQL\351\253\230\346\200\247\350\203\275\344\274\230\345\214\226\350\247\204\350\214\203\345\273\272\350\256\256.md" rename to docs/database/mysql/mysql-high-performance-optimization-specification-recommendations.md index 240a1dd900f..7c2b7def8ad 100644 --- "a/docs/database/MySQL\351\253\230\346\200\247\350\203\275\344\274\230\345\214\226\350\247\204\350\214\203\345\273\272\350\256\256.md" +++ b/docs/database/mysql/mysql-high-performance-optimization-specification-recommendations.md @@ -1,58 +1,11 @@ -> 作者: 听风,原文地址: 。JavaGuide 已获得作者授权。 +--- +title: MySQL 高性能优化规范建议 +category: 数据库 +tag: + - MySQL +--- - - -- [数据库命令规范](#数据库命令规范) -- [数据库基本设计规范](#数据库基本设计规范) - - [1. 所有表必须使用 Innodb 存储引擎](#1-所有表必须使用-innodb-存储引擎) - - [2. 数据库和表的字符集统一使用 UTF8](#2-数据库和表的字符集统一使用-utf8) - - [3. 所有表和字段都需要添加注释](#3-所有表和字段都需要添加注释) - - [4. 尽量控制单表数据量的大小,建议控制在 500 万以内。](#4-尽量控制单表数据量的大小建议控制在-500-万以内) - - [5. 谨慎使用 MySQL 分区表](#5-谨慎使用-mysql-分区表) - - [6.尽量做到冷热数据分离,减小表的宽度](#6尽量做到冷热数据分离减小表的宽度) - - [7. 禁止在表中建立预留字段](#7-禁止在表中建立预留字段) - - [8. 禁止在数据库中存储图片,文件等大的二进制数据](#8-禁止在数据库中存储图片文件等大的二进制数据) - - [9. 禁止在线上做数据库压力测试](#9-禁止在线上做数据库压力测试) - - [10. 禁止从开发环境,测试环境直接连接生成环境数据库](#10-禁止从开发环境测试环境直接连接生成环境数据库) -- [数据库字段设计规范](#数据库字段设计规范) - - [1. 优先选择符合存储需要的最小的数据类型](#1-优先选择符合存储需要的最小的数据类型) - - [2. 避免使用 TEXT,BLOB 数据类型,最常见的 TEXT 类型可以存储 64k 的数据](#2-避免使用-textblob-数据类型最常见的-text-类型可以存储-64k-的数据) - - [3. 避免使用 ENUM 类型](#3-避免使用-enum-类型) - - [4. 尽可能把所有列定义为 NOT NULL](#4-尽可能把所有列定义为-not-null) - - [5. 使用 TIMESTAMP(4 个字节) 或 DATETIME 类型 (8 个字节) 存储时间](#5-使用-timestamp4-个字节-或-datetime-类型-8-个字节-存储时间) - - [6. 同财务相关的金额类数据必须使用 decimal 类型](#6-同财务相关的金额类数据必须使用-decimal-类型) -- [索引设计规范](#索引设计规范) - - [1. 限制每张表上的索引数量,建议单张表索引不超过 5 个](#1-限制每张表上的索引数量建议单张表索引不超过-5-个) - - [2. 禁止给表中的每一列都建立单独的索引](#2-禁止给表中的每一列都建立单独的索引) - - [3. 每个 Innodb 表必须有个主键](#3-每个-innodb-表必须有个主键) - - [4. 常见索引列建议](#4-常见索引列建议) - - [5.如何选择索引列的顺序](#5如何选择索引列的顺序) - - [6. 避免建立冗余索引和重复索引(增加了查询优化器生成执行计划的时间)](#6-避免建立冗余索引和重复索引增加了查询优化器生成执行计划的时间) - - [7. 对于频繁的查询优先考虑使用覆盖索引](#7-对于频繁的查询优先考虑使用覆盖索引) - - [8.索引 SET 规范](#8索引-set-规范) -- [数据库 SQL 开发规范](#数据库-sql-开发规范) - - [1. 建议使用预编译语句进行数据库操作](#1-建议使用预编译语句进行数据库操作) - - [2. 避免数据类型的隐式转换](#2-避免数据类型的隐式转换) - - [3. 充分利用表上已经存在的索引](#3-充分利用表上已经存在的索引) - - [4. 数据库设计时,应该要对以后扩展进行考虑](#4-数据库设计时应该要对以后扩展进行考虑) - - [5. 程序连接不同的数据库使用不同的账号,禁止跨库查询](#5-程序连接不同的数据库使用不同的账号禁止跨库查询) - - [6. 禁止使用 SELECT * 必须使用 SELECT <字段列表> 查询](#6-禁止使用-select--必须使用-select-字段列表-查询) - - [7. 禁止使用不含字段列表的 INSERT 语句](#7-禁止使用不含字段列表的-insert-语句) - - [8. 避免使用子查询,可以把子查询优化为 join 操作](#8-避免使用子查询可以把子查询优化为-join-操作) - - [9. 避免使用 JOIN 关联太多的表](#9-避免使用-join-关联太多的表) - - [10. 减少同数据库的交互次数](#10-减少同数据库的交互次数) - - [11. 对应同一列进行 or 判断时,使用 in 代替 or](#11-对应同一列进行-or-判断时使用-in-代替-or) - - [12. 禁止使用 order by rand() 进行随机排序](#12-禁止使用-order-by-rand-进行随机排序) - - [13. WHERE 从句中禁止对列进行函数转换和计算](#13-where-从句中禁止对列进行函数转换和计算) - - [14. 在明显不会有重复值时使用 UNION ALL 而不是 UNION](#14-在明显不会有重复值时使用-union-all-而不是-union) - - [15. 拆分复杂的大 SQL 为多个小 SQL](#15-拆分复杂的大-sql-为多个小-sql) -- [数据库操作行为规范](#数据库操作行为规范) - - [1. 超 100 万行的批量写 (UPDATE,DELETE,INSERT) 操作,要分批多次进行操作](#1-超-100-万行的批量写-updatedeleteinsert-操作要分批多次进行操作) - - [2. 对于大表使用 pt-online-schema-change 修改表结构](#2-对于大表使用-pt-online-schema-change-修改表结构) - - [3. 禁止为程序使用的账号赋予 super 权限](#3-禁止为程序使用的账号赋予-super-权限) - - [4. 对于程序连接数据库账号,遵循权限最小原则](#4-对于程序连接数据库账号遵循权限最小原则) - - +> 作者: 听风,原文地址: 。JavaGuide 已获得作者授权。 ## 数据库命令规范 diff --git "a/docs/database/MySQL\346\225\260\346\215\256\345\272\223\347\264\242\345\274\225.md" b/docs/database/mysql/mysql-index.md similarity index 99% rename from "docs/database/MySQL\346\225\260\346\215\256\345\272\223\347\264\242\345\274\225.md" rename to docs/database/mysql/mysql-index.md index d797144ec21..5dd4e526492 100644 --- "a/docs/database/MySQL\346\225\260\346\215\256\345\272\223\347\264\242\345\274\225.md" +++ b/docs/database/mysql/mysql-index.md @@ -1,3 +1,12 @@ +--- +title: MySQL 索引详解 +category: 数据库 +tag: + - MySQL +--- + + + ## 何为索引?有什么作用? **索引是一种用于快速查询和检索数据的数据结构。常见的索引结构有: B 树, B+树和 Hash。** diff --git a/docs/database/mysql/mysql-logs.md b/docs/database/mysql/mysql-logs.md new file mode 100644 index 00000000000..697cf30f6a1 --- /dev/null +++ b/docs/database/mysql/mysql-logs.md @@ -0,0 +1,289 @@ +--- +title: MySQL三大日志(binlog、redo log和undo log)详解 +category: 数据库 +tag: + - MySQL +--- + + + +> 本文来自公号程序猿阿星投稿,JavaGuide 对其做了补充完善。 + +## 前言 + +`MySQL` 日志 主要包括错误日志、查询日志、慢查询日志、事务日志、二进制日志几大类。其中,比较重要的还要属二进制日志 `binlog`(归档日志)和事务日志 `redo log`(重做日志)和 `undo log`(回滚日志)。 + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/03/01.png) + +今天就来聊聊 `redo log`(重做日志)、`binlog`(归档日志)、两阶段提交、`undo log` (回滚日志)。 + +## redo log + +`redo log`(重做日志)是`InnoDB`存储引擎独有的,它让`MySQL`拥有了崩溃恢复能力。 + +比如 `MySQL` 实例挂了或宕机了,重启时,`InnoDB`存储引擎会使用`redo log`恢复数据,保证数据的持久性与完整性。 + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/03/02.png) + +`MySQL` 中数据是以页为单位,你查询一条记录,会从硬盘把一页的数据加载出来,加载出来的数据叫数据页,会放入到 `Buffer Pool` 中。 + +后续的查询都是先从 `Buffer Pool` 中找,没有命中再去硬盘加载,减少硬盘 `IO` 开销,提升性能。 + +更新表数据的时候,也是如此,发现 `Buffer Pool` 里存在要更新的数据,就直接在 `Buffer Pool` 里更新。 + +然后会把“在某个数据页上做了什么修改”记录到重做日志缓存(`redo log buffer`)里,接着刷盘到 `redo log` 文件里。 + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/03/03.png) + +理想情况,事务一提交就会进行刷盘操作,但实际上,刷盘的时机是根据策略来进行的。 + +> 小贴士:每条 redo 记录由“表空间号+数据页号+偏移量+修改数据长度+具体修改的数据”组成 + +### 刷盘时机 + +`InnoDB` 存储引擎为 `redo log` 的刷盘策略提供了 `innodb_flush_log_at_trx_commit` 参数,它支持三种策略: + +- **0** :设置为 0 的时候,表示每次事务提交时不进行刷盘操作 +- **1** :设置为 1 的时候,表示每次事务提交时都将进行刷盘操作(默认值) +- **2** :设置为 2 的时候,表示每次事务提交时都只把 redo log buffer 内容写入 page cache + +`innodb_flush_log_at_trx_commit` 参数默认为 1 ,也就是说当事务提交时会调用 `fsync` 对 redo log 进行刷盘 + +另外,`InnoDB` 存储引擎有一个后台线程,每隔`1` 秒,就会把 `redo log buffer` 中的内容写到文件系统缓存(`page cache`),然后调用 `fsync` 刷盘。 + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/03/04.png) + +也就是说,一个没有提交事务的 `redo log` 记录,也可能会刷盘。 + +**为什么呢?** + +因为在事务执行过程 `redo log` 记录是会写入`redo log buffer` 中,这些 `redo log` 记录会被后台线程刷盘。 + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/03/05.png) + +除了后台线程每秒`1`次的轮询操作,还有一种情况,当 `redo log buffer` 占用的空间即将达到 `innodb_log_buffer_size` 一半的时候,后台线程会主动刷盘。 + +下面是不同刷盘策略的流程图。 + +#### innodb_flush_log_at_trx_commit=0 + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/03/06.png) + +为`0`时,如果`MySQL`挂了或宕机可能会有`1`秒数据的丢失。 + +#### innodb_flush_log_at_trx_commit=1 + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/03/07.png) + +为`1`时, 只要事务提交成功,`redo log`记录就一定在硬盘里,不会有任何数据丢失。 + +如果事务执行期间`MySQL`挂了或宕机,这部分日志丢了,但是事务并没有提交,所以日志丢了也不会有损失。 + +#### innodb_flush_log_at_trx_commit=2 + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/03/09.png) + +为`2`时, 只要事务提交成功,`redo log buffer`中的内容只写入文件系统缓存(`page cache`)。 + +如果仅仅只是`MySQL`挂了不会有任何数据丢失,但是宕机可能会有`1`秒数据的丢失。 + +### 日志文件组 + +硬盘上存储的 `redo log` 日志文件不只一个,而是以一个**日志文件组**的形式出现的,每个的`redo`日志文件大小都是一样的。 + +比如可以配置为一组`4`个文件,每个文件的大小是 `1GB`,整个 `redo log` 日志文件组可以记录`4G`的内容。 + +它采用的是环形数组形式,从头开始写,写到末尾又回到头循环写,如下图所示。 + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/03/10.png) + +在个**日志文件组**中还有两个重要的属性,分别是 `write pos、checkpoint` + +- **write pos** 是当前记录的位置,一边写一边后移 +- **checkpoint** 是当前要擦除的位置,也是往后推移 + +每次刷盘 `redo log` 记录到**日志文件组**中,`write pos` 位置就会后移更新。 + +每次 `MySQL` 加载**日志文件组**恢复数据时,会清空加载过的 `redo log` 记录,并把 `checkpoint` 后移更新。 + +`write pos` 和 `checkpoint` 之间的还空着的部分可以用来写入新的 `redo log` 记录。 + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/03/11.png) + +如果 `write pos` 追上 `checkpoint` ,表示**日志文件组**满了,这时候不能再写入新的 `redo log` 记录,`MySQL` 得停下来,清空一些记录,把 `checkpoint` 推进一下。 + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/03/12.png) + +### redo log 小结 + +相信大家都知道 `redo log` 的作用和它的刷盘时机、存储形式。 + +现在我们来思考一个问题: **只要每次把修改后的数据页直接刷盘不就好了,还有 `redo log` 什么事?** + +它们不都是刷盘么?差别在哪里? + +```java +1 Byte = 8bit +1 KB = 1024 Byte +1 MB = 1024 KB +1 GB = 1024 MB +1 TB = 1024 GB +``` + +实际上,数据页大小是`16KB`,刷盘比较耗时,可能就修改了数据页里的几 `Byte` 数据,有必要把完整的数据页刷盘吗? + +而且数据页刷盘是随机写,因为一个数据页对应的位置可能在硬盘文件的随机位置,所以性能是很差。 + +如果是写 `redo log`,一行记录可能就占几十 `Byte`,只包含表空间号、数据页号、磁盘文件偏移 +量、更新值,再加上是顺序写,所以刷盘速度很快。 + +所以用 `redo log` 形式记录修改内容,性能会远远超过刷数据页的方式,这也让数据库的并发能力更强。 + +> 其实内存的数据页在一定时机也会刷盘,我们把这称为页合并,讲 `Buffer Pool`的时候会对这块细说 + +## binlog + +`redo log` 它是物理日志,记录内容是“在某个数据页上做了什么修改”,属于 `InnoDB` 存储引擎。 + +而 `binlog` 是逻辑日志,记录内容是语句的原始逻辑,类似于“给 ID=2 这一行的 c 字段加 1”,属于`MySQL Server` 层。 + +不管用什么存储引擎,只要发生了表数据更新,都会产生 `binlog` 日志。 + +那 `binlog` 到底是用来干嘛的? + +可以说`MySQL`数据库的**数据备份、主备、主主、主从**都离不开`binlog`,需要依靠`binlog`来同步数据,保证数据一致性。 + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/04/01.png) + +`binlog`会记录所有涉及更新数据的逻辑操作,并且是顺序写。 + +### 记录格式 + +`binlog` 日志有三种格式,可以通过`binlog_format`参数指定。 + +- **statement** +- **row** +- **mixed** + +指定`statement`,记录的内容是`SQL`语句原文,比如执行一条`update T set update_time=now() where id=1`,记录的内容如下。 + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/04/02.png) + +同步数据时,会执行记录的`SQL`语句,但是有个问题,`update_time=now()`这里会获取当前系统时间,直接执行会导致与原库的数据不一致。 + +为了解决这种问题,我们需要指定为`row`,记录的内容不再是简单的`SQL`语句了,还包含操作的具体数据,记录内容如下。 + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/04/03.png) + +`row`格式记录的内容看不到详细信息,要通过`mysqlbinlog`工具解析出来。 + +`update_time=now()`变成了具体的时间`update_time=1627112756247`,条件后面的@1、@2、@3 都是该行数据第 1 个~3 个字段的原始值(**假设这张表只有 3 个字段**)。 + +这样就能保证同步数据的一致性,通常情况下都是指定为`row`,这样可以为数据库的恢复与同步带来更好的可靠性。 + +但是这种格式,需要更大的容量来记录,比较占用空间,恢复与同步时会更消耗`IO`资源,影响执行速度。 + +所以就有了一种折中的方案,指定为`mixed`,记录的内容是前两者的混合。 + +`MySQL`会判断这条`SQL`语句是否可能引起数据不一致,如果是,就用`row`格式,否则就用`statement`格式。 + +### 写入机制 + +`binlog`的写入时机也非常简单,事务执行过程中,先把日志写到`binlog cache`,事务提交的时候,再把`binlog cache`写到`binlog`文件中。 + +因为一个事务的`binlog`不能被拆开,无论这个事务多大,也要确保一次性写入,所以系统会给每个线程分配一个块内存作为`binlog cache`。 + +我们可以通过`binlog_cache_size`参数控制单个线程 binlog cache 大小,如果存储内容超过了这个参数,就要暂存到磁盘(`Swap`)。 + +`binlog`日志刷盘流程如下 + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/04/04.png) + +- **上图的 write,是指把日志写入到文件系统的 page cache,并没有把数据持久化到磁盘,所以速度比较快** +- **上图的 fsync,才是将数据持久化到磁盘的操作** + +`write`和`fsync`的时机,可以由参数`sync_binlog`控制,默认是`0`。 + +为`0`的时候,表示每次提交事务都只`write`,由系统自行判断什么时候执行`fsync`。 + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/04/05.png) + +虽然性能得到提升,但是机器宕机,`page cache`里面的 binglog 会丢失。 + +为了安全起见,可以设置为`1`,表示每次提交事务都会执行`fsync`,就如同**binlog 日志刷盘流程**一样。 + +最后还有一种折中方式,可以设置为`N(N>1)`,表示每次提交事务都`write`,但累积`N`个事务后才`fsync`。 + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/04/06.png) + +在出现`IO`瓶颈的场景里,将`sync_binlog`设置成一个比较大的值,可以提升性能。 + +同样的,如果机器宕机,会丢失最近`N`个事务的`binlog`日志。 + +## 两阶段提交 + +`redo log`(重做日志)让`InnoDB`存储引擎拥有了崩溃恢复能力。 + +`binlog`(归档日志)保证了`MySQL`集群架构的数据一致性。 + +虽然它们都属于持久化的保证,但是侧重点不同。 + +在执行更新语句过程,会记录`redo log`与`binlog`两块日志,以基本的事务为单位,`redo log`在事务执行过程中可以不断写入,而`binlog`只有在提交事务时才写入,所以`redo log`与`binlog`的写入时机不一样。 + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/05/01.png) + +回到正题,`redo log`与`binlog`两份日志之间的逻辑不一致,会出现什么问题? + +我们以`update`语句为例,假设`id=2`的记录,字段`c`值是`0`,把字段`c`值更新成`1`,`SQL`语句为`update T set c=1 where id=2`。 + +假设执行过程中写完`redo log`日志后,`binlog`日志写期间发生了异常,会出现什么情况呢? + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/05/02.png) + +由于`binlog`没写完就异常,这时候`binlog`里面没有对应的修改记录。因此,之后用`binlog`日志恢复数据时,就会少这一次更新,恢复出来的这一行`c`值是`0`,而原库因为`redo log`日志恢复,这一行`c`值是`1`,最终数据不一致。 + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/05/03.png) + +为了解决两份日志之间的逻辑一致问题,`InnoDB`存储引擎使用**两阶段提交**方案。 + +原理很简单,将`redo log`的写入拆成了两个步骤`prepare`和`commit`,这就是**两阶段提交**。 + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/05/04.png) + +使用**两阶段提交**后,写入`binlog`时发生异常也不会有影响,因为`MySQL`根据`redo log`日志恢复数据时,发现`redo log`还处于`prepare`阶段,并且没有对应`binlog`日志,就会回滚该事务。 + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/05/05.png) + +再看一个场景,`redo log`设置`commit`阶段发生异常,那会不会回滚事务呢? + +![](https://cdn.jsdelivr.net/gh/18702524676/CND5/image/mysql/05/06.png) + +并不会回滚事务,它会执行上图框住的逻辑,虽然`redo log`是处于`prepare`阶段,但是能通过事务`id`找到对应的`binlog`日志,所以`MySQL`认为是完整的,就会提交事务恢复数据。 + +## undo log + +> 这部分内容为 JavaGuide 的补充: + +我们知道如果想要保证事务的原子性,就需要在异常发生时,对已经执行的操作进行**回滚**,在 MySQL 中,恢复机制是通过 **回滚日志(undo log)** 实现的,所有事务进行的修改都会先记录到这个回滚日志中,然后再执行相关的操作。如果执行过程中遇到异常的话,我们直接利用 **回滚日志** 中的信息将数据回滚到修改之前的样子即可!并且,回滚日志会先于数据持久化到磁盘上。这样就保证了即使遇到数据库突然宕机等情况,当用户再次启动数据库的时候,数据库还能够通过查询回滚日志来回滚将之前未完成的事务。 + +另外,`MVCC` 的实现依赖于:**隐藏字段、Read View、undo log**。在内部实现中,`InnoDB` 通过数据行的 `DB_TRX_ID` 和 `Read View` 来判断数据的可见性,如不可见,则通过数据行的 `DB_ROLL_PTR` 找到 `undo log` 中的历史版本。每个事务读到的数据版本可能是不一样的,在同一个事务中,用户只能看到该事务创建 `Read View` 之前已经提交的修改和该事务本身做的修改 + +## 总结 + +> 这部分内容为 JavaGuide 的补充: + +MySQL InnoDB 引擎使用 **redo log(重做日志)** 保证事务的**持久性**,使用 **undo log(回滚日志)** 来保证事务的**原子性**。 + +`MySQL`数据库的**数据备份、主备、主主、主从**都离不开`binlog`,需要依靠`binlog`来同步数据,保证数据一致性。 + +## 站在巨人的肩膀上 + +- 《MySQL 实战 45 讲》 +- 《从零开始带你成为 MySQL 实战优化高手》 +- 《MySQL 是怎样运行的:从根儿上理解 MySQL》 +- 《MySQL 技术 Innodb 存储引擎》 + +## MySQL 好文推荐 + +- [CURD 这么多年,你有了解过 MySQL 的架构设计吗?](https://mp.weixin.qq.com/s/R-1km7r0z3oWfwYQV8iiqA) +- [浅谈 MySQL InnoDB 的内存组件](https://mp.weixin.qq.com/s/7Kab4IQsNcU_bZdbv_MuOg) diff --git a/docs/database/MySQL.md "b/docs/database/mysql/mysql\347\237\245\350\257\206\347\202\271&\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" similarity index 94% rename from docs/database/MySQL.md rename to "docs/database/mysql/mysql\347\237\245\350\257\206\347\202\271&\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" index 5edb178dcb4..b07247b20f5 100644 --- a/docs/database/MySQL.md +++ "b/docs/database/mysql/mysql\347\237\245\350\257\206\347\202\271&\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" @@ -1,3 +1,12 @@ +--- +title: MySQL知识点&面试题总结 +category: 数据库 +tag: + - MySQL + - 大厂面试 +--- + + ## MySQL 基础 ### 关系型数据库介绍 @@ -132,7 +141,7 @@ MVCC 可以看作是行级锁的一个升级,可以有效减少加锁操作, - Record lock:记录锁,单个行记录上的锁 - Gap lock:间隙锁,锁定一个范围,不包括记录本身 -- Next-key lock:record+gap临键锁,锁定一个范围,包含记录本身 +- Next-key lock:record+gap 临键锁,锁定一个范围,包含记录本身 ## 查询缓存 @@ -152,9 +161,9 @@ set global query_cache_type=1; set global query_cache_size=600000; ``` -如上,**开启查询缓存后在同样的查询条件以及数据情况下,会直接在缓存中返回结果**。这里的查询条件包括查询本身、当前要查询的数据库、客户端协议版本号等一些可能影响结果的信息。因此任何两个查询在任何字符上的不同都会导致缓存不命中。此外,如果查询中包含任何用户自定义函数、存储函数、用户变量、临时表、MySQL 库中的系统表,其查询结果也不会被缓存。 +如上,**开启查询缓存后在同样的查询条件以及数据情况下,会直接在缓存中返回结果**。这里的查询条件包括查询本身、当前要查询的数据库、客户端协议版本号等一些可能影响结果的信息。(**查询缓存不命中的情况:(1)**)因此任何两个查询在任何字符上的不同都会导致缓存不命中。此外,(**查询缓存不命中的情况:(2)**)如果查询中包含任何用户自定义函数、存储函数、用户变量、临时表、MySQL 库中的系统表,其查询结果也不会被缓存。 -缓存建立之后,MySQL 的查询缓存系统会跟踪查询中涉及的每张表,如果这些表(数据或结构)发生变化,那么和这张表相关的所有缓存数据都将失效。 +(**查询缓存不命中的情况:(3)**)**缓存建立之后**,MySQL 的查询缓存系统会跟踪查询中涉及的每张表,如果这些表(数据或结构)发生变化,那么和这张表相关的所有缓存数据都将失效。 **缓存虽然能够提升数据库的查询性能,但是缓存同时也带来了额外的开销,每次查询后都要做一次缓存操作,失效后还要销毁。** 因此,开启查询缓存要谨慎,尤其对于写密集的应用来说更是如此。如果开启,要注意合理控制缓存空间大小,一般来说其大小设置为几十 MB 比较合适。此外,**还可以通过 sql_cache 和 sql_no_cache 来控制某个查询语句是否需要缓存:** @@ -209,7 +218,7 @@ COMMIT; 1. **原子性**(`Atomicity`) : 事务是最小的执行单位,不允许分割。事务的原子性确保动作要么全部完成,要么完全不起作用; 2. **一致性**(`Consistency`): 执行事务前后,数据保持一致,例如转账业务中,无论事务是否成功,转账者和收款人的总额应该是不变的; 3. **隔离性**(`Isolation`): 并发访问数据库时,一个用户的事务不被其他事务所干扰,各并发事务之间数据库是独立的; -4. **持久性**(`Durabilily`): 一个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响。 +4. **持久性**(`Durability`): 一个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响。 **数据事务的实现原理呢?** @@ -280,5 +289,4 @@ InnoDB 存储引擎在 **分布式事务** 的情况下一般会用到 **SERIALI ## 参考 - 《高性能 MySQL》 - - https://www.omnisci.com/technical-glossary/relational-database diff --git "a/docs/database/\345\205\263\344\272\216\346\225\260\346\215\256\345\272\223\345\255\230\345\202\250\346\227\266\351\227\264\347\232\204\344\270\200\347\202\271\346\200\235\350\200\203.md" b/docs/database/mysql/some-thoughts-on-database-storage-time.md similarity index 95% rename from "docs/database/\345\205\263\344\272\216\346\225\260\346\215\256\345\272\223\345\255\230\345\202\250\346\227\266\351\227\264\347\232\204\344\270\200\347\202\271\346\200\235\350\200\203.md" rename to docs/database/mysql/some-thoughts-on-database-storage-time.md index 8eccaff2f0f..ccad646e5d4 100644 --- "a/docs/database/\345\205\263\344\272\216\346\225\260\346\215\256\345\272\223\345\255\230\345\202\250\346\227\266\351\227\264\347\232\204\344\270\200\347\202\271\346\200\235\350\200\203.md" +++ b/docs/database/mysql/some-thoughts-on-database-storage-time.md @@ -1,3 +1,12 @@ +--- +title: 关于数据库中如何存储时间的一点思考 +category: 数据库 +tag: + - MySQL +--- + + + 我们平时开发中不可避免的就是要存储时间,比如我们要记录操作表中这条记录的时间、记录转账的交易时间、记录出发时间等等。你会发现时间这个东西与我们开发的联系还是非常紧密的,用的好与不好会给我们的业务甚至功能带来很大的影响。所以,我们有必要重新出发,好好认识一下这个东西。 这是一篇短小精悍的文章,仔细阅读一定能学到不少东西! @@ -150,11 +159,4 @@ MySQL 中时间到底怎么存储才好?Datetime?Timestamp? 数值保存的时 每种方式都有各自的优势,根据实际场景才是王道。下面再对这三种方式做一个简单的对比,以供大家实际开发中选择正确的存放时间的数据类型: - - -如果还有什么问题欢迎给我留言!如果文章有什么问题的话,也劳烦指出,Guide 哥感激不尽! - -后面的文章我会介绍: - -- [ ] Java8 对日期的支持以及为啥不能用 SimpleDateFormat。 -- [ ] SpringBoot 中如何实际使用(JPA 为例) \ No newline at end of file + \ No newline at end of file diff --git "a/docs/database/\344\272\213\345\212\241\351\232\224\347\246\273\347\272\247\345\210\253(\345\233\276\346\226\207\350\257\246\350\247\243).md" b/docs/database/mysql/transaction-isolation-level.md similarity index 81% rename from "docs/database/\344\272\213\345\212\241\351\232\224\347\246\273\347\272\247\345\210\253(\345\233\276\346\226\207\350\257\246\350\247\243).md" rename to docs/database/mysql/transaction-isolation-level.md index 95da8be960d..4be2f5fde44 100644 --- "a/docs/database/\344\272\213\345\212\241\351\232\224\347\246\273\347\272\247\345\210\253(\345\233\276\346\226\207\350\257\246\350\247\243).md" +++ b/docs/database/mysql/transaction-isolation-level.md @@ -1,20 +1,12 @@ +--- +title: 事务隔离级别(图文详解) +category: 数据库 +tag: + - MySQL +--- + + > 本文由 [SnailClimb](https://github.com/Snailclimb) 和 [guang19](https://github.com/guang19) 共同完成。 - - -- [事务隔离级别(图文详解)](#事务隔离级别图文详解) - - [什么是事务?](#什么是事务) - - [事务的特性(ACID)](#事务的特性acid) - - [并发事务带来的问题](#并发事务带来的问题) - - [事务隔离级别](#事务隔离级别) - - [实际情况演示](#实际情况演示) - - [脏读(读未提交)](#脏读读未提交) - - [避免脏读(读已提交)](#避免脏读读已提交) - - [不可重复读](#不可重复读) - - [可重复读](#可重复读) - - [防止幻读(可重复读)](#防止幻读可重复读) - - [参考](#参考) - - ## 事务隔离级别(图文详解) @@ -69,7 +61,7 @@ | REPEATABLE-READ | × | × | √ | | SERIALIZABLE | × | × | × | -MySQL InnoDB 存储引擎的默认支持的隔离级别是 **REPEATABLE-READ(可重读)**。我们可以通过`SELECT @@tx_isolation;`命令来查看,MySQL 8.0 该命令改为`SELECT @@transaction_isolation;` +MySQL InnoDB 存储引擎的默认支持的隔离级别是 **REPEATABLE-READ(可重读)**。我们可以通过`SELECT @@tx_isolation;`命令来查看,MySQL 8.0 该命令改为`SELECT @@transaction_isolation;` ```sql mysql> SELECT @@tx_isolation; @@ -80,11 +72,17 @@ mysql> SELECT @@tx_isolation; +-----------------+ ``` -这里需要注意的是:与 SQL 标准不同的地方在于InnoDB 存储引擎在 **REPEATABLE-READ(可重读)** 事务隔离级别下,允许应用使用 Next-Key Lock 锁算法来避免幻读的产生。这与其他数据库系统(如 SQL Server)是不同的。所以说虽然 InnoDB 存储引擎的默认支持的隔离级别是 **REPEATABLE-READ(可重读)** ,但是可以通过应用加锁读(例如 `select * from table for update` 语句)来保证不会产生幻读,而这个加锁度使用到的机制就是 Next-Key Lock 锁算法。从而达到了 SQL 标准的 **SERIALIZABLE(可串行化)** 隔离级别。 +~~这里需要注意的是:与 SQL 标准不同的地方在于 InnoDB 存储引擎在 **REPEATABLE-READ(可重读)** 事务隔离级别下使用的是 Next-Key Lock 锁算法,因此可以避免幻读的产生,这与其他数据库系统(如 SQL Server)是不同的。所以说 InnoDB 存储引擎的默认支持的隔离级别是 **REPEATABLE-READ(可重读)** 已经可以完全保证事务的隔离性要求,即达到了 SQL 标准的 **SERIALIZABLE(可串行化)** 隔离级别。~~ + +🐛 问题更正:**MySQL InnoDB 的 REPEATABLE-READ(可重读)并不保证避免幻读,需要应用使用加锁读来保证。而这个加锁度使用到的机制就是 Next-Key Locks。** + +因为隔离级别越低,事务请求的锁越少,所以大部分数据库系统的隔离级别都是 **READ-COMMITTED(读取提交内容)** ,但是你要知道的是 InnoDB 存储引擎默认使用 **REPEATABLE-READ(可重读)** 并不会有任何性能损失。 + +InnoDB 存储引擎在 **分布式事务** 的情况下一般会用到 **SERIALIZABLE(可串行化)** 隔离级别。 -因为隔离级别越低,事务请求的锁越少,所以大部分数据库系统的隔离级别都是**READ-COMMITTED(读取提交内容):**,但是你要知道的是InnoDB 存储引擎默认使用 **REPEATABLE-READ(可重读)** 并不会有任何性能损失。 +🌈 拓展一下(以下内容摘自《MySQL 技术内幕:InnoDB 存储引擎(第 2 版)》7.7 章): -InnoDB 存储引擎在 **分布式事务** 的情况下一般会用到**SERIALIZABLE(可串行化)** 隔离级别。 +> InnoDB 存储引擎提供了对 XA 事务的支持,并通过 XA 事务来支持分布式事务的实现。分布式事务指的是允许多个独立的事务资源(transactional resources)参与到一个全局的事务中。事务资源通常是关系型数据库系统,但也可以是其他类型的资源。全局事务要求在其中的所有参与的事务要么都提交,要么都回滚,这对于事务原有的 ACID 要求又有了提高。另外,在使用分布式事务时,InnoDB 存储引擎的事务隔离级别必须设置为 SERIALIZABLE。 ### 实际情况演示 diff --git "a/docs/database/Redis/3\347\247\215\345\270\270\347\224\250\347\232\204\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245.md" b/docs/database/redis/3-commonly-used-cache-read-and-write-strategies.md similarity index 98% rename from "docs/database/Redis/3\347\247\215\345\270\270\347\224\250\347\232\204\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245.md" rename to docs/database/redis/3-commonly-used-cache-read-and-write-strategies.md index 21332e5dd41..841067861f2 100644 --- "a/docs/database/Redis/3\347\247\215\345\270\270\347\224\250\347\232\204\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245.md" +++ b/docs/database/redis/3-commonly-used-cache-read-and-write-strategies.md @@ -1,3 +1,11 @@ +--- +title: 3种常用的缓存读写策略 +category: 数据库 +tag: + - Redis +--- + + 看到很多小伙伴简历上写了“**熟练使用缓存**”,但是被我问到“**缓存常用的3种读写策略**”的时候却一脸懵逼。 在我看来,造成这个问题的原因是我们在学习 Redis 的时候,可能只是简单了写一些 Demo,并没有去关注缓存的读写策略,或者说压根不知道这回事。 diff --git a/docs/database/redis/images/redis-all/redis-list.drawio b/docs/database/redis/images/redis-all/redis-list.drawio new file mode 100644 index 00000000000..afa767154b7 --- /dev/null +++ b/docs/database/redis/images/redis-all/redis-list.drawio @@ -0,0 +1 @@ +7VlNc5swFPw1PiaDENjmmNjpx6Gdjt1J2lNHAzKoEYgRcmzn11cYyRgJT1w3DnScU3grIaHd5b2HM4CTdP2Rozz5wiJMB64TrQdwOnBdEEAo/5TIpkICx6mAmJNITaqBOXnGCtTTliTCRWOiYIwKkjfBkGUZDkUDQ5yzVXPagtHmrjmKsQXMQ0Rt9IFEIqnQsTuq8U+YxIneGQyDaiRFerI6SZGgiK32IHg3gBPOmKiu0vUE05I8zUt134cDo7sH4zgTx9wwu/+V/H4g/myezsD35/vZ56/ulVrlCdGlOrB6WLHRDHC2zCJcLgIG8HaVEIHnOQrL0ZXUXGKJSKkaLh6xCBMVLFgmlKJgJGO1F+YCrw8eAuyokZ7CLMWCb+QUdcOVp9hUdnKhile1OL62WLInzEhhSPkh3i1dUyYvFGt/waBrMbi9BD3lUfPm2bwFLbT556INttPWc/sB035d0+i10wj7TaM77hmNw5fTIM6im7KeyCikqChI2ORMHp1vfsjA0cHPMrh2fR1P1/uj042KjiAbR1aRMqiWVRHxGIuXUr0tSSNxHqacY4oEeWo+RpsOaodvjMgHrPM2gKbk4+YaBVvyEKvb9suYuZLpHdcwRUWEtdDWF7tzn26V0f9ula4s4A0N4cbOtX+aB3zfWupNPaCb01cxAXjPF0cofGq68AJjIT8wXXdusxzRY/fbLJ0VDbPbOj1j2PXnrVOG/Z3A82WRWFaQXZUwujHB2SOeMMq4RDKW4VJLQqkBIUrirHSQVA9L/Lbs0Yj8lL1RAymJonKb1vavbhCP9M0/dYA+OFDF95zltTjLLPav1gECu5PmOcvf5aloD7qWx7fkoRf8+siiYggEuhbI/oSil/v+2Pp0/gLZ3y18u20/BTqDJp5O8VoSp2tJxvYrgxcXpIjV351PERnWv7RXPV39/wp49wc= \ No newline at end of file diff --git a/docs/database/redis/images/redis-all/redis-list.png b/docs/database/redis/images/redis-all/redis-list.png new file mode 100644 index 00000000000..4fb4e36cb49 Binary files /dev/null and b/docs/database/redis/images/redis-all/redis-list.png differ diff --git a/docs/database/redis/images/redis-all/redis-rollBack.png b/docs/database/redis/images/redis-all/redis-rollBack.png new file mode 100644 index 00000000000..91f7f46d66d Binary files /dev/null and b/docs/database/redis/images/redis-all/redis-rollBack.png differ diff --git a/docs/database/redis/images/redis-all/redis-vs-memcached.png b/docs/database/redis/images/redis-all/redis-vs-memcached.png new file mode 100644 index 00000000000..23844d67e6f Binary files /dev/null and b/docs/database/redis/images/redis-all/redis-vs-memcached.png differ diff --git a/docs/database/redis/images/redis-all/redis4.0-more-thread.png b/docs/database/redis/images/redis-all/redis4.0-more-thread.png new file mode 100644 index 00000000000..e7e19e52e17 Binary files /dev/null and b/docs/database/redis/images/redis-all/redis4.0-more-thread.png differ diff --git "a/docs/database/redis/images/redis-all/redis\344\272\213\344\273\266\345\244\204\347\220\206\345\231\250.png" "b/docs/database/redis/images/redis-all/redis\344\272\213\344\273\266\345\244\204\347\220\206\345\231\250.png" new file mode 100644 index 00000000000..fc280fffaba Binary files /dev/null and "b/docs/database/redis/images/redis-all/redis\344\272\213\344\273\266\345\244\204\347\220\206\345\231\250.png" differ diff --git "a/docs/database/redis/images/redis-all/redis\344\272\213\345\212\241.png" "b/docs/database/redis/images/redis-all/redis\344\272\213\345\212\241.png" new file mode 100644 index 00000000000..eb0c404cafd Binary files /dev/null and "b/docs/database/redis/images/redis-all/redis\344\272\213\345\212\241.png" differ diff --git "a/docs/database/redis/images/redis-all/redis\350\277\207\346\234\237\346\227\266\351\227\264.png" "b/docs/database/redis/images/redis-all/redis\350\277\207\346\234\237\346\227\266\351\227\264.png" new file mode 100644 index 00000000000..27df6ead8e4 Binary files /dev/null and "b/docs/database/redis/images/redis-all/redis\350\277\207\346\234\237\346\227\266\351\227\264.png" differ diff --git a/docs/database/redis/images/redis-all/try-redis.png b/docs/database/redis/images/redis-all/try-redis.png new file mode 100644 index 00000000000..cd21a6518e4 Binary files /dev/null and b/docs/database/redis/images/redis-all/try-redis.png differ diff --git a/docs/database/redis/images/redis-all/what-is-redis.png b/docs/database/redis/images/redis-all/what-is-redis.png new file mode 100644 index 00000000000..913881ac6cf Binary files /dev/null and b/docs/database/redis/images/redis-all/what-is-redis.png differ diff --git "a/docs/database/redis/images/redis-all/\344\275\277\347\224\250\347\274\223\345\255\230\344\271\213\345\220\216.png" "b/docs/database/redis/images/redis-all/\344\275\277\347\224\250\347\274\223\345\255\230\344\271\213\345\220\216.png" new file mode 100644 index 00000000000..2c73bd90276 Binary files /dev/null and "b/docs/database/redis/images/redis-all/\344\275\277\347\224\250\347\274\223\345\255\230\344\271\213\345\220\216.png" differ diff --git "a/docs/database/redis/images/redis-all/\345\212\240\345\205\245\345\270\203\351\232\206\350\277\207\346\273\244\345\231\250\345\220\216\347\232\204\347\274\223\345\255\230\345\244\204\347\220\206\346\265\201\347\250\213.png" "b/docs/database/redis/images/redis-all/\345\212\240\345\205\245\345\270\203\351\232\206\350\277\207\346\273\244\345\231\250\345\220\216\347\232\204\347\274\223\345\255\230\345\244\204\347\220\206\346\265\201\347\250\213.png" new file mode 100644 index 00000000000..a2c2ed6906f Binary files /dev/null and "b/docs/database/redis/images/redis-all/\345\212\240\345\205\245\345\270\203\351\232\206\350\277\207\346\273\244\345\231\250\345\220\216\347\232\204\347\274\223\345\255\230\345\244\204\347\220\206\346\265\201\347\250\213.png" differ diff --git "a/docs/database/redis/images/redis-all/\345\215\225\344\275\223\346\236\266\346\236\204.png" "b/docs/database/redis/images/redis-all/\345\215\225\344\275\223\346\236\266\346\236\204.png" new file mode 100644 index 00000000000..648a404af8c Binary files /dev/null and "b/docs/database/redis/images/redis-all/\345\215\225\344\275\223\346\236\266\346\236\204.png" differ diff --git "a/docs/database/redis/images/redis-all/\347\274\223\345\255\230\347\232\204\345\244\204\347\220\206\346\265\201\347\250\213.png" "b/docs/database/redis/images/redis-all/\347\274\223\345\255\230\347\232\204\345\244\204\347\220\206\346\265\201\347\250\213.png" new file mode 100644 index 00000000000..11860ae1f02 Binary files /dev/null and "b/docs/database/redis/images/redis-all/\347\274\223\345\255\230\347\232\204\345\244\204\347\220\206\346\265\201\347\250\213.png" differ diff --git "a/docs/database/redis/images/redis-all/\347\274\223\345\255\230\347\251\277\351\200\217\346\203\205\345\206\265.png" "b/docs/database/redis/images/redis-all/\347\274\223\345\255\230\347\251\277\351\200\217\346\203\205\345\206\265.png" new file mode 100644 index 00000000000..e7298c15ed6 Binary files /dev/null and "b/docs/database/redis/images/redis-all/\347\274\223\345\255\230\347\251\277\351\200\217\346\203\205\345\206\265.png" differ diff --git "a/docs/database/redis/images/redis-all/\351\233\206\344\270\255\345\274\217\347\274\223\345\255\230\346\236\266\346\236\204.png" "b/docs/database/redis/images/redis-all/\351\233\206\344\270\255\345\274\217\347\274\223\345\255\230\346\236\266\346\236\204.png" new file mode 100644 index 00000000000..5aff414baa4 Binary files /dev/null and "b/docs/database/redis/images/redis-all/\351\233\206\344\270\255\345\274\217\347\274\223\345\255\230\346\236\266\346\236\204.png" differ diff --git "a/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/cache-aside-read.drawio" "b/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/cache-aside-read.drawio" new file mode 100644 index 00000000000..bc4c6d0cca7 --- /dev/null +++ "b/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/cache-aside-read.drawio" @@ -0,0 +1 @@ +7Vpbc+o2EP41ekzHl/j2iAmk02nmdA6dpn3qCFsYTWSLY0Qg/fWVbMnYluE4B4jTQh4Se6WVVt+32pU2BvY43T3mcLV8ojEiwDLiHbAfgGWZluPzP0LyVkoCwygFSY5j2WkvmOF/kBSqbhsco3WjI6OUMLxqCiOaZShiDRnMc7ptdltQ0px1BROkCWYRJLr0GcdsWUp9y9vLf0Y4WaqZTTcoW1KoOsuVrJcwptuayJ4Ae5xTysqndDdGRICncCn1pgdaK8NylLE+Ck/Pf/xthHPraf7NePliLeLZ1+c7OcorJBu5YGkse1MI5HSTxUgMYgI73C4xQ7MVjETrlnPOZUuWEtm8wISMKaF5oWsvFgsrirh8zXL6gmotsTt3HVe0KFiEekRTzLs/GPw5IXC9ls/SSpQztDu4fLMClXsjoili+RvvIhVs5VHSEX3fKd+3e1pNxdWyRqkrZVB6UlINvQebP0i834G9db3YW0Njb2vYx5BBDX++ZNYEuQlmRjN0BHlIcJJxWcRxQrwxFChiHlxGsiHFcSzm6qR2T75RTaxiUME3zZgMmFbQIq1O5jkIvG8RqN5rBLod/NmX4u9e4y8TVN3468dflYWH4s+5mtjnGJ8t77jXi/3gece75Z13EWi3845OYFfcUjyfnT//lndO4W/wvBNcTexzg8+Wd9Ql4BrBHzzxmPpN/5Z5jjDoWZ/sxmPq5YJb6nkHgYOnHlOvOfxfw5/vf7rcoxcMrgb84XOPftu/5Z4jDAbtcunguUcvGdxyzzsIHD736HUHjTyUxSPxDzNBgIBGANKIeC38mgjbXIJ2mP0pe4vnvwSiPzny7WEnAS5e3hpoo1j7L1wLa24q3eQROrbIbk5qmDsdmCtZjghk+LVpRhcRcobfKOYGHiw1BSrjqCFK86XWns4eA7VqGQzmCWLaQIVfVMs+wVX0Esd/zFWGcgG/vevbzPV1gXYG/3AX6FElublAF3Nu+9Lxo1GgXUDQBrqwC6h1NFzAJUV2t/bK7reN+HwhBJN7EPrAD8DEAf4U+GPxwNcQmGASgMAG4QRMfDAywcivqdVdSgmF59ytC9cZ8Q62vdrVNdyknJDP8wACp3N4UnadClNlfymM8esJk8pB5vnpY3DrCluU9PSTlBSd9RBVv7IcOi/Vdrptn+f8ZPt+w/s9Vz8/OeZHHqAsvXz2PZcSFN5JNoQ/ELRgh/1hvYJZH68yne7twPcf3w5jsQt49uD37ckUhGMQjGYZxGRMcDrnnWEqSM7m61XTFcvZj3toKRXmnGDnBTCrBQQHjMYFFHzhngxFoVetu/z9iNlyM6/w+QW+wkfxkdkPwcGlJSK99/HF92e9vNDOxEKJ8hExEzsrEK8EzhEJYfSSFGO3AwxXrl3VjOKn0qJ5jPIOjSlMMREzPMIcpjSLlRkSGENS/aUyxTNKPiOcJb/TlTwiSMGvwgsakpAyRtOm7KsMA2eKQZ6qWakM7OhlFKsrBt1fLAbpFeDbsazXscw0vnep6nsuMw1v2LO5pVeRs41Q+9jAM2R1RefgcuUV/rr/QrfkcP+dsz35Fw== \ No newline at end of file diff --git "a/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/cache-aside-read.png" "b/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/cache-aside-read.png" new file mode 100644 index 00000000000..f8b9589d6d7 Binary files /dev/null and "b/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/cache-aside-read.png" differ diff --git "a/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/cache-aside-write.drawio" "b/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/cache-aside-write.drawio" new file mode 100644 index 00000000000..6fddf10f064 --- /dev/null +++ "b/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/cache-aside-write.drawio" @@ -0,0 +1 @@ +7LzXsuTYkSX6NWl254FtAAIqHqG11ngZgwporfH1A5zMLFaRySZ5L7unZ26fqjwHsYGt3Zcv9+2Iby+qPbgpGgqlT7PmGwSkx7cX/Q2CwPfrdf95Ss7vJW8A+F6QT2X646E/F1jllf0o/PnYWqbZ/IcHl75vlnL4Y2HSd12WLH8oi6ap3//42Kdv/tjrEOXZXxVYSdT8dalXpkvxvRSHsD+X81mZFz97BtH39ztt9PPhHzOZiyjt998VvZhvL2rq++X7VXtQWfMs3s91+V6P/Rt3fxvYlHXLP1LhaIIYQnDfkqb05QKximXAn34u8xY1648Zf4PQ5m6QjO+L/Ln4WTAPUffMYzl/LA46rs/gyaRv+unbi7hvTnn8/yD30O5mqfv3Hy7/x3P9NHfvQrf86RO1ZXN+r3a3FbXD183XC77/ttk0lXt2r2E2/dXN39r8qzvD8gwwm8rPP1Epz/opL6N/osZStrdMQkCX7c+c+/ZZmH+49rzMfZf/7Qo/xv/7tZq/9OJZKRD7N2Q4/uLu9x15bnf91EbNb7ebbFmy6U/3ziXl3eWvHlmyY/lT1JR59/12k32WP94su/RLxJ67wO/6/rq5TFE3f+4mfzbeZb89sPdT+se+f189jpI6n/q1S//0FwIEIchvi/EX1//jj72nWdJP0VL23S+6T8t5aKIfElZ2Tfm7e5+mj5bf1/kpyz+FHvq3bwz+jWC/keQ3BvmGs9/e6DcG/kbi33D6qwT/RgLfGOzbm/iGwz8eftM/leXWw+/68t869F9dh/7fCuJfisxvo+ni+fugqC9B+ZKVR3TIbzhDfxcn4hsBPDJD0s//txTdIkSiz603cD/19Qz67f3+0QCBJFFSZD8EkPh7UnYX/w69oT8IHPQozl2+F+WSWbdyPsX7bbzvsmJpm/sTeF8+S/bDGv9Yp7+0Nj8M0JZNd4u/K/phfbisb7NlOu9Hftx9IT+MzQ8q8EJ/fN7/bFihn/Sg+J1RhX+URT9sef5b0382d/fFD4v3z1g/8G9av/9W1P96ivp/sLH7D7ZWf8XZwH/7DXHuSt/B427tN/z4hW274Qb5MmnoY+GIG4PuB6hvOPWrh39v/8hvJPxVi7lx6gvU7mfgLywjv72Z38Y2/fsw9TcQ7V+CXk0UZw35G85T33X4bu/Ffv38awAO/wt8Q/4a30D0F/iG/wvwTaedpuK5M2cg0KMIasRg+k+/gLcf9oT6EgXq2xv7sakk9mO/34QYbRH3uF2/2LmnFv3t/SUT97Dvpn7W+l7j2fTXIwZ/Y99+t0fzMvV19nMrvuT63riyaf6i6Ie60sm9MTc+vshnQ8rbQyN+3GjLNH26+aVQfO139izSvyMHPzv/C6l5Pv9OVMiv//5FtvD1+jfkD9ICY/+gNYT+BdKSMkbzbv5nOG1tTP/PbKnwvPqVtPzlLj7LNvyNuf7mg0fxz8eBv7FSf3NZoNffpwgg9ItFAf/jOMLfX5Xbsx+ey7L9Cib8JqDyI216P5ffIZ+O+2Xp238Xjj5fP78Q8qV/pDmah+9Bjk95PEJNfnVJ/CwFfpbc12m0RLfJ+P4RYofHCFOlS2rmDkhc3hP3j2o5BePk95Xy/KIFigjuv9TiSWh2XzgL0DCGa8L+CqXUx/oGkRBo8xtmWrAxyqgaWkBkUmbSg4Nxhm2JSs7KcgUjOJyvxapZyJbVWbkyOC93D2vQqM+UBGpgegVFHd3zAfXtjfkLht1NP/sEsdn3PzN+X5Dvq9s0PPy6SYKvzb//YBt+/w6R93tbP8g248j17mgxtCyKMijt4GCTk+znej1YIV/ttDbKhOiZ2lLhrHQIS9TuBkhToTiDRshYLpoRYAxLEBRlYRCbnCnLJOJ4aUaGsO5iVUkJzC5qwjqEMF6KnsktWxBILd0x46sYDqOFrJmcsmXB1JI9NvLa8M6vYoYpKZqWTc3ZY6KuDQ7CwqggmPoutnlDA+CQYGaL87AgIgWmPinC7hINEJ7ijPMmIyQFoj5Pxu4UDhBEhp3Xp9gkhTzfT8BuFG4XRYZcVsjrDVK8i4EDoBeNM0iZKZoV4nKLFJU8Z5BbkqinmH8mzRkWISpzwSAXuVCU+ffXggNu00zmkRWX/oAP0jpr+sU43VZvxkfDMORzvrebXbIRvFkuic7YO7WsVMjaiapY7VZBclo/p/02Pi3uLFJ8SyVrtW2pPPMqY7iRrWq8ao3j6gq+77kbqMU+PqGRZ/l3n2AoZ0BUfe56JN5SpnAd9j5gDfG07JTHrfCsfP+r73+mXA9wi8bOsR+Lbx0yo2+ZL9e4XOocmFau691PIaOQzNO4heeujLYgx+Inpu7qJFChNrtdyHhDADkfdFMh02vTBa0+6UsciJdD4zlqbZ2abS264IvJN4V6hGBc51ao9kznokISv4fmld79gMFbyprq5XZhHpDiM8DTxMOT58FP+lnHfroGH3CYdvMQ360CUM3XnesEDffPPcaT2AbGE3sjSXeGWvyOy7MahPwA8GCCxo+UtaiELPqItTiWiQM+vj0y+ERy3pz4fGWuKl4i+xocKn0fWJU5dUWZFdoIIsGsn3LBGcj6tPrdpfJon3RP2X8LEqnEVQDcosPDevXAiJB1V8bdV9NqIOLFGPVI+bzh4/oEUX5Df0iLfAMTatb1xh2QLQoFIDvNxusgp3Ex/iwEIuDDaM5mmwoiPpfus2VNVe4FxWUE/o6DCoXgC4OfLVYaP7fjktzILvPk5UL8yK/orknvNhL1OzCc44gEL7NJaBmPcE+VFu4oOerqP035yMMDLtdWnuZ7Qg3MwsViniJ8Cnf2RnXIvF4jj9T5ym65C7r2p2as7qnSg0SHFewirONan6A9EpiD4x7cUu4H7T3TyZcjBhplvDpzCYodfERuZEX1bTetAxZbGFjBIzp9XHSdpViIElnR7PILFXOAv8pbMqUn+uFuikx6Xt2HZ2vel6YgF+jrimEX3lSMUB5JcdDdH1f0Vr8bYjt/OacAyBD9BCX53rQipC0KZItozrqW1/xNw5YqI/TbEZVXtr18+5blx/pR6Svq49Ii/RowOEZGq4LcdsPlJWntyG1OWBRD3wPFUVMdlJS4nF1JmkkTiVd/6zOo651lmGkxN9P5lqdPykrZ4V436wwS/Bl7sPGQ0SBjGtQpYgMezHA6YFv2Ho8oKLsSYRZR4nOq8wiY8RYuoTCWntIskcdXNJk9jtFtuU7yk75Bo7mtTG0Er0oVQFAcIdm4J6FH1TUh+m3vWYpM/agPb3BjzhdvYeKjz3VnXpaZwqzvP4+3SZNEVc9GwipgNAg13PLAE2MXKhk2uWAWUPSiPlQ1VpGpHI4dfzdAfD3nAhry92UTmBunIxF5trw9EHyTKxf2NX5vEauN6dHoGU0dKDaJlErdpa8QUmRF8yzqI0i1jphMJTe8X9pDWsAsH2eqx03vJTKn9Dq4BrrbFanex6vJ/dhc6oCZoal6A1jzgXjp2uWYOUpyjqi0mBSdpQ+kZZlvfM9FXigxjbPJNDCT/cBI66NmfO69lwq42QVhhmfDzOG4Nb1xi8LHOA55qjVHFnnm/JQdL6g3hjlzgsW383wbCDj1p6KomAZIRMDHGSoAcnsH4NezlLjxOuPFjSiDsCGOJCpodDEDLjCSRPu3g57X3sKr20p8c2hz7Nz2X6AP9uXITUFbtkZVJzbfDSWwNvePYuZ6hU8vvheeDw/mHtdtxE6U7aX9MTSkkqMCKAfGrels/2AyKpWVfvOpGeJeVMNFr+YzghN6c9H1RpOjwRU7x8/OdegixMPMq7yNlovPVtZ2mpFgUFgFba+BjjbWO4RFPDoZToUWOYjE4zDzduIN2VcG0X8r5LsBaj3dzG1aW92UmOMydfqeT3OQWRYHLWLKlS4h+rhq1lthxlAIuzHxOnfsqxGC2nQCzIHx1rEDCd2ZLRvFzcI+iktgfb0pzshhnGALDxNsmzdjGEYtiLQLRnyJDQWSQMF4Sx9Z+n5hU6alN1YmkRSrQu5WuWbmgYlO6u3M5KN0gYqetGGes44OI01lQDYD+/y7HloT4FJpW1kBmoDZNsnE6FAsFgaMMDafwhHyHlILn55KzkjLj5IxY0XshUKukXKJqFEsC50INFVu3xtcX0tx3WMoldcaSm3cB58Hg6Vb84jR5ltYs8oXDu8SB8s3X/gUQBOQWxmuJEhrcxomhtoftTRmEXpt8vuRKWupvvCNy4uNFBoJLztsrRXv6oj9oYPzcssSMEjItCC2pYgys4b3Ijcqo0bp633AIP/24fFpazp1P3XmkEiHZK5EqCCuvezCYQ+1qB04eTuQ1QopL9thi8mJs00KTDr5Ngtkq6lHfAkMGmjghx3yxWkMcgcW08zK0ELpcnPjgeLf/jBE2qlkizoYYgGc3B8fPGlwaq3i9eE3YtjRC6mb9Q0R7Oq4VIElGkWXb3WYnPzUmmbz8DPhhKqpceNWm+nsm7bzjTBjNflFjWADNnX8uk1IXEqYjzbGEKNWFkECUa1kYS2jxcz9SXP9o0MFZ+hTZxGMrrrJPkMEOpqy9lB10SpwDAqwiNT49llKTATrxx7WsqwO0oUgWaOuU3mmsJyPTJt70oOpEB55gfF2z+Nth5rPSyWpZkU7broUpe3L0oBHKq230KUGPE73NRc3ibS+DaOQc2q7yWZx9u9+w1wJ2w3EOETwJbQs5J+PK4bMTJIZNCyuwFSaI6yq0amGz6iOKAVLQsDeIhIAvgbWRZi8W5I20DeDG6cPJrPhxgyGkOIDF8pi5cfSFZHxho5tuRxhb1ck4tPjszSo9jCN4NkP+GCPvTQCWMP3oIkFtkk4aOCH3ni0AXw1qMmh9XRj8yv2zHi8zRhLCuJs4A3JQ443NbDpww8ZJdkJ7ffaqo0DydCzZvRX5/Xqx9DePUmw5WclIFPh/REOnRNiPCuk+8cwSLS1E3nnFxOkq2QQQHGKarZtg3r9ncCMN9PoVIQBv6hAwDm14ZNWyVSv6+TOoxgBwL02t6pPg7ZK8MU+2GgWInYzR95ue8dICqCUF77Q6ON86xVDOWKycHO99g4GfwRfmfohyU2sEgumdoyPRAgPXbGlNXK0nk31Zx8hWyCzDxcesnDpwv0MfptRJzVUhtGM2QpMNetdErfMSBhl9WH5m/OuW6NGeArapZthVY8Tl5Q29KhFeTteRsEba3dDAwcrN6O9aenju2lRIdeZYpWdZW4eKChXCH1qFHsxq3k9HoGQMBnJwOFCN6ctYEX3yK+wv3qTsZbGfp4j6wL2FUnAJqVoXraeiEo5AJaSy0pv4ilqfRb48mIbvJ21Nuseycs+myuUHMmiq/CM+3E9bvAh72XVSvl1viex2PDbSN3THUnjWMCCFCWCf7Yegu7dfFtM6Ipo0NUjXb08xqMBpmyaDL/dUOgxbP4UITnT2mHnWIiMTdBSnDSM8AstqK3zDoc8CLVXOVSos3ehCsKvJOyCuiRATHxDj+u7bmt3K4xpmC+nWhVfLQRqIU/pIquMMZ1NToBRy4NmkV9jP2TY4N2+XOBfc3Go11A2w6i7sXXbUzKFtqnLrIHGrG4sl1S3qlkpbAB4/Gk2wdr3R/HeHiWQGGZZdmbsrXRl5k4oILkwn6cJ70E7pqnFfRm1clKy25fSei11YQzFXQsQnOWB/+t1xFAh4m8r84r6E72YydLM4O32Mp6fFtWjB5UZvETrRt+svhgWF9aULUi54kO2DvliM6axG3F2K+g6nNGgr+069DBxrllU7rUdlylHSo+dpMxOEaNmIHNpLcfLm0MFuvbKqg4JquPZgS8/0IkWhBkNb+6iN0/F1an1JtzQ+yN8fXOzC0MM2dvzCIrOufQ1zCxBjcIpzbQZEztN9exDfxQzebkBJTz+pJ6nuNty1yFFgwu01JtOLp5ajGOVLXpRlWPvvXygYMw7+f6zW7Wmjd+fq68byr3b5b1lmHwVIcWIqeENb+/GVtHl9BVMxXwzEOVguxjMXFNvxdMTCkpzMd365O5HCWwTQ7B8tQWCyd2GJmeDEjn7oiATaO5WqUguLHJLsrCaQikLP5LwfpzWgFRbHXBFP+ER7qES1HQJ8O15UUyoRLdz6BpADaUxziS+8x7b220lVaVkX01qQ1FXY8IN3nPZXWSaN81NmUxhupTqE8/1WINhkb3ISd9FthfhaN2PWVXQMbLQB3WNutR96MssaygyP6MBIK+wCCfbkloAUAp6RlQPPvTGxJhfdHMFmS+/q2MvW2YMhICsqdK6+rbqSCHL9IL1pF4D1uddFk9siEkiMixgwMunQwJyIDXXoH0ZWIYSFjJR1imCU/MJJcEd9vkZI4P7TXT3Brx0q4gUG9Fu79IreRvTJw7sBWO5bXB0znWese5q3S5Sc4ZZx9ge7L5U7DAHfH5kh1/sykK8VRy0TkTw3DyI/DGdV4zpVJrwBXNA1nGDiMhOn0IONsvz+fNNmWRVkkRRiDpbHInrBW6DOUbBygqN+ToedAHMm69lZx7AKeQJnNEa/PLETQplvmRCmSf7VjZaLCOdfiEk3VKEjDg2xtMpKhOykKk17lIMAYuadQGWECfQQjxaZnTlZHmU+N3izDG9e3l1O41yXajo21XalqbjzqQyaXnYuHjVK3yRr34yQqyZKC2I/IeuXarMTwWUCtpeXEyXiyq4TJNWNRZ9U5fyrXByqXEIWGF6t80mgNLPLh88H+un7njX3cbnPW0n4Eb4HvZuyjkNxTCTTji40sqj86FPXrYstzD1gtVFIXKyl4l2KphsqSPAkbg3N64Ypzs3sF/0rKt5lLd0ynsJ/RTt4LYzN+iNLLeRgLah24vm1MLbUNwuSJO2h8AbQOpIuoIPWN9jWjfPt8Pv0fnZWNdwSMjwmAVIDW3nGeu1ls1DT5UHCVEYHGMnE8tsCTlgKx+bhCq6rDPGcbNJhC4OSqvYlD4C2j09dPK2hRB3sbW6KvULOMn9Mx/69kZkyg+QGdH9DjeJ3g6ZFpuYcHcSN0pEE6UAkscoUZAzyKqFAb5lMFzOVx3HCNKSdp8S2areXOkJnAAcHpdZnASHRXaT0773Ky4HRk/PqidvfjW+hlhnLISVrFGjq9P1GCBDyhJT+S5/eTlBrahfbVffUzoX5kg1sn4v5uf5FXdwCQK63VmtZrhWJEatVvJ+mZbytNOrGtcbG/NNySPsEj0B6DF1u5xcoXXpdMxVuqUXx1SjE5SY2+lLcmwhLynbuZfSTZX7N6HZwCtQlU/ARCNKUCT7Kr7LZ7A9yKFWpV9J2LyYj/1nGWZNumRQqK4VyE47gEJDqlhVOJEgWITXDqSwJmmYQURleOMAp01dYLP5RFeC5tw7XMamzoiFpWaRC5pMXYqlay6/V/LXKQ9twMOv2rFuWHASk4JvduJ/NIgQ4hlCbnaZz+hjE9cuhljCLPlzlDwlx5lBVPc+GtvlbmnOMcbr/WI7MvUKLPIiVlglrMt/C9tNnOJEV9ZnJvVGf5J6c8TuFTMcrj6GSeHSIKpBrODbfUDNjDZvhuOG5PnU2A6jPmVftu9xNHymtC+etq66zhpOJl1GOEiRbvdrjf2Na4wl7w4WCt6w1DBp+NJ7WFI7bfNVo7+NPd5alubYYmLNL7CyPkAwTIxjYPwqiKqkmPNyiSL/eSMvs2zUj7IbQpIQZB25xqAeJrOlfKsa9W1DuE4IMhUskifuQtu4Ze3UftsxB+RgXmK5JyibvTgZLZ4999MHWIYGeIL4c3XPjL2or+AqMVp8j1T8+7YnkgMlPdFl7pshO2hAUnID48wczY4enKhQmACstUclzx60kunZkmq0QjFzpvbj0viHsIVQHwm4n5FNj15PLMdy3kk6NjiKjIZJzHDhZPG5jNTFr4zi2UR8QlWk98Peh/GB6WN15TOwCWborl7BMDCqfhAEkBgxzORzLnb/MbrO6ntQ1Dq0thswAKtr52DPaNBrtlzSG9RauR2KwaQ4lS6TWYoZoSZwhq/FjBMT/aTQVBpA2zwi71BrKbw9Dv1tJMnSOUAm2ROqP/v+IkdbAWDeT+SrNJl8wKZQ9itlvKbAqcEuXYGstki2jUQK3C8bG4UPPRrCh9vcYDVDoj5TdDiNVTMMWr+ZEN7e+09ynDGlyKoaCqChI7eLV3JwLCczgEHWskouyH5Zk87BISE1PU30puGI3rx+TIIhwjfttHrtmE5Q9+UsAEQUOTAKFkxW8kK4kbXZM70LAkyVnYC425p0PTodK71fv2GBKGj/duNXNk/Vcuc+fIhbN0ln82EgIEol1fzZ4NsDju7HRGZpRHovdrt2Gal2sxWhMsoQiVBO89PxkSm0aTOneAcdhCKwJbPmXQ1goMeIGiq5OUUiNppm7cwoFopMpNs4jfZyOxDEcR2iXVFGGEaKFad2KpBcZxaUH9EcC2L+46yogrhgpJEgliJ1aNKNRIrOcvABuk0CBFIGLgvAli0C3V6cj25l5UiEqfmI8WSBgIOEzQ/XI317jLVFROdHeG+moYTpLHWn/UTVfCDyNd8FXQKmlGbTqGSeUjiDH5VpxxwXBSEhg+tNtTfn+LRGb3MNn8ubHNl5bBoxln/FT9AxRWqlPVnGyTxH8fzy9NnYus3noyH3I3CMZK4lj+OSODzSPaQWvEGWjD/3Ly3++C9UCASQqRkt2Y7DDg3LEkSHtDd/MktCnFcMecIK8yQgxE2uj/3WqBdx+1Fp8v54DR7mNz8MA9J+Nq83LUGaH48G+6rUCyLDjARyjSAMEreLlOLIx3OBIKdcIYRZ66mU3z1qa7Z9VVFyUayVnhge0ACfPr3PBx/uSoxTUi4RwGCEx89J3Lom2xQ9VQxSqpWZGj7Lc07Ge7r/vis4z1mbSzgYiD79xfL6qO82Saf2VSGRho+6373xvu6Dw4cLmNriPMJ5mAD69Dbx20Ng7yrPKZmUawm6ZOqu4zQYZPS7dL878mzynKoSluNqpoRQgSA8p7q/Shj4dw/g/34WwfnHVIC/ezr+r8gZ+OXpOPqLDBPsKyHk9eSCEPS3N/5fNBfkV9ke1o9B/iK5/v/jjv1McIB/pn38bs8w8D8xywP635/lgUD/QKIU/Cs5Rv+j5PgfWJX/a7M8bKD+c5ZHiu6QaXYsDZY76dqM31DHew9GMt+gqWKs9WShWXEk47Eae3mMWNCvZaCavaWdbwKVqC1QS8oYPIfl54f/tYr87MmWYl9BqbB5ha/P7ccfEIaB9nX7idcQdte65+3B7MSyMAGRVsFuKbscmArD4qlZkrJJ7IZ/IBzB2IeaEUxS0DutCnwLr8tNSmyRYjV1oi9GJ0ilo6/I8e7pi3NB8hlSIJSY51lcIiAjGArDeHCb68qOk8xp6CqSRhQhtCcjJJjHt4JHUYjGt06+kDthhqWkvC96v/sg8Bd7jIJRBgKxHIuQhQVMiHWfxdYJMISp1kKAQYqu3H3wZ8JrQ2GReV5eDGAiLZ8LN/VCVnlyjKfjwq6iHT/onbDFHYeeuBRBxYJhvtYge/p4JpeaFEOTJLuKPX0pOmEqNX1lvpfn1D05itfAAinZPF/tAmkE2UhuOxmUlZ78nNwJudDQWdEyNNfD04UnJI1/cYYCmN7yc9K91gqWHr6evD5PyFB8bxOkP5t39JRY55Ff8a8n6G8vTCq6IHJ1oD3iINuSkkjePgIYAE8glVMxbubq05g+0HtFjdgC+2YPnTYb2uR1j/V9OukT0GhgKzmipXKElqI7UnOi+p4qageFEVIIhOG0E8M1aq3WVsYD+VI+qfoVKQyBXEUkIIQTxzpJpoNWOkS6imjq/CJay15BO+EQpKkDg+LJl+UvMlRvVpN9WoCZqiCMkYDKUmdsU2QcUqJmIQq1CE6yryeSmbGR7/c2zPT8PvE6cH6Fxdt3Zy2kXFxCIqf7xuaRfC8XA/O220YeZL/mCwbyJIzzTG4zu4sgJa9wUaQbP5Q0ydUfd0H2lcIinog/a8G4Qrz1cVp3l7NeJSfCqLmguYVMqEGLKrgCDRrEz3hCK4VnNAJtPhMdyhdl67sn9SziQDyj2z/Tmwfyufn44AgjcGRYcIF6LcmzOp1N3vfTbEQGEMRnuFOehUGEgZRUNQDBdx5XRIHpa4wZmMwq6hy9nZHPyvYQsYfvr61qhNdHFUgiN66vtshIE3I5JSpbTAlXDBnhgYI6k5EiuB9Ab44LypYRPpXXseYKzLjYQMLF6phospnKWGQgHq5ERTgERqn38S2rLLXT03NgZqoiwevo8aKomjrcWUSzUbm5mT+kdiaqzVAThlHAAvlugeTD8spsV9UVp6UzLX4E0rcgRJZsDtp14p/M+NiI7mk1B9vvt8Nj+IBGmqUXkoB/5lZ3o815Hfe+3N1lDfoOe9TEXziOtS+RktQWU1Xf3xHifGY4oPFxEUSo3xLpnIyycSHmoGvMPH5abGFDJTDXEh5jOcpNHClDJN4AkhTUs/s9S1BMcdyGIovk5Jr4KVEPipMEZ3K1ftwjVb0sY2FW41V3wYIRdNbq99pjFuChH8rRprIubkmwOCtuRhhf3tI6jfXr8FYVW1Ewr06xbvWTxNTVmK3E6IdXA+12k4JqLmNkJBgsO0mtxm+Pj9p+BqtPnPotk3y7DozG0VJov0vIqgYagBwZXMNxYTyCFSv9CW32HpE1LEy7Z79ux+iVjDC7Bs7sO6jXQiqttW2cy/lgxM5gBVXyfAnzkMRcpqqp+sQfbCDs48vwjSQ/Z+V1aBTdtyBOkvDH6CXuBmNbfUg2MQcfi6i5oJnq5px8n+zkPUjuMXh0LuIZZeUNV02+uvBAkZ4UkvTgLpJ6cWVf5kYpwK7i7Jr1vbCi5AM2eHqQTuOdecrbT3UDIuyisbjt3UlKm+lEJwjr/GIYnHRkqJFU7zFTkwUP5jV2zdcpwKc9CZ164vexk3/OtG5nYTJVcmfxY1hXl9PVRzcWm0J8Sb9CMhnDT9+Wm2f0BIgpBylXnsPrtQFRUmJs6nTPWa3u5ypY2SoLF8yaVegEpQgWfyM2w30lLpF4xSizd1YAZLyBpvT9VvKdj5WCiqRx+EVpFBafH6h4MiPeCwDMznlh9/wQW6UJzF5zJ+FHCOg66BDID19NpHBw70/nUIS0xvRKLPL7yfowjO5dBlOq1oxNlGqKflohDCGcJvyDv1hIai1iiAQXgxhoSettbid1yw3yJT0OpHXwqlAOdS55JbsJ1t6/xLLd4ecYQDhAUWrafDSeWx9xbY/Wc9NYVoTt9gyDS4pVhjnzSA+sPX5OP42jB2vHZjSi4qHnoHf1IgqhBP8s+LIqNPyJlS2EQMy+fHdsIalSE5ImpFYKJfZkGCPhRYSU17mYPhlJJ1+a0L4bAyySAWnNohAMPksGjBpxo1PO0gpAkUDUGipubvSWMaFx2ucUqQZRKxQMigBBynY7NwAtx5llH1fdUHf5Luesjyq6K9qXuBcV7O26Dy1rN30hMkMIgizN3otlA6eh6rhyzlAst4FrMOkJcvZAnlltCJLjnTUwMz3+0dMJekTvOcTKN5RTHvznSboBAE5rFAdfJsUMWD7SnyM4Gyk/iHBctC5wUrlFpkYJFEXOT/hUgoHVloTXiG3Jk0+6TGoPGGZfnFz/2ui3wMHwYaTTbqDvLBOywa8I9/IsSlQI0eOU9wyd2yPsGyQJVzy/nBcKXxgrouBmDM8pwITYkKTuaaDrYAyI8JOQC34FbAVMf1B8fgIbmrRPmIF8UN56/PmPP5YDs71iNBY7qfSHZ7JnhsCt+X4SCp2HH1oFSSQPpTk9UH/xgrDnD0FB9w+7BZ9XrHzCo/bzOBQzuW8WbNpbPWH81bBEO6b0g9VopiuoGUdRwbC0OrCdC+TS981JSJ3imdKACkeoyqyL1QqmMB2EQ6acNpslme2wy5I6LBPLBbCJPk6h5lxqeX4j7lHIYu9LO2qntQQxtg6lVucnkAmTFFu5F2SvpT6jQYUr3iOg5g18w/uNMJBx64BNfaR3r0cpoDzZBa5t5FZ9VIVz3gjcNZuyO5hms1VLJBuiB55rHBNy/1reJDMTpQQuFx8ugdg+Z+7xrbwehppq0QDNu2vEvjcRplO80mblS8VSYxF1uezamw/lQ1S7QFdqQC7mp8mMvoR7QS2FN6FodmXwREDUnCmQTuctxEx5E0ZzVlWq4JqByBaZnOT90YV7NWOevA5J+SS12VjBob3eCVOVvsoh4Br5mRyz1lNbkcXr9dqeeHBU4glww1cimOKhN2unch0490kdB/2u40LJwF0jIU8KDQ11/dWZ2NDkrYGGoFJ7afIuCdUMpoHTmM845E7FDN3+MYWYnv0Lqs3goYRBgdzsmMyDj1HItfxEtbK9cQbUP610YAHAp+du/nwY3xbay7R0Dc84YyQr6uq96sW9MMbCN8sAB+i6XjevmfV9Dsk32emqAuRrMjIJu48SbOGx95hOuQE8gpHIjo3zVHWYh+ZkXlUP8AWT7t578LwVQ7YDmqIdKbXnxkDe+JFwGxmLEkoCPimXJyr11REzXScHJUW5wk2RcjdIfQELVW1yH4dpvPY4dxYwFMigaOjIFmmr5OMxP05TEmnOzWHyJGlwtkhRtlUyKjnMafG67Fys2LknhNrC9TFRT2RscCDjMxUutfs8Hgnk1aMFS+N9U6k4egoZ7VKJX8HixpOpqLZ5u1uY7S78Vx5RzYEtu8gfc8V0SIE+/iFdpNZ4N2c/k/7GX5FJZ7XH6ZI1nkij4Vr+6XaTfrwftNAZ6RJn23c5UqvxaNUBDhWYvKOTaIy27lKL3UyNyVrpVqNUBjXS9IUFRumEfCRCTZbUCPXiUg2Gxdq12FvqXjqlR098N5yTE7rtLdOTk2fnK93r8A3qniWRT1ZxtC6fMcqe1UyVUilYpTYpnLjMualheWaw0VlWwSjiiQYGnTFaVfNm4dQJrlA8W2ZffeBXWdVXxUkIxz0TujYHMbFwBCH8BgZDlnHZQlP28gpqnxBpihFuR/ZTrEzGADrHDAMEKrmcRNNNJ9j28+I6mWRq4lMWZNDctl0YUI9NxUh9h+ep7k6dANWQhCMUUSJHZt/xCImEpKfFDLIB4t3xAUYg18bAlM8s885YCYWqDIfasZIJ3lC8LKqwcSzidxaCayEucRPtaKTNN5OUbufOCsn10Zx4rCUPlHFHTGjPbIwZr1cJrkg0FIg2H0yJGbfMOHhwnTbuiFXcyJUknl3wksBBWNPH3+sZBC98OlnXTNoaMnFTSfzYGv/REaMlqkAIpawDi9Z7d2FDxIVGyuTtZuyQDncjYOdiszSPK/oqfdgldj8bxgt8WMhOuU884yY84bbUIpbB0nHwUWXeSEG8SDRCOHYWD0uAvKUA6o+1VR1ye+IrI7IV/lYlNbELps4iEb7pX/DhV3H8uMR2FRk86zBbMLawkqZOIeCEGwlNtfSFkL1VObZIeket4/uTu82qMruOnDp4fiLsBMBEzUhCDvqCJTVaZ2mHxb4iNFslmoPuowAcJuQDtMqutRQV7iynrNRRZuD4Kl+eMAPwPJVzeYCVVyYhaN5OPuNjj3MxEw1vTUNk6GgUCArxIE057Y028vdi3jhcnohWkQ/L3Ag4KAVBVG5TWRaKcUA75XlXJbzIXGCyhzK5t04+WSskojq1KbOn5bAGg06la7cXWTDKkOyMFLj1gKCvggAaIk09fudKBiEoaHpTznmjjktWjYlL0/H5+DF3U53s7Z8097JGKngOBuj0cS5TT9tXwXltx0yI8iwuBVg+1DW8yPx1RWjzARh7oN9e/tLPoV9CMiXE3iafl3pqRpKMiofdeJyK7dlw9R5mllXw1MFgTsMxSyN5TMhPJJ7lxGYvvMv/Sk3aecrmOajCYpLraqGUcXi+PbuyFFMDkVvwBbdKi3JORcoMG9jG0uaTnRe2+zY0XOpHQroQlglUPKkIUjlJwrZWsI9ktxfrUvaXhutwbK4FX1XijUri9xqTx7y8d7dq9fRT2kxhThMKxqniMFan3mZOPT5uY3grPMqOVa02IpeZ1xNCghOOS2nL53N8WJdVQrnM8xaOK2kqMsUCGCR1jIL0FPs6SBpv3qSTgE/CGmSxsgu1ZjUittuaB4hYKsFswJwh5V39cUfmvaCUpV69lNM07GZ/bLicV8GYGTsb1aoiV7tZzG0xLIQODh6iEnKP13cVGTCllg08olGhgTdHvTtWRaeYpX7iFP8VH/UnvyFPnVQ/aynikaqyYWs1r3nMKD13eFsMRISgGGZOc5gUwT2JHnKsFLdHH0ENZUoxUj2hJpPhswJ6MbHuGMHNkVJZ0jCqGwJYeE5NJMEz4iE1lP4mhbdLrOAzZSBRjTw5yBOffI416G7WRYg5hqjAC7bxkARu//ITGmQIxZbnejrnQfo9lPIj1EgO3oick+lmIW6pJeTlnzp4cuVikiNUKgaIfORgtWTO2jvOKKjCrapURhODwifBF1AzT62YZ4ag4pUExMfcqrKPo9gh6Q9nYTWirGmolVtHCtsVtYlp/ritq3CcTHKAEgHsva6zCVy1W90GPgZMKzobDQVS1aSA4uLg4vESRRawS01XcAOJhyvqk/j03xylrXrfsabz4Rz6Y2zuVWpgMDBecPtnh8YYn9u+f0VliIpq77kxuXV7OjldZdYW7yb7eFAfUBMmyuqulCx498nPIz3N+EpmOcfaN+cOl02CUTx9tX1tVjMOxoEpMk0Zqx+NnkqeTNgvrpN3t+G0mx0VJmYyNVO7XjOYoEeGP2Qd+1x4dey7hDihUFwvnen0cbE2f/EgQ6Rii5PVTEJCjYL9NZ4aK6/4OYsfn1Ge0pc83Z5OQdFvfMcZiC0ynduESXv5gQjH+cvqJgBS1LGwSDpEOKGH/eqYoNLKu+elDHvuh2HfsY6q3Tyn6OrQddkxBDK6/Q6zvqBBovB7/256wNT8TgZr8eVQ+We5J+4+ie+P7zACVnH4maJd9AXD0MIE1hNHYCVls12p7f3qHNnQuXLt9WQqtD6b8eDbKA0zd98oAV6KeGRRsRpVrnU/cldADEQHt29uDbFM2qpunTOP5xj2lagnIk9CzzNZAo3A9IzQMmAjCuu8PUnxjU65dSkFHeWzVxVrcsvKFYoVlVtFhTaTWU/q8jriMhCP5Mg043xPFU2EH2VWwOgE9V5lYAK13oLAObK5+3Td8dQ1FJk3jqBuu7fYoCIPCx8rnHXDuxLx8TfjW+9oCHPIV/YQ6BVeo5BhRAotR6Oz/AlfZcKNfHC4NYZ4r33Ob59KyIu1F6WBsUxq7pL8bAtZsT95e9UgniJEJWmd+rh8pV1+9MRAhKLeUOBN8nl141jhAYMCjKHG3FTySpYVny1hVlBW4BlcotazEtOmHbXV5LZrHV+RBEYcs23c8lgzLy2SUxVSon9ioKdoaixyX7ALMt6TecKQIkEFkwXUEyN4ndJYZJIUmhQ4FiGNvpGHJMvbUmk5uDIzXiL7T4aRDg4hUUvY5VFJVjoiXt/879G2V0Tybbng80zYrGGCLSMHQD4CWOq8ZVXMALfqjm52Gvw5rS6tQdMpxuQQM50sKpbHlDJxRp5bwaL5C5j3UOCDE9Y3VihMHFMXYuHw4FpF5PCFvNyHed+iuTjNd9iWgrExGE9aGi1cBjFmEnRMjE48rxmFGDkKRNOih8bimAY5kL07TGeJzJNdZXKy0wgcRYkC7SrnurUUI01IiOR45J3HUUHr1K00cDmJhvOWCF7YB23dbGU4FprAAYMbuGn3e+nc0NeK5DljQTJVrkZBIm6fhXWbBGV3U6nlBgZWrX/OW5zc9dyr95+zh9WvLBgtqZz47zb+VhtPtEcR8YNgU3ocvtIHCFI0HYSZajHP868Egn8ihwD6G+e2/1QOwS/PXv/D3rCHf5FD8NdfRnJ/JJ6sgv97kwn+8a37mUzw/qute/9nfmHELzbuPzuV4E9/+Z1Sv0olAH8pzsh/kDi//n+cSmBSv/vCiAzeP67p8xfSLXFZth+AcBx/z8VR6L0X9rryd8K9GcGxzfEj0eftXFDllgsRaal9SUb5wlNuDgSmNXnkSZilwr96wL8pCX7h58y4tT4RAADorUpYmNrcZvt121AIyl5Zlh7IS38IWb1BE4Ic2LV9Ehv6tOkLvnbY0FmBoKzzboAIJEPgGtYgcogEDZggJIIkZ/rMCUMm+J55slhJn2DOKIk3eizveQ+WpJphBbME83wRwSujXcZwCItJosqWL8kgCXytuQmGe4IhUKAtndbBSUIUdfVVgE8SJTCR3BMy3949XPWj2oWQlxz4m2Xe9P540OVsvpw3syLF88ViZNWjzwsT7TAGWeRWoz8GtEFOBrhq+nMCiYTVhaGo1ikfuje3hCgH+1mnqAGloLb8MIQUpR52gRCldA/jCswmyM5LAq6CXHlePGMF5qMWwtI7pMK1u0ftwvN+I+uLoUkItDMzPqWwZ7XEqFEy8BK9mrYbzrQLgYTuE70pHDsJcsISPMxgJiQmFE55TgN4IL498pu4PcwfS+u3bgOXpoFr4XgEaRnx2jRE1gViWR2DMnq0cPSMaS5ySy3xkRE9AccjbgQFcHEXzX0FJUFPr+L8pAKe2DkdbYr4KfVIitKgsmQ0ymHhw9OaObfe94xYXXUVGw5Zgsi5xDqV7AVm40oLNMlXsgO9Cz9qn/XFxfnDHWXUDeNzAONlHDq5sJSLtrNt/IEnKmcC9y8t3EKnKfzARO4ltR4WzYByL2NsoRGNSppS5mLORSusvLs8+gLdTil4/HNMESis944QTk7CibLrtJeG6D4wUui593NVFgl1aYt+7LTAQrOEU2rHlAdvzRV60PBpsvebQyNCtWiRPmOssrkqj9VG/8IDlYJ7aSYOToqvYwN8h2QKsIUXFWBu0gfkO1m3EZjgKLXFC4HqUM4ITxAxeGLp5NpzQ6w9ybRnoM1gppK+elopTxtUzdvx4lWGe92YbfYAURBltGr5BCFSy7eT0w5VXVovUITk8+swhw5yPb9Qv8WVVq30zyjaZ7rQgeWQOK/bYcxFvjrBGlfNrEUk3MeCw1nolldEHQxMKjZzzp3Yhu1nbWLzvm9HMRR5qgqrHLazIvkCW2LCIiRACIxx3OieDOAuhKIVEytLC2+bKLnn3CcAqOAFP8epe6QKp1JxWLo951OofrTxgMK4q2TFdCCx7a1vJX5b6JoDYfZimD2iNtpdnhd8j/MJWAUI8Fnk3vC06R5yPr3AXFZOGA10zs0lyniCztju5kzDPN/8oE2um3O0gRx4QJ3D+JKogw3IHNCSN0fMcqyc+S1uBEXx3lDj/SFRW4IcBna3d+RiSXYgybBnvtho82DyTLHW2+jlkHxaV4g9IvSEOguDguhjDgjgeVXg1aGoo004+3guGEOPiJ+Hr6EHlYmzbY/ucyMYzvA6uXK+kafmR/B4MhQWZ6VaN1q8Lm6aEwl5PwsT6SQLTkSb5QMrjP0Kw5ATsAig6D0kcSkmA5rcXY9dciIv5NZvLXB3i6lKHYecPi5qiez7dHzmx33+vg84hVilrkCF/pGygAc2LogjAiMJCtIhKOT4eVcYuVBmXPI5eHxw+kYkxDJo6QEK27ilSxH5hAUnkIanEGuUikBrbbKpqFbPmjfuCJaE9vNOMcQsySyZB8fFI1tND/45kq3BYzmwDR4uJDnBLmq02aJck5AnuGSdG33+at/f81wahAGCmiJD04KlAKsWxCqc1iOsJxOANYC701MdjtuOsPmIawJWaedrptvCoiz6/Xkc061Rh0xlO9jY2Zi8BQw8XTHo0MLJCpuyyNsAJSbgJnJoDJ0kkiphA5C6xUz/pCgz0z4a571Hwbsb88txJCkiwG4sUXXBxl2uW8AEsok9YQNglXLd1R6r0EvFLl/rSZIoDj5ssSIVWRkxBGmmLv5AWMb5XFn/emGwZUiWg9QNWhzh92eEhFLx9AEzKUg+T1oB4hKeIA9C/ZFYws6fcBI/f47zJaNYp9AC4zv5Q5jsx37aGW7g4+ISBmmNj9IEm1ZLhEi16V4hrKsRrZ2yjm9pDSs3JWESSZ9zzSvoE/HzHH6v+22pkGYaHNKi16gor/TrnXQD7Ib0RsX2QMGL3+nS77IZ4A221btSEiZPRoSO4BoUR6iPsz9NJSlJksgztDidoeeQwWYOGyYOqcMpFXFuhG5AtaPhD5WFpnDj4GsRdPHsZyILG9g3U0ZtFoYsJddQuEexiOHDJuEF5gFDDDr4NndflnRyGVKLfc58+d2+WocoCcQUVFk7LFjeSwrfI3q3cHkgFoLqcx6EgrFX5al6wnhuTcKE5LBMwZW32chmb/JHBlyhWG1sp+6JgTIKJgozMrno/sKTZ2u4zQJgOheNWVJEd8QJ2ltn+ezGCLakgUDI57UFuHOtxn5eDaBLbQOLclNcijBpnijV57jeGJIxtNCgyh8TP75w4CvgdyvNyJCN3EgUAW4T9uBlgxU4Zjba7Aw9y4jONNNbmZWlJjzfKeN/Oml9wl41ObfHIDuUt67yvVehwZgIto6XvyZEUVWsVKvsQRVpHt12V813jnhwx3tNdUww935H70ADLcJ77O7oyiNemuJnDc/OOI/bWnKzR492/xAV5aPzfVmi1wJYqyXQNXuee9QopA0j2rVgSACnz/kn4oYLZQU5Z9S9ybTCLkUS8KrgU/HpOqCVCxOQDSUsUsWCi88+N9+VUOX52qnboi6GYLCTcSPY826CvHlZB1miqCzSTZoWqQhjBwGfM6IRxMx37OYGEbkdDQ3xGrvTRDut1araTezgu4MVA3spwSC+vZmiE3sIOeWpxAQUsAms+nSAF8LWz4wHCfCreAGILNcGTpwWE/k3Au3y/nmJh0YHHzoKcOaWskyNtdXpUK+rkfeEwgwvwbJBnhL62nrfuWHFvHj3tSQSQR+r3GjWA3bPqanAL2b0AjvT90ENnQiFqom5CMRwrInkQDw8l50izzWjqKxS9WqCkRYPNt3ZrUQkurV2EnvJkI4aXwghZ3PwtmnBmVkFY1BHVPbEHMqicSpEsLgOwQlNDaccofyv9q5r2XHciH6N30kx6pE5iaSYwxtzELNIieTXG9Cd8e56Z+yt8tqucrnqvuAKJVINoPscnEbDmWeLB3glurcWp/i+zjaqr8v1yAra1gNEsfTuG2EaNnAtr/r/s37yrARhCTkXcs32HZc7vJm9VUI1DRe5qAOlO++EFOKvTzouAjiuyBLnXFg5QKfaBR9G3/Oc+qvIHssNlipwsjCDyLuhA8bwRikLIUybmuHahI7isjCbddp3h1XGgVup7Vv8czxniK8ID2KKJApheWxTyB78S9XUpWksDbvg3ONVjlHuOsGDBn5dDR8p6h629MC+NsrLRXXJLBYFPF+NTyxaFz5UDJgjO+/Rs7i9t6+eX38Qw8VykYGYpCmB90lP9fSmGHo7NmWqfPv0651O13B0LZt9KrPWQr/v5H1IJ3Yuq0X4Xu60d3B4XBfqEmwrT0SG2JTlDRNjxnXbtk7CF0YNULjSiQ2+qAn9kX43Cc+2r2pYMOhNOhS8jt13s7dxV/q8DXOZ2DvBKZWFP9S+bGn7nqJVi10BLimlLD2oiD1mkWUmIu2Eqxk0TnYvbwgnCNJVAZjJhUdcWRTdNgBHerwVG5+ZlMIOiJ5oi+ARHiH0NfWbNYcv84lYfPG70xz8pEkxQDXehZ2L1zhznrLKQcDk66d+EjWLF+xDzHkfkDqBuK51y++PXC7Rd7HakRdE974cDk2B4T7oICYV9qbMyZdtAj9dJ34t5q1hBJauvKH2KgaX7mBgEZigSmlDlofhsZvDRMJMoVBMn4ElnIf3mE49TepF0EhxzldYaQvu0M9dx/d5MfZtuF5enbycGd9ktxYSkDTiK0fUnm2AsCpz8uLRdLf+1j/xyS8F/pV685QTlgE4zQ5Cp87Ma7icRLNHo49eJKWXMGplJEtnzjAhMaPPVPaSLLdYxgxsQak71r5eJRR6VMIMp1BeK/3spCitfeCxuQM7qWWPH29BhaWHOFpUzmGTZg+gj1NgnHQ8ajgHa7PfK7apwRvShuU9OjgReaz0By4VUkepvOf8eT6Z2+rS2g1Rb743GWKJ22P/IfOM2t2Cx0KEjXLYux5imBslqzFuR8Qqs09zrZkiZIcuD7sl2tXRJWJfs7jJ7KfaCB1Syif9NGTbs0x4ot9f48mp10B7TtDOBUBC5hJqjwCnmqA62s1c5AyK6JHRSkyrhTnMJAuDHfDCSHykNsIZYWhslWBb894RFe0grmQa8hJVvHDoC5SJPvWaIRfCOGRf1FqCRlJCxuca0YwuEX80fbCQAHmGEaMogWV9CvU4wUcT8cx4+c7Xr+eavY8JSd5czOILMdAb81yBG4WCsDFX6aOXTFPyNyLbvLAx25VvguvdClv1TYUH65B5xEXkeiszGs2H/QjmQL232lOwmXYXguhy7ha+qyLNucbd7iTk4ss0Jokpl9XZWqJfPwbMro6RxdJ8+bNH+5CjhM+7PmA2vt7JkwnuYDpdXOR6d3UEfUbak+1tHeF1HSXL84FyiUZxytDhTJZf993GSb2Vj6IRqVUZMhcBYNM8n5Rpv036PF9H5yct/loA1Dktc9BHQ/AVSYjKh7jAVUWEJsXPHw5pmwswjUDqt+qdHO8IesRwUGLPfRDqvC0PoWTEjmNyWm4Dj/3ifSH5ORwwHQRDymPcLXp42a4IsZuoG44aOrsdUligR3LDzb56cs8mMYI1oPL+JLAR+FHMdlMHAiyKYLFrG11M10MNKB3LCVbftROr9PdEgnnytCowy6e7AJa/XJDbDqh+s6aR5PF9lWpm71whJDb8DokJSFaLjFXvF/QqRE0xL76y9obUluOBUnCXtSZzhna8G+nRvVLpqpRI+OY0q1S33et+Z8bGo5dOiNXPCVT91uFbSl/pCJbqGm4BTdSp+pbimaIMQN1TGEvQHZZc9bCjhokwLcy7RMTkQgHorDd5KVmFccC4edryoXUF5qd5hzA50zTj+6SuRn5aGxsBf96HeiqQQ9YidgnMfznTMSDJgijx3CZYUZQWfpSFWrmhBYXA3TfkfGEaMW0lkV/SYp7cpOdsdQpLhMh61GVp5jk6iWvTyFnlAncXpxismlNB9ts14kkbvQ7hmxUqNo67DM1zdmRYkXupQXw6pmvXGINnQbWQ1cbotvO2IlParrupv/Z4ZYdLjnenxSp2FYiClFqJGQ343uWXC79hCfeazYpRlYIDfQFbvKpwiWqrzFubBognnH2sed2ogXkwmsY1XSlH5FdagBxhBQ/PAoDuRam9mWneYHuo2nhrn8l23kbtOhWMqHrvEO69pnaFJDP6UjjlPI9PNsiLceJgRQAmbUYeNWTenpe06I2DysmZfaSIDkJisaY5Vz1zk3/Nt5V1gJWDcxtZiX/VKqyOoQmGAJZiwNtg3qXq1ESWwdwEa0Zod//0a7W0Tq6Eg6auvh60VZhUY1aKQ2XdCXh4dTDKHfoywcayYEnQrdx3Ntl2BizfV9hOMI9xpMxHNhkA+6yA3e+nb5l0sGeM0hjOSKzImO8S0pqOIBJ4DaJ2tb5oRIvlo+/SujJhuItkWCWkwn2GY0zWwiCWaJFL2vZs3FJts+gv4TmtrqE+OpSIaOU1wB1a9brR5qwwFfdQcFTqy4fHcDyRK0Zo7xajsOhk6Is+vRnmT96VnkRppHeaqzirvC3sfOiQgLN59bazw4ZVUMr0/a+KlPhPFKGfipTY7w/N/ljVQf9dIiX1A5HyS5LEP5cg4H9h/pcPOv/xEfuuTaI/OOhMUv9BdfL3dxAUeVV8/+HjstZjNQ5JJ/zy378z3C99biNU0z4j2BbrenwzZ7Kt42/H9+uZ8EG/ETp/cFfAc9yWrPgHM+77bXfJUhXrP9Mbfz8OS9Ela/P67Xv86UYm/xtGBqZcjvDXjQh+GZhw35r8/u3Lv1rHt9afODiXPzg4P1kk/+rgwHD8t4sDP5/96vpFTPgr \ No newline at end of file diff --git "a/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/cache-aside-write.png" "b/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/cache-aside-write.png" new file mode 100644 index 00000000000..c976cc99b91 Binary files /dev/null and "b/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/cache-aside-write.png" differ diff --git "a/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/read-through.drawio" "b/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/read-through.drawio" new file mode 100644 index 00000000000..7f7bfd71641 --- /dev/null +++ "b/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/read-through.drawio" @@ -0,0 +1 @@ +7LzXsuvIkiX4NWk281Bt0AAfobXWeGmDIrTW+PoG9sm8om7eriqbqp6xnj6CBAMI6R7Ll3s4+RtMdyc/x2OpDlne/gYB2fkbzPwGQeAHhp+3t+T6VfIBgF8FxVxlvz/01wK7uvPfC/94bKuyfPm7B9dhaNdq/PvCdOj7PF3/riye5+H4+8e+Q/v3vY5xkf9DgZ3G7T+W+lW2lr9KCQj/a7mQV0X5R88g9vl1p4v/ePj3mSxlnA3H3xTB7G8wPQ/D+uuqO+m8fRfvj3X5VY/7J3f/MrA579d/T4WzDRMIJQJbnjPYAxINz4F/AX9vZo/b7fcZ/wZh7dMgtYxx/w57vX5fC2za3rFS6dAO828w+dyci+T/Qp8mnp7p5/XvLv/v9xqmfha9X//lG3dVe/2q9rQVd+PPTRhGnvcun+fqyJ8ly+d/uPmXNv/hzri+A8zn6vsfqFTkw1xU8X+gxlp1jwpCQJ8f75yH7l2Yf3ftZV2GvvjnFX4f/9+u1fKzDd6VAvH/ho7nv7r7SyLv7X6Yu7j9y+02X9d8/pdHcmn1dPlnj6z5uf5L3FZF/+t2m3/Xv79Z9dmPRr13gb/p++fmOsf98n2a/KPxPv/LA8cwZ3/f9z9Uz/J0mOO1Gvo/qZ9Vy9jGv6tI1bfV39z7tkO8/m2dP5TxuSp+f//R2uSPAvC//caivxHPP+I3Fvvtw/1Goi9OxGmZ/8Zyv1H0bwT969PTCYv8RhG/kczvFwTzVn4+foj34kP/Rj4X+G8f6jcKeZsj2Le5t90/Sj7YbxTA/HUc878e2bMzkz8p+7XN/iiG/m7HQe+iPeVHWa25/azsW3w8QPuUlWvXPp/A5/LVit+R82e92jjJWypOm2Ietj6jf+3Xpz2Y+/nzl57+Fjz+AIJ8fjr9m6LfwYTPhy5f5+t55C/Y/juw/Y7sGPr75+OvOPmXZ8q/wUji97L4d2gu/tL0X9HrufgdwP4czAzGbWuBvwoWAn2apCccYf7lT7DslwqQ9I9c6d8++E/JI338dx34kFK8x/xrZf5EdG8t5hU/++gE8Db1R61fNV7dgH8U688F9zdCWtZ5aPI/ZPGjxI/kqrb9V0W/700mfSTzgCFMvRKpHoNE/n6jq7Ls7eZPteJH4Pm7SP8TRfij83+lNu/nv9EV6ufvf46uwDD839C/0xYE/0dtgYA/0RboP0FbMtZsP+1/j+a9S5j/nq81UdR/pi3/Worvso3/ZK5/oRxx8sfjwD9ZqX+6LBD891sIxv5kC0F/sigg8p+wKn9OCP7tVXmIzPheVt0Pd/qLgiqvthnDUv3CdyYZ1nXo/qd49P358ydKvg6vNsfL+IvTfavzVWrqp0vyj1Lgj5LnOovX+LEPvz5C3PhaXLryKN06AJkvBvL5o9luybrFc6W+L4xIk+HzTq++jOXPhbsCLWt6FhJsUEZ/7d8gCgIdYcctGzEnBdMiG4gt2koHcDSvqKsw2d04vmRFlw/0RLNKxbZ7u1BHF/aOqAHN5soooAFmOCyb+JkPaOwfPFjxhz2+2P/8y3+9LcRzQX3ufteJ6OcmBcJ78LzhO/G8Rujns29fdF8I9P70jBTZNk2btH7yiMXLznu9nZxYbE7WmFVKDmxja0heuaQt6U8DlKXSvMmgVKKU7QSwpi2KqrqyqEMttG2RSbK2E0vaT7GmZiTulA1pn2KUrOXAFrYjipSeHbj5U4xE8Uo1bEE7imjp6ZGYRWP6108xy1Y0wyiW7h4J2TQmD+FRXJJs8xQ7gqkDSESyi837eBhTIttcNOn0qQ6Ib3HO+7MZUSLZXBfr9CoPiBLLLdtbbFFiURwX4LQqf0gSS60b5A8mJT3FwAkwq86blMKW7QbxhU1JalGw6KNJ9FssvJPmTZuU1KVk0Ztaadr6t9eCBx7bTBWxnVTBSIzytujGzbr93uzmV8dx9Ht99odKcjGy2x6FLfgns+1MzLuZrjn92YLUvH0v52N+O8Jd5eTRSs7uukp951UlSKvY9XQ3Os83NfLc83ZQTwJixmLfDp4+wUjJgbj+PvUooqMt8T6dY8Rb8m3Zrc5nw3PK8795/ltKMyIdlrjnca6BfSqsseeB0hBKZfBgVnue/zyFTmK6zNMeXYc6OaKSSN+EfqpTQI053H6j0wMB1HIybY3O8G6IenMxtzSSsMsQBWbvvZbvHbYSqyW0pXZGYNIUdqQNbO9hYpp8xhbOnn7A8CPnbQ17fVSElPQO8LKI6BIE8Jt9t2mY7zEAXLbbfTTw6hDUiu3ge1EngutIiDRxgOnCP2jaX5GefJLqqkexOAEinKHpK+cdJqOrMeEdgefSSEwfnwq/sVK0F7HcuadJt8TBo0tnnxOvc7epaavGWlEi2e1brQQL2d/OeLpU390nP1MOPqJMqUkdAo/qCIhRvzAi5v2d88/VvJmodLNmM9GBYAaEMUN00DJfyqY+wIxZTbPzJ+RIYgkobrsLBsjrfEK8C4GKxDhZi9VlokQslfeKrK2ro6T5nCQ+SVhjEHLjyCtitQ0KJ6monepzX1lvNIiDmunb7Gkj1X4BwzVNaAhbbcooREz4mrzyZ8XT9/Btq1cfXnC59+qyPjNm4jYhlcscE3N0cA+qQ9YNTwLaFBu3Fx7oOd+Gtfu3ygCSPV5yq7hNW3OBzkTiLkH4SEd7X2zwLbdYzwRo1enurTUsD/BVuYmTtI/Tdi5Y7lFoh6/qDEnZ97Zqo2psx4snrHTCA8Gm7OmcXdiXZ5+HfL8ZoquznktLVEoMvhPEQ3YNJ9VXU1zsCKYNe7bfA7F9sF5zCOSocYGy8gitjBibBrkyXvK+E/Rg1/G1zknj8TqVjevuwHl0+bV+dAbHQ1LZVNAAJs8qWF1S+2F6gixvPbUvKYfh2GekeXpuwoqW1quvKCttY+kenv0MGkZvm1ZWLu18fZT5m3Fyfnr3wzrDlHjHHu4CZLbolIVNhjqAj7C8ATi2cyQTBiqeTFplnAa85r4KZn7EWyzNdaB1WxKIDUsXn2cNR2nS4mIe0GgfK9OYIVxrIghKE6SYzySMuL5n1HjsPUdTWRAP0QNu7AULNi69+7nprdu2MoQLgvfxLm3TuB64WNxEnAGhll9feGKdUqOithCtEoph+kvXUx1b6uk6yS8DJDRLIWKR8Fy2obXzBhpTVyc4Iym0hXrjP+P3V6ne2QGL39E0oepQaKU2fQZHkKqoum/TX1FuDNRia6UVgsoZsxLhhCTXfH7+rLE1Z/fJt9DTrkQPAVHP3tfhMxfMTV0zWsBeTtTPtr7ArUlWClRjpLTsbWOkbNv6EEchCWKF67xDZaGVHidO2V8tFwr/s9bAwy5IK7padommvR3MRxW+5nkqc6O7iiSw17fqBVF7MMxdUjx5POXHQCBZMJdlzbZAKgEBwdIhUDgHgMDvUhImfCWrF9Mm6UA8RdbQ5OEmUuIUhQ0fF7vuo0M2r5OF9tSXxH3sv8icHOwqbcnYjk7XF748DaWIvgzvxiyMmphhYRDfDy/mnvdjxC6MG+TjNTSUWmAiqITms9O54cVkTK5q4+FTC8TDdMvHcPudwBl7uOj2oMnZEqpTEFfvuUwZEVHu1/7OKOV3rxonyykwLO2ScbbQwFr7EyESEV8sr0GrEsbSeVpFNwumEqijFHxU6tMCjZHt1j5vnWHJ7HlbBvPMpz2pPE/CDrWU2pBRY9p0+6OyUyRG/ZT6vTcN9QRBXTYD1sj629SDpOEutoMRVumc5S1ygdGWV+yybrhHpwV27Yc1TbMRJcYDY6HCxxJNoXB6tI+qgqB0aMs2WjuXKZrTIG+vPSv3wdSgjG5hi0m+QdVIu6goONdA0LY2IYdFAuHTjJ0F8Jm8b5wIzcDiWFRq9hieiCNOmntAEyj1DKlDLl+jFrQTJtlc8DLxI7HQKaVCtThRxF4C2rpwHgE391rezxgqFd4iuUuG8PtisPzsPHJyhA7R7QomkEPmEeXhC98SaENqr6KNAhl9yaLU1Iazkac8xu5d+bw6Za/1D77xRblTYisTVY9vjerfPXm8dHBZH10CRhmdV9SxVUlht+hZ5FZjtTiDPycCCp8Amd625ssIMneJyGxMl1qCSvI+qj4aj0iPu5FX9hPd7Ij28wOx2YK8urTE5Uvo8lCx22Yi1tBkgBZ52aFQXuao9GA5L5wCrbShtA8eqMHjD0OUk8mOZIARHiLp8/HFk5agtzrZXn4jRT2zUobVPBDBba5Hl3iq00z10cbZLS69bXefuFJerNuGMJ9tM19D2/WBGeWcrsD0BLZg2yTwY0KSSsYDrDXHBLPzGBLJeqNKe51sdhkuhh/ePVTypjH3NskampceC0Rik6XoL1WX7JLAoRCPKV3o3qXEJbB57WGjKNoo3yiat9o2V1eGKMXEdoUvv5gKEbEfmh/vOj9OpAeCXFFaXnbTbshx1sG2DrxaaX/EPjORaX6u+aRN5e1jmqVS0PtDNstr+Aw77sn4YaLmKYGw2HFQcL2uGLqwaW4yiLQBc2VNiKbFlxa9ozrjDKxIEf9IaAgEOtiUUfrpKMbEPixhXgGYLqaXsDhKSS9cqKtdnGtfxuYHOvf1dsWj29BYyM7v2mL6yzTCVx7IyZ1HZYaIThxhm4hcm/LQKIyD+e4GEG4xi8ea+cFmOPGtZHrMGEeJ0mISLSVArj+3iBUgLxmluBkbjsZuzBPNsathDbj3B+1r6p+BIrnqu5GQpQrBhETuBbG+HTHDaxhkxj7Iog/KGTI0KgyhJMN0x3FAo/lFYKaHafQayoI/VCDk3cYMKLtia/i++OssJwDw7t2rm8tk7AqEuRcbrVLCH+YoON3gmmkJVMoqlDpzXh+jZmlXSld+abbBxZGvGKjzMKaFhddSyTau+ZVJ8aUrjrzFrj5wmfHKEXJEKv/y0amItyE+zxCPGXUzU2NZ3Vzs0NLywaMI24rFSdFelr+7n6YzG1SgoUN+GFb9OnFp5UDvtqgex8ssBXPrH2jgEfVhtA8tfX03PS6VJlftqret3QdF9Y6gb4PhMLtZ9+sRiCmbUywSrUx7OSJe9q/+igc8WKy9ts77HNWUSKDKIj6rZQs7Riqp1QjYaqGog0VkmP1dkdtPHPBx1rq8fzUv/+6eWPEUh23iO+7X9XjAh3qWVa8U+PrMUrkTj5F6pjtR5rmCJSXJpPCKHoIeaX5sNvIkLOybialhn/UZgK3aNiceNxR6DVswx2jBdk7Uuzaq4DO0lheDoMLKiFrnfqKxCCMdrsYac48+0kAETqM+bCoSxKUP9Lq+2771z4axTAt2600NtFKkV+qSb6rOWcvdlRSY9CJsVwWehjHHR//x5cLgXspTu8eqHSfDS+zHnlIZtM99bo8MbvdTtWaGXS9q6QDA609zKd59vqr/8WmRwnHbdnLz6OQ7tw5SBamV/b5N+C/asW0jHeukV7OaP76UPuiZh+AY4dmA6K4v/N/wmUClRHzs3C+bbwyzs61b4ccbFKK4bHrATjo3BZkxzKHdAikqb7ytOpD2pJdsncrN5WzrtNLi1dB9upPJ3Pt9GlHq3oukPms7rXOBVj43y7mToWbDQtba2a5ftKcG9N2d1z0a1ucrgR8/0I1XlJ1Mf+njj0An9aUPFtIyx6t8Q/uwC1OKuMfzCMvevY0tym1Ri6M5y/UFl3pd853TeDdmCnshLb7+pFFkhNfx9ynHowd09IdJb4FezXNTbGbV1PMY/GKkEdy/hOF72I2uT7+ea+4Hyv3H5X10mILLiGalzPTHj/9gq+TxxgZmUrGbqHpyfQLmnmV00uWLJa17uGF/C++rho6Fo3ixOSLJFl7LUItJS7xz05AFtE+rdKyUNrWneVTPkZxHX1n8vE5rSGmdAXhSkAoo/1IJer5F5PG8aDZS48c59EyggbKEYNPA/Uzd47ZSmlpxcJs5UNw3uPiA91L1N5UVbftQJkucb7X+JkszNWBU5jA1G4fEDRISb8e5aCo2xTb2oq7ZVEYA/ZhlHUOXdzQA5Jc26eZ72ogARkPviJoxgD64lAirYW0g++N39dztKKyJkpA913rfPFYdLRWFWfGBMhrA/n6q8o0NsWlMRSUC+MV8ykABZNYWdrCJ5xhpozNtXxI4t99IFr3xWN4xskTQxk9vAGzYZaw6qP54l34lOLgx8+Agmutjg+NraYqc8zb7cZHaK8p71vERD9bw0xqJ5dUdYXVqG/U3adR7CSUK6ySL13TeCW7QWSqU7AnZ5wMiEjd/SyXcbT8Qrg9tUXVFkWUpGVx5pp4fei3umiWnqAweGETYh4hgwevBvoBTKjO4YA3444lbNMb+6IS6zM6z2Ripig0GRimmo0kFdR1cYDJMIRUx1xrCo1kSkXT7BmwxSaGVfHeZ2Vez7dPSL4uzJMzhF/XjNCpNqWEfT+06hkl6i87l9WXj0t1syE3Bw2xGeDvTehgHL127NUWYSygT9aO82b6QNHCdZ71ubeahLtVH5ZVK51Gwxo1+XywAY14pn4KQGJfh+vfTxvcz7xfgxcQRDV7Guy3NsrNBuoTaKZP7ZS5BsW2vtIySMyQxdnPYwnoNTPfMFZFYOtoHV8zLW1okKAfO033aX3v1s0ZBhvVI11s79EHXx0hA+9gfZXvp0WMoHhekzbpTFEwgc2VDJUZ8GHC9X5bH4feZ4mrtezxldHzNAqRFjvuO9d6q9qWn6ouEGAJOiZtLVb5GPLBXr03CVEMxWPN82CTKlCet11zGnCHjXT42+/tKSofU2X2dBSWSFsFVjEP3IDIdhOiCGkFPWOTgRGyHz2x0uKkXp5KF0QAl4LQkKjlkN+KIPDoYrRfcJAmKdpQzZGS+aQ9XegMnAE8kVZ6k4WlT/ex2n+NOqpE1sqseqIdfTfCYGKyNcrI96Ux9eT4L5GhV4ZrQF7BfkPSGBfV+DwNt8FGB1hMXDFJxXT9xB48koced1RuW7yRy0hu1GNZ5rS4nu+tpe7Cx2NUixm/JF4EB1/bbLVTGkC/X2uRHewlcM3tRTfiDuWXXEYuKdtxnKb1MfV5J3QHgUFO/IRtPGElTHFz+0s9wf5FDq6uglvFltV77z7HslvbpqNJ9J1K9fgKljtaJpvISSXKooJ9oac/yuICoxgrmCc67tiJW+43vFCv4T7RObZOTK0cvEh+2ubaWa9/ewaAW8KWMXSggcOPaDyy4qUUjDzsJvjpEiskCoQ+7LBbstYlbn0AcaVXCNcm+WhDsKGnHEE/d+rS0FDjrD0G5n7l2hzZ1kxuikfYdfMT9IU5JaqjbO5NmZ75ps7tSDycsT2ivYVL5LIwbEC+F7hgxK2esh+F4EXW9NfbTbC4lUJxnHK2Qqx0sMPbdNHnLK5THiiclMd1xb0mw8625Fv3JQeEHkVs2i2BjQGSt1/dAM4fH2BOdbeuuI6X2AoO1/QXCcWZdExc2UdJk1VrWW5KE7weFrarVvuphimlKUk3smaN2WuyeCZ1mNo8N4XsxzDWwTN+4C+MQtn3Qx2PHXJBHBJnj36BsDvMKVr4yD7IXWMYWeIP4S/3MjLvpn+AqOdnCgNbC57EnsgulA9nn3oelemhEM2oHk9yarJ4Z3bhU2RBs9HdLXgNop/MrknqyIyl35+7rMcSXdMTImEhkWNDdiOE3lmO7nzSbWgJDJ9MiF6R08+RaJ/oWNlb1HTK5oDo2hvEYouTEjam+iwXYRSvyNr9kWQTTvigKyKwU5cq1lEfwGl13C3wo7lxGP0wEQLStd/F3NNi92B7lj1qjPg7FaNG8xlTpIies2JAEKzRSzkupcdFYJo+gY52xf2qNHD0eh/Ex03TtXSCXnRkzXrnD1OSoACIEqXJXFluM+BwpQa1O9xy6DdhnG5A3NsV1sUSDx+3gk/hlJlP88rsXblZENleGjZe56abJGA8TIrpH/hTPm3OGbpqpAjo28Yd0pyfP8QoLmFSjaNSKHrc9GzwSkXI7MORgma7kL9vXIlky+jBuZzSu5YbNUC0iQMaxi2BgyeaVIEY71VgDO3ggwNb5BUiHo8v3u6cTdQiaDyKSJRM8bvzGFZlWHfxXiAj7IelcMY4kRGuUVrwCfjzg+HlMYtdWYo7ycBqPlRsv31A6p02JjJSsuNwAnSOHsQpacLFRLENHthrB0wEWeo2oqVG7W6ZSq+v2wU5SqSpktk/z5KyPA0Ge9yk5NW1GUazaSeZkIsX3VkkHMcNzIB68zoomSitOmSlqq3KPpf1EZtiihF+g32VApBTgtgF83WPQG6Tl7DdOiSWEXs6ESFcIOCnE+vIDOnTn1NhkfH3Fz26ZapQtcn85b1QtAOJADzzQIxFabXedTpc5Q3Lk3TLdVBCSKKZUeH/o7uEc384cHL4VCmVXYqdILDPBi5/4CTZlaKN2F8e6ue+qflBdAZfYj/l8d8jzCJKguWcr07SmroD2L6kFH5Clku/zoiffAMbEUATZhtXT/TydyLRtUXIpZw9mqyKlZcPRN6ywzCJKPuT6PJ4dBZOPH5Wln6/fElHx8MMopJxXeINli/LyejT4T6VBlFh2ItF7AhGQfFykjEC/vgeEBe2JEcLZb6Xi6VHf8v2nilpIUqMO5PiCBvj26X+/xPhUYt2K9sgQAWMieU/iti3d5/itYlJyoy70+F3fczLBN4LPU8F9z9o80sVB7O0vUbZ3++6zfOk/FVJ5/GrH05sQGAE4fvmQbWzeJ92XCWBvb7OwvwT2qfKeksmFnmJrrh0GwYBhznwq75cjz6XvqSppu55uySgdiuJ7qvtnCQP/0wP4fzuL4Pr7VIB/83T8PyNn4E9Px7E/yTDBfxJC4L8mDP1/Mxfkz7I97N8H+Se5hP8PJfZHggPyR9rH38gMB/8XZnlA/+9neaDQv8ry+LNEKeTP9Bj7r9Ljf8eq/G+b5eEAzV+zPDLsgCyr5xiwOijPYYOWPj9HOFHFDs01a28XBy2qK5uv1Tiqc8LDYatCzRps/fqQmEzvoVbR5ui7nLC8/K9TlVcme4b/BKWiFo7g7+PHnxCOg879+In3GPX3dhTdyR7kurIhmdXhYauHEloqyxGZVVGKRR5mcKI8yTqnlpNsWjIHo4lCh2zrQ0ocieZ0bWZu1iAptWfu2PWf6UtLSQk5WqK0VBR5UqEgK5oqy/pIVxjqQVDsZRoamsU0KXYXK6a4L3SiT9OoLnRusVIHaUWVrH5u5nj6IAmYOyfRrEKRXM9VzKMSIaVmyBP7AljS0hoxxCHVUJ8+hCsV9LG0qaKobhaw0E4oxId6oZsyu+bbcenU8UGczEE60kFAb1yKpBPRtOAtzN8+3sllFs0yFMVt0sDcqkFaasPceeAXBf1MjhZ0sEQrrig2p0RbUTHTx06GVW2kf0zugjxo7O14Hdv75eniG5ImfjhDCcwf5T3p3hoVz87ASOHvGzKUPvsMGa/wzoGWmiIOagF+g/7OymaSB6J3DzoTAXIdJUvU4yOAIfAGUnkN5xe+ucz5C302zExscGiPyO3ysUvhZ6yfy83egEaL2OkZr7UrdjTTU7obN89UMScszYhGIZxg3ARpMHuz9yoZKVj9ZtpPpDACCg2VgQhJXfui2B7amAjta7JtipvsbGcDnZRH0bYJTVqgYDtYFajZ7Tb/dgA712GUoCGdZ+7UZeg0ZmTDQTRmk7zs3G8kM+fiIBgchB2EYxYM4PoJi3ef3l4ppbzFVMmOnSti5VkuFhEcr4t9yIGXGwGKNEqKXOlyp48htagJSWLaIJJ12TNed0EJ1NIm34g/ZyOESn6Mad4Oj7fhipcQzFqxwkZnzGQkDdyAFguTdzyRnSELFoOOkEsuHUiK/cuTehdxJN/RHd/5IwDF0n4DcEJQJDZtpMT8jhI4g8ln/9dpNqoAKBqw/KUs4ighQEZpOoASh0CoksgODc6ObG6XTYE9zsh34waIPKLPj6haEf5qIkUW5v3TFhXrYqFkZO1IGelJESu+UNDkClqGzwPYw3FBxTajt/I2NXyJmzcXyoRUnzNDtXOVSCwkILWkiqfIqs0xfRSNow9mfg/MLE0iBQM7YZpu6NNbJCyf1IebBWPm5JLWjg1pmiUiUp8OSL+coC5OXd9JVrnzGsQg8yhCbCvWqN8X8c3Nr4Mavt7wiPP5uAJOjFis20Ypi8R36Qwv3l34fOTydJe32CcaMIuACQLvYImWtQ7XtCA4UPJ6ZzhiyXmTZGQ8GulerLrzEe5iW8K+flpi42MtsvcanVM1KW0Sq2MsPQCSlvQr/YEjabY8H0ORx0p6z8KcaifNy6I7e/owHbGm3ba5spsJN3244iSTd8az9rgN+NiXdvW5aspHE2zeTtoJIdaPvM1TA5/+puEbBhb1JTWdcVG4tpmLnZrDCLfQ4bQZqBUKTsWiyXGz3OnC/vqo3Xe0h9RtPgoldNvI6jwjR86ngux6ZADIVcAtmlbWJzmpNt7Q5uCTecshjHcN235OfsWKi2cS7HGARiNm8tY45rVeL0YcLF7SlSBUiADJ7G1pumbMwsmF4jHBZmCmxbWo8KnTzNCBBEUhX3OQ+QeMHe0l2eQSfm2y4cN2btprDgKqV44wfcbgM4VE5LRdtHw9B9oqAGV20Wg6gIdEGeWd/5gbtQT7mncaLvCjmlZOxBSYUb7MT+6rnyAzTIh0ytbm908vq11ukL0obgvMsgTlKlAra/5rpmYbGa176tufU4Bvd5EG/cbvE7f4XlnTLeJsadTBEee4bR5vaO/eWB0aDWTjjqh0ir5DV+2+OZAgrp6UUvuuYDQmRMupuWvzM2etfp6rEXWvbUK0Gk5lUowmOeKDOiz/k7hEETWrLv5VA5D5AdoqCDo5cL92BqqyzhM3rdN4cn2h8s2M+KwAsLjXjT/zQx2NIXFnK9xUmCCg76FTpL5CPVPiyX++vUuT8pYwG7kqnzfrwzT7TxXOmdawDllpGfbtxCiCCIYMTuHmILmzyTEWPRxioTVr9qWbtb0wKVh+HUj7FDSxGptC9ituF+1jgKWqO5D3GEA8QUluu2Iy31tfaevOzveyRFHF/fEMw1tONJa9itgI7SN5Tz/NcwAb12F1shag96B382MapcXgKoWqLnXijZWtpEgugfJ0bKOZ2pCyLmZ2BqXObJoT6cekXDSFlL0ZSZdQWdBxmCMiUSFlL5IYjgFHhawW85NbLfIGQLFINjom7V78UXCxdbv3FKkBMTsSTZoEQdrxei8EbdddlIDQvMjwhL7g7a8meRs2VIQfl9zjuo8d57RDKbFjBIIcwz2L5QCXqRmEei1QonShZ7LZBfLOSF15Y4qy618NsLAD8TWyGXpV7z3EKnaMV1/8FyimBQBeb1WXWGfVCjkhNt4jOAetvqh43owh8nK1x5ZOizRNLW/4VEaAzZFFeML39M0nXWdtAExrKC9+gHfmI/IIcprZfJjYJ8/FfAxq0rt9m5ZUUvJ59bNA1/4q+w7J4p0ssAtjyI1zEgbu5vieAsyoA8nakYWGASaAhLwJueBPwFbEjRfFlzewocvHjJvoFxPs15//BlM1sjucYInUy1UwvpO9chTprM+bUOi+/NAuKTJ9Kc3lgwYsiOJRvAQFO77cHn7hRP1GZxMUSSTlytCu+Hx0RsoGm2lLTkIbJ6czbF/SC4FhomnrTei4N8hnn4eTUAYtsJUJla5YV3mfaDVC4waIRGw17w5HsfvpVBV92hZeiGAbf91SK/jM9oNWOuKIwz+3fjZuZ4tSYp9qoy1vIBOhaK72bsjZKmPBwppQ/VdBrQf4xs8HZSHz2QMO/ZU/gxFngPpmF3iOWdjNWZfu9SBw3+7q4eK6w9Udme6oEfqeec7o87J+KHYhKxlcbyFaQ6l7z9yTZ/P6OGZpZQu0n76VhsFC2V71K4dTbg3PzFUylKrvHj5UjHHjAX2lA4VUXBY7BTLhh40cPYSiPdTRlwBJd+dQvtyPmLDVQxitRdPokm9HMl8ValaOdy88q5kI1H3K6jdtrNYOTx3+pGxdBRqPglsc5ErC2W9tVZFuGN7feHBcESnwwFcqWtJptFuv8T24DGmThMNhEGLFIn0ro28KDQP1w91b+NgWnYlFoNr4WfqpSM0K55HX2e80Fm7Njv3xtcSEWYIbaqzwpYRhiT7smCrCr1kqjfJGtfKjdUcsuOxs5AAgYJZ++X7ZwBG727INnch5c6Jq+h78GuZhnLWJ3TbBEbpv+OE1i3EsEfWhekNTgWJLJzbljklGbCLxX9OptIBPsjLVc0mRaS770pzcr5sRuRHKOwYfWfZyzA9AV/Uzo4/CHKkHP1J+pxJJxiggoJTqwuShPhO275WwomlPfChS4YVZIOKRps/e6zBN95EU7gpGIhWWLRM7EmNXQjIV52XJEsN7BUJdFAMuNiUpjkbFFY+7HdFUvYeXB/+GUDukOWf6jYyNLmR+59Kjj0AgYpG6B6zkGGJoa43ALjFnPDoNakTaBSqTtK7oDht3vFX4ySNqeLDjVuVrbbgBqdA3OOWb0lv/4exXOjz4K7HZog0EU3HmG2k0PTu4vH42zs+LFgYr39LiBB5P6Q0RbwbAYyJb9EwaT/He31p5WJk52xvT6bTGYmaWwXhoVm4kxBLU5mmD0jCf6QgiNZ7NPVoHG7QRv/HdaEkv6LG37EDNvlNszGAgD6j7tky9WcXxtn6nOH9XM1MrteTUxqIJ8raWtkGUhcUnd91Es0xmBhgN1uw03V/EyyD5UvUdhYOHMKjzeqjLixTPZyZMY41SahMoSgYtAkYc63Glrh7VHTYBKTE0Kz6O7Lfc2JwFDJ4dRwhUCyWN54dOcN0X5nuFYhvyW5VU2D62XRwxn8ukWPtE16UdbpMC9ZhGExTTEk/lv/AIjcV0YKQccgDy0wshTqL3ziJ0wK7LwdopjWksjzmJmov+WMI2XToEHgsHByGNmFSEhfUM2hW7RcmPc2dH1PbunGRqZB9UCFdKGd9qzYVoNhmpKSwSya4YLZmd9tw8BXCbd/5MNMIs1DRZPPCWwVHcstffG1iUKAMm3bZc3lsq9TJZ+jq68DVQsyPrUIzkvAfLzv/0UUsmpU4p1ONmHJCB9BPgFFK7tq8rClcB4pFHkI/TDb4s5KC9N57xEJ5oXxsJzxH5PIW4th6kIGEKi1GeW6TTFiF/LYHma+91jz6e+MZKXE18NFlLnZJt8lhCHvoXfoVNmr4eud9ljiwGwpWsI26UZdAoOBNmytAdc6PUYNeuI1H+2RjE8eZuc5rCbROvjX6QigcJsHE7UZCLwYisxdsiH4g01KTuaGR7MkMcguOMfoFOPfSOpqOD49WNPqscnOAK9sUFQJa5WqoTrP0qjUDrcfLZAH+di4VsBXseY9PA4lBUyRdpqvlo9Ul4FvPB4epC9Zp6WeZOImElipL6mMqqVM0TOmjfv2sRpgqRzV/K5D178s1aoVDNbSyFu2yXM1lsrjynu6mSVcf0YOXQa0YUg0sSaMks84WDr1iUpKH5Q7vXgzoeVbcWIc/n9xsk/EN18k9wMTxsT3T4Hgww2etcZr5+bKIL7+dCSsoirSVYvdQ1uqkCvmOs/QKsMzIfv4CNaxzWiMpIaXCo90s9DSvLZi0gXjLN5f4KXHuGmec1MvcIWDBIwjFokZDKG4nneKk9Sv8OflKTDoF2BB6q8YTi+0asFAJZHs+uqqTMRJUOhJFO7TDerSmF5ULHXLtidorS8T6mTsjDRMo3yrGhRqQ1SakXRTr2Bg6x4g1SUynB2vI9gS+NGGhqstNp8tkS6lzWz+HVnZF9K4ctrXnGwCRTXdbutcfMaefXa01/QybFtevNQZUq9wdSTAnS9Wh9/X7PL+dxaqRURdEhSS3PZa7aAItmrllSvurcJ8UQ7YdyU/BNWINsTvGgzqon1PE66wRRWyPZHVhytHqqv+7IcpS0ujabn/G6jj/sj4vW6y5ZK+cWs9409O52m30sho0y4SlAdEodyfapYxOhtapFJiwudfDhqE/HmuSWizzMvBrAydl8iwfytFkL8o4mX62qWq7RikbAzcr3xo/NQmQESlHutqdFk/yb6KEkavl49DHU0pacoPUbarJYIS8hmE0M1wwfjpQpso7T/Rgi4ntqIou+mYyZqQ4PKXxcYpVYaBONG/TNQZ6F9HtuYf+wLlIqcFQDYMQhIgp4/MtvZFIRlNi+5xu8DxnPUKqv2KAF+CByQWW7jXqVnlJ3cBngxVerRU1QpZog+lXCzVZ4++h5s6RLr64zBUtNmpjFQMSsIrMTgR3DWlBTkJgKu86/rupEVDBepd1Kiq5jdmGfGeLU9C5lxeu2buJ5sekJyiRwDIbBpUjd7U0XBjgwb9hitjRI17MKSqtLSCcsSRzgVLqhEiaajHc8pMkVfHha34yh5yz3y7vM19y9u9LBcGT98PHPTp01v499/4nKkDXdPXNjC/vxdAqmzu09OSzu9aC+oC7OtN3fGVUK3pufR/m6+ZPMck1NYC09oVgkq/rG5gT6ouU8QgBzbFkK3rw7eq4EKuV+uE7RP4bTaQ9MnNnZ0i39hhcwxc6ceMk6/r2J+jwOGXUjsbxhg+2NabX3YPUhU6ITm1e0XEYjnUaCLZlbu6iFJU9en1GZM1iZH0+npJkPcRAsxJW5we/irMNBKCFJAdv9DECqNpU2xUQoLw5IUJ8zVNlF/34pw1mGcTwOvKcbryhopj4NQ3FNkYofv8NqbmiUaeKR30MP2EY4qHArfxyq4KqO1Dtm6fMNXFbEa564MqyPf2AYWtnQfuMInKzujid3Q1BfExe5d6HDb6ZCF3C5AH7MyrQK74OR4K1KZx6Xm1kXev977gqIg9joDe2zQ2yLsetnz1nnewwLp9qFKrM4CGyeQhMwvyO0TcSMo6boLkr6YHNh32rJxMXi1+WWPrpyR1JNF3ZZY+1sNbO2wmdShdKZnrluXp+5Zsjoqy4qGF+gMWgsQmL2RxR5V7GOgGl6gb7HMvenCTQc71EbTBIQ8WtHi2H6dyq9/mby7DsGwl0Kzl8CvSFbHLGsRGPVZPZ2MBObQnpxAI7PjiE/21AI+7cWi3IbJHlkbYte+rS4ulJRnW/R3Q1IZChZy3qvvS5f5VRfIzVRsWx2DPhQQlE/OFb6wKgCU6SzD5W803UjFltcVIwTBZaQ6e2qpaztJn2z+P3eJjiWwZhn951fX2vmZ2V6aWJGDm8M9JIsnUOfC25Fp2cybxhSIulwtoFmZkW/V1ubStNSl0PXJuUpMIuI4gRHrmyXUBfWT5XgzTAywDEiGxm/fTrNK1cimof/vbsNjimhq1ZiWUiHMy2wY5UQKCYAz9yPokk54NX92S9uS7yn1ZU96gbNWjxqZbNNJ8qU0RbBKksn2oxwA8sRiUJ4IcbOiaVF4NpKrjwR3puEnoFYVMe4HHu8lJf1ibpKNHcWFyhbZ8TbJKdchs6ZNcj3a0YRTk0i2XbYqXMErkMu5Bwu29sS+2ZXWbzitiJP05LIeOq17R3NyjMaoQUR+9d51tA29xsD3G6qE4ItgTf+xTov31ieg2ZwxJEWabvjWTovCvQyfc9Y0FxT6kmUycdn4bw2xbjDUhulRYBNH97zFrfwfO8egvfsYQtqG8EquiD/Txv/rI032qNKxElyGTONP+kDJCVZLsrOjVQUxU8CwX8ghwD6J+e2/6Ecgj89e/0v+4Y98ic5BNhvH/Q3Cvj5ZRHmN5J9kwko8s0q+N83meDfL7o/kgk+/yC6P/t5kf+yVII/Edz/6lSCf0H/HakE4J+qM/pfpM7w/49TCSz6b34wIkeOr2cFwo32a1JV3RcgXTc4CmkSBx/G4bv4pPyHFV3Hmr4ycz3OBV3thRhTtjZUVFysAu0VQGjZs09dpFWpAjwAwUNJiJu4FtZrjJkEAMDoNNLGtfYx2/BjQyEoh/M8O1HYeAlZs0Mzip74vX9TB/p2GYzcB2IanEjS9vU0QIayKfItZ5IFRIEmQpIySVELcxWkqZDCwL5ZrFRAslecJjszVc+8R1vWrKhGOJJ9f4gAzhmPNV3SZtO4dpRbNimS2Bp+RpCBZEkM6Cq3cwmKlCRDg0vwTaIEZop/Q+b7Z0DqYdL6CPLTk/hw7Ic5Xg+6WizY/bAbWr6/IkbVA/Z+YaIbpzCPvXoKppAxqdkEN914TyDRqL5xDNN79csM1p6S1ei86xS3oBw2dhBFkKo24yGSkpwdUVKD+Qw5RUUidVio7xfPOJH9aqW4Di6l8t3h04f4fr+RC6TIIkXGXdiAVrmrXhPMrFhkjeG268cr6yMgZYbUaEvXScOCtEUfN9kZTUiVV9/TAAFIHo/8IW4v88ez5mM4wK3r4Fa6PknZZrK1LZn3oVTV56hOPiOeA2tZq9LRa3Lm5EAiyUSYYQnc/M3wP0FJ0DfqpLjoUCAP3sDaMnlLfYqmdaiqWJ12OeT09XYp7M8zI87QPNVBIo4kCz61LzWHwXzaGJGhhFpxoU8ZxN27voS0fPmzivtxeg9g/JzHZg+RC8lx9104iVTjLeB50aM9ctsyCC30WVL7ZdEsqAwKzpU62WqUJece7t6MyimHJ2Aw6PVqKRDfc45BcXskQroFhaTqYTB+FmHHyMqR7z3P1XksNpUjBYnbASvDkW6ln3MRfnRPHEAzYKghaE+djLSyQ4ectav2rn1On4KbCDUaGeSFPHk5uc8dCFyKLcEOWTWAfUgfUBxU08VgSmD0nqwkZkAFK75BxPCNpVPbwI+J/ibTXqG+gLlGBdplZwJj0o3gJKtfm979YLY1AGRJVvGmFzOEyp3QzW431k1lw6AEKdfPYQ4TFkZxY0FHqJ1WG99Jcq5sZULbpQjBcKKEjwNtRnS+XjibTPmvjUSL2K9wTJ8sQqkOey291EXdd2sT67nvxAkU+5qGaDx+cBIFgx054zEaoiTOul78TAbwVlLVy5lT5FVwLIw6Cv4bAnQII+9x6hFr4qXWPJ7t7/kUZpxdMmII4al5OZ9o4vjbR00+NrYVQJTDLHvE9M546/sF3/N6A1YhCnxXZTB9fX6GXMwwWCjqhWChwXuFTJtv0Bk/vIJt2feXH/TZ8wqeMdGTCOlrnGCZPrmQKgA9/fDkoiTqVTzqRtK04I8NMZwyvafoaeJPe2chVVQPUix3FauDtS8mLzRnf8xBiai3dZU8YtJI6as0aYg5l5AE3q8KwD2GufpMcK/ngrPMhAZFBI8DqM684/jMUJjheEX3xVfLgzyNMIHnm6GwuhvdefHq90nbXmgkBHmUyhdV8hLWrl9EZR04iiJexGOAZo6IIuSEChnq8HxuLciiVLqgs8HDK+c6c11q/nqYLXGfyw3Y3+8Lz33ALaU680Q6Cs6MA3yw9UACFVlZVNEexSA3KPrSLMQq59PvKRCjO7QSKVVhx4xQ1CUdU0noNyp5kTJ9ldziTAI6e1csVbMHznpwR7RlbFgOmiUXWeGoIjxvAd0bZgyuiepMAS+AffQJMS1IbtXi3ZGUhoJ80aOawhwKuPv8ynNpURYIG5qKLBuRQ7xeUbt0O5+030wAzgSeTi9tPB87whUToYt4rV/wwnSlTdvM5/s6pnurjbnG9Yh5cAn1KBh4eVLYY6Wblw5tU48BSi3AS5XIHHtZojTSASBtT9jhTVFm52Myr0dG4aefitt1ZTkmwX6qMG3Fp0NpOsAC8pm7EBPg1Go7tAGvsVvD70AfKIosTyHq8DKTOAU1RXmhb+FEOdb93vkAwzhim7Ltok2LlWf06xkxpTUie8FMDtPvm1aAeqQvKqPYfGWOdIo3nCQs3/OCFQzvVUZkA7d4CZPz2k8nJ0xiWj3SpOzp3TThrjcyKdFddtQo5+lk52ScG9h6yyltRVpkOhR8C4dDKn3fw+/teCwV2s6jS9nMFpfVnf18J90E+zF7ULE7MfAWDqYK+nwBBJPrjL6SxdlXULEn+RYjUPrrHm9TaUZRFPoOLckW6D1kcNjTQchT7glaQ90HoVtQ6xnkS+eRJT44CK+iIV3DQuZRiwRWxmrtylKV7Jkq/24scvxyaXSDRciSowF+rCNQZINax8zm3jNf4XDuziUrErVETdFPG1GOiiaOmDlsQhnJlaSHQgChcBo0Za7fMJ7XUAgpuxxb8tVjNvLFn4OJBTco0VrHbQZypM2SjaOcSm9muIn0FQ2/2wDCFJK5yKrkTQTJ+NuiXP0UI7Y8kij1fm0B6T27dd6vBjCVvoNltaseTVqMQFbae1xvjukU2VhYF6+Jn2AC+An4PZtmYqlWaWWaBPcZf/GyxUsCt1p9cceBYyV3Xpi9yqtKF9/flAm+vby9Ya+GWrpzVFza3zblkVVkshaKb9MdbClZ1jUnNxp30mVWxI/d1YqDJ1/c8eG5SUj2kXf8CXXQJv3X7k6eMhGVJX236OrN63ysJb/4zOQML1FRv4YwVBV2r4C92SLTcNd1xK1KOQiq3yuOhkj2nn+iXrTSdljwZjNYbCceciwDcI1casA0IaPeuIjuGGlTGh7eQv59+K6Mqe/PTj0WdTVFk5vNB8He7yYou5/3kC1J6io/pGmVyyhxUfA9I5pA3PokXmGSsdcz0JhsiTfPjNvZnaY/xA55OthwcJBTHBK6hym6iY9Sc5HJbEgDu8hpbwdEKe7DwvqQiMAlDKCK0pgEedlsHDwIdCjHF5ZOnQm/TBwS7KNluZbom9tjft+gnxlDWEFGFJO6ZAzeh8B9YMW6BQ9eU5lkzk1pdfsFu/fUVBRWK4bB3goCUMdmUqUbcilDKZoaMj1RnygUtywK3Sxru9L8hmTl1Ucsb/FqCY2fXTtLg2zKZ0OspFhwBfjYtPDK7ZI16TOuBnKJFMm8VDJcPZfkxbZBMp5U7WkymYevhEZt0qLnqVQleapQDhQrb93DKObOOQCyonzHdIv/09c/6SsGKFTI2Ey2PNuhL3eilIItxh4S8tIX2/t/tHdlTW4iSfjXzOsGiPuR+xIgQJxv3Ie4BRLw65dSt8dju2fXEePdCe86ol9oJQJlVX2ZWV9W5gUTffTxSseFjhhXYLB9zMz08E7VE9r1ruPY5VuRPYbtTIVnJX48LO8CdwjN6bnE+yBtagRrEwDFaaIXc7cuNiP3HTsTy7v9sx27CymIO2yKKPB+vi2Dz2zcQ1GVqapMFTmh7O2R90F6tb0beeC64t9i+LpZ4g152yjPJ+WKJ6HAo+msv2zRPHG+rIMc2XEN7tn5ubxJvv0BHy6UsuSwSarsOa/0VEersq61QkMi8qdLPp7xQPn91bSYuzyqNcB9O219MrJSScn853QhnY1FwzJTJm+ZOSzQhSrPz4gQ0tdrXZeR/0CIDhBXGraAFzUAHmkXA3Msi1L8jIbP4iajZXh9VmsdNrnLWSCXiblgrFyY6E1p85q0LjFc1Ah1+CW5mMQbETDbKDD0gMUNTxleZSeX/AyxPC9S8uEzXcERVwaGl+VwR1q0FiqXHuTM8rAWqzPv5m8+wJryyRjdm/oEJDy5zW50blTFyBFqPDMrFagwse+SwgKHydV2bcdKBs2Ym5By7hHU8Rg1lzW33lIph5/ZbAWOF1zavNtUGZh7rwE+Kb9WeYo/LOPA6TJySyGtdd0zNfkJuFfBOzUbDYrAeEVM6pLUdbfV6AYcZAr5Qnz3TH7fnNuwa3FUTryKC2M6g0pbYId+bBquTbO+rf359GikaU+4KjnXIACJA66wBfVeexCj0DsnbFVzbs/tHR3cnOcesTMOKWbqR0yzHqZTo8fZn3asWoPehU+i3IoIMdOiqdG7H+GI3iYKc4qmcyghOjLBxAWpH48cED0KZviDL82FtjdiEJfugdjshuzEtIa3J6+A0kMsKch7t4ijc3gfO0/bcb+VYA6WRrsWTFUeb0jqpnNrwETkkNzt2JiPbblw7uPr+XhqKVNtVVi5uM6gCzlq9e0rmKeV5uzdJsyv5M1aNR9BrkE06/2yBYw8uiRbGzGEN/B0s2qsnm1NxNY5CavEuisV30C5tJN3XbIc0wAn+t05HOxy9tT7APScHZ6QMfnqzUOJyiu2ejEmKQEkeqDXIl2rfgoyyXxvPeLCQLjFFsTqvq8vBW+Z49pgBWlDV9HQpSkoOH7TJkATvQo2g1gIYaF1UkoRKEn2aZetBCM4BdxWtd6EH56nH9Cy7Jnmq1CP7b04EccIp0/xOrXPyXMboOjJhgw6YR250Pf5gFFACOtjEd9a0TBEd8GSxfEro565yqMupl8rT8LfGBtPAzbA53OekHDarZs3esqlVu+8Rdcr7wWnfTXRVRFI9qpfrEaETq5EIqIQs0mZzDn89mOO2dXQkpAbD3d0SBfEKP79onWIhc4XfKe9yzGdTleIulw1CL4H6p1pLQ3iNA3G8/0Gs5FKsHLXoHSSUutqobhWS1tWCcQsd8kVOpxNY78ThvU0yH1/bI0b1ehjOlyd3TQ6rdd5Vxb5IL8JE1hVmG8Q3PiKIS1jOlTD49q5eEbbMwCI6Hdy6FxvmDIu043PaaFh6ZSUas9h3uI+H38dDhg2jMalPmwmzT8tFIStBnz1exUerw2UmYdEdEaNtriz9yrSvdkj0nbHkP7AUcS6xjZwsAiMQag6OBlXB9YBdSxFSHlRd6TQngN+zJO7WRyzfLjwx/KXMnxZj1C/muNAdLi2iFWjtSngEutuA4UYCFazhFEuJ5jigyobJ1eeW12s836DCbDLWuIpTdrOGXfIVi40RYxEdLGrWSzr5nG50H3lkFPDh8rrBKp2btAlJikyAKW6urNHYmWsPMVwJAj9CN1jYEvgFZRcdZCtBIkwNci7hIToRByus1aluWhm+gbs5m5Jm9pkiBunDUSndFX1z52g9HQ3FyY48Lz1tZjHu6SGrPxQ/2mPew/HMyxHUwtjBEGcuF7iS/kMZwQEdt+g/YGo2LDkWHqKs3G4Ri1rKYOfQ1jSwleGpO+9HV0tEtqLlGcvwhAeq2aXofVMBRxuwVTnPxm+YMKwSeA0ZXqaEdiH4oW7bVytEqHRxCsmvFhozbKfZmCIC7Ua2mMNZ6Y7pWizm4xsFZ7Ai7EZGUGHrk16OnELErGP0ShoRc7YQ/aIFikFLFF1ljhzUY/AE8w+xqAWoqNvtKqyVZNLAf6WFiAFSMaBswCHeJarT3oYF3DdFXW41Pdo2c+9Sg0ZLSjO0wd7r7FVQNEIP2RW3vftlQ3yoO3Qm6HDJ616DtYlzhqnOGv1jUjxkbnFkHaYxGyOU7a4pwb3GM8zYx9a9valZ0TuUSqgOobK6/yxFD3OOuZdrAxVYOr0mTdHiLyuL7lajcuIwmw4vmrzRpqZQVRGIdtE0uxHHF5stHwBWMZbSOJNEbzk68pEy0ofy/fh1wPIY+wJ45YM+uH7zEd0v+6uaZDemtBypds9NkN9uopQbdi8gKHlYbWL+UFCaihtbROXhQHMXSCBKiEF6tIsbTAmAnyJGjrFdcuENVFXk/bg78N81ZVbA2MBKT86sEOrUAtpjDJdsDcZhcU2vzk0y2GprPvWatIyAw+6NmnDk6Z/8K70IIg9uZJswZr5eWLGTQMBOJMWTyvZLFAFJY+ff5WkRP+EEfpTkhL59tDsx6wO/J8iKYkPSMo3ShJ99UFAQUOE/11u8vtH7BM3CX9w0Bkn/ovsJPHNcGRpkX364f00l33Rd1HDf/7vV4r7LHPuAZv2GsE6m+ftXZ3RMvdfju/bM8GDviA6P+gVcO+XKcn+PY84R1ORzf9C7k/GYcqaaK4eX77HD1fyt3P+51Iy/J1KPv2dSqb+DiUfqpw2H9x/LOT3y+CPn3Hr+5e/XW3vV3/DCvirg/N+66WvuvkPVQq+SCwgvsapt7d6v+fzANPTFG1/EBuAwP17n4J/3bLqa+mvW8x8KQ82qV/P/zzXftfHX+gL8lFxhF8tsX61xPrpW2Kd/vHbpwZYX7S8+rDTFf0biYK2R7TwG8X93jDry55aP3Pvqw/ys74/Dwv/jjQs/AOH/Ue0vvoYtD5Kw/oFWr9A66cHLeQfL7A6MOeVG/sN7Byf/j8hD/I19HzUMuwHQQ/YBfu9Pembe/W5ySvC/xM= \ No newline at end of file diff --git "a/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/read-through.png" "b/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/read-through.png" new file mode 100644 index 00000000000..f8f457c7490 Binary files /dev/null and "b/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/read-through.png" differ diff --git "a/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/write-through.drawio" "b/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/write-through.drawio" new file mode 100644 index 00000000000..7626c8d1f50 --- /dev/null +++ "b/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/write-through.drawio" @@ -0,0 +1 @@ +7LzXsuvIkiX4NWk281Bl0AAfobXWeGmDIrTW+PoG9sm8om6WsqnqGevpI0gwgNDuy5d7OPkbTHcnP8djqQ5Z3v4GAdn5G8z8BkHgB4aft7fk+r0EAH4vKeYq+73srwV2ded/PPh76VZl+fJ3D67D0K7V+PeF6dD3ebr+XVk8z8Px9499h/bvex3jIv+HAjuN238s9atsLX+VEhD+13Ihr4ryj55B7PPrThf/8fDvM1nKOBuOvymC2d9geh6G9ddVd9J5+67eH+vyqx73r9z9y8DmvF//IxXONkwglAhsec5gD0g0PAf+Cfy9mT1ut99n/BuEtU+D1DLG/Tvs9fp9LbBpe8dKpUM7zL/B5HNzLpL/C32aeHqmn9e/u/y/32uY+ln0fv2nb9xV7fWr2tNW3I0/N2EYed67fJ6rI3+WLJ//4eZf2vyHO+P6DjCfq+9/olKRD3NRxf+JGmvVPSIIAX1+vHMeundh/sO1l3UZ+uJfr/D7+P92rZYfNXhXCsT/GR3Pf3H31468t/th7uL2L7fbfF3z+Z+enUurp8s/e2TNz/Wf4rYq+l+32/y7/v3Nqs9+JOq9C/xN3z831znul+/T5B+N9/lfHjiGOfv7vv+hepanwxyv1dD/Sf2sWsY2/l1Eqr6t/ubetx3i9W/r/CGMz1Xx+/uP1CZ/FID//BuL/kY8/4jfWOy3D/cbib44Eadl/hvL/UbRvxH0r09PJyzyG0X8RjK/XxDMW/n5+CHeiw/9G/lc4L99qN8o5G2OYN/m3nb/KPlgv1EA89dxzP9yZI9mJn9S9kvN/iiG/k7joHfRnvKjrNbcflb2LT4epH3KyrVrn0/gc/lKxe/I+bNebZzkLRWnTTEPW5/Rv/T1aQ/mfv78pae/BY8/gCCfn07/puh3MOHzocvX+Xoe+Qu4/w5sv0M7hv7++fgrTv7lmfJvMJL4vSz+HZqLvzT9V/R6Ln4HsD8HM4Nx21rgr4KFQJ8m6QlHmH/6Eyz7JQIk/bOv9G8f/Kfk2X38dxn4kFK8x/xrZf5k695azLv97CMTwNvUH7V+1XhlA/4RrD/fuL/ZpGWdhyb/Yy9+hPjZuapt/0XR77rJpM/OPGAIU++OVI9BIn+/0VVZ9nbzp1Lxs+H5u0j/hiD80fm/EJv389/ICvXz979GVmAY/mf076QFwf9RWh7A+Edpgf4LpCVjzfbT/o9o3ruE+R/5WhNF/WfS8i938V228T8+/b+wkDj5owXg31wWCP57FYKxP1Eh6E8WBUT+C1blzwnBv78qD5EZ38uq++FOfxFQ5ZU2Y1iqX/jOJMO6Dt2/iUffnz9/IuTr8EpzvIy/ON23Ol+hpn66JP8oBf4oea6zeI0f+/DrI8SNr8WlK4/SrQOQ+WIgnz+a7ZasWzxX6vvCiDQZPu/06stY/ly4K9CypmchwQZl9Nf+DaIg0BF23LIRc1IwLbKB2KKtdABH84q6CpPdjeNLVnT5QE80q1Rsu7cLdXRh74ga0GyujAIaYIbDsomf+YDG/sGDFX/Y44v9z7/819tCPBfU5+53nYh+blIgvAfPG74Tz2uEfj779kX3hUDvT89IkW3TtEnrJ49YvOy819vJicXmZI1ZpeTANraG5JVL2pL+NEBZKs2bDEolStlOAGvaoqiqK4s61ELbFpkkazuxpP0Ua2pG4k7ZkPYpRslaDmxhO6JI6dmBmz/FSBSvVMMWtKOIlp4eiVk0pn/9FLNsRTOMYunukZBNY/IQHsUlyTZPsSOYOoBEJLvYvI+HMSWyzUWTTp/qgPgW57w/mxElks11sU6v8oAosdyyvcUWJRbFcQFOq/KHJLHUukH+YFLSUwycALPqvEkpbNluEF/YlKQWBYs+kkS/xcI7ad60SUldSha9qZWmrX9/LXjgsc1UEdtJFYzEKG+Lbtys2+/Nbn51HEe/12d/qCQXI7vtUdiCfzLbzsS8m+ma0x8VpObtezkf89sR7ionj1RydtdV6juvKkFaxa6nu9F5vqmR5563g3oSEDMW+3bw9AlGSg7E9fepRxEdbYn36Rwj3pJvy251PgrPKc//5vlvKc2IdFjinse5BvapsMaeB0pDKJXBg1ntef7zFDqJ6TJPe3Qd6uSISiJ9E/qpTgE15nD7jU4PBFDLybQ1OsO7IerNxdzSSMIuQxSYvfdavnfYSqyW0JbaGYFJU9iRNrC9h4lp8hlbOHv6AcOPnLc17PVREVLSO8DLIqJLEMBv9t2mYb7HAHDZbvfRwKtDUCu2g+9FnQiuIyHSxAGmC/+gaX9FevJJqqsexeIEiHCGpq+cd5iMrsaEdwSeSyMxfXwq/MZK0V7EcueeJt0SB48unX1OvM7dpqatGmtFiWS3b7USLGR/O+PpUn21T36mHHxEmVKTOgQe0REQo35hRMz7O+efq3kzUelmzWaiA8EMCGOG6KBlvpRNfYAZs5pm50/IkcQSUNx2FwyQ1/mEeBcCFYlxshary0SJWCrv3bK2ro6S5nOS+CRhjUHIjSPvFqttUDhJRe1Un/vKeqNBHNRM32ZPG6n2CxiuaUJD2GpTRiFiwtfklT8rnr6Hb1u98vCCy71Xl/WZMRO3Calc5piYo4N7UB2ybngS0KbYuL3wQM/5Nqzdv1UGkOzxklvFbdqaC3QmEncJwkc62vtig2+5xXomQKtOd2+tYXmAr8hNnKR9nLZzwXKPQjt8RWdIyr63VRtVYztePGGlEx4INmVP5+zCvjz7POT7zRBdnfVcWqJSYvCdIB6yazipvpLiYkcwbdijfg/E9sF6zSGQo8YFysqzaWXE2DTIlfGS952gB7uOr3VOGo/XqWxcdwfOI8uv9aMzOB6SyqaCBjB5VsHqktoP0xNkeeupfUk5DMc+I83TcxNWtLRefUVZaRtL9/DoM2gYvW1aWbm08/VR5m/Gyfnp3Q/rDFPiHXu4C5DZolMWNhnqAD7C8gbg2M6RTBioeDJplXEa8Jr7Cpj5EW+xNNeB1m1JIDYsXXyeNRylSYuLeUCjfaxMY4ZwrYkgKE2QYj6TMOL6nlHjsfccTWVBPEQPuLEXLNi49Opz01u3bWUIFwTv413apnE9cLG4iTgDQi2/vvDEOqVGRW0hWiUUw/SXrqc6ttTTdZJfBkholkLEIuG5bENr5w00pq5OcEZSaAv1xn/G769SvbMDFr+jaULVodBKbfoMjiBVUXXfpr+i3BioxdZKKwSVM2YlwglJrvn8/Flja87uk2+hp12JHgKinr2vw2cumJu6ZrSAvZyon219gVuTrBSoxkhp2dvGSNm29SGOQhLECtd5h8pCKz1OnLK/Wi4U/metgYddkFZ0tewSTXs7mI8ofM3zVOZGdxVJYK9v1Qui9mCYu6R48njKj4FAsmAuy5ptgVQCAoKlQ6BwDgCB36UkTPhKVi+mTdKBeIqsocnDTaTEKQobPi523UeHbF4nC+2pL4n72H+ROTnYVdqSsR2dri98eRpKEX0ZXsUsjJqYYWEQ3w8v5p73Y8QujBvk4zU0lFpgIqiE5qPp3PBiMiZXtfHwqQXiYbrlY7j9TuCMPcRze9DkbAnVKYir91ymjIgo92t/Z5Tyu1eNk+UUGJZ2yThbaGCt/YkQiYgvltegVQlj6TytopsFUwnUUQo+KvVpgcbIdmuft86wZPa8LYN55tOeVJ4nYYdaSm3IqDFtuv1R2SkSo35K/d6bhnqCoC6bAWtk/W3qQdJwF9vBCKt0zvIWucBoyyt2WTfco9MCu/bDmqbZiBLjgbFQ4WOJplA4PdJHVUFQOrRlG62dyxTNaZC3156V+2BqUEa3sMUk36BqpF1UFJxrIGhbm5DDIoHwacbOAvhM3jdOhGZgcSwqNXsMT8QRJ809oAmUeobUIZevUQvaCZNsLniZ+JFY6JRSoVqcKGIvAW1dOM8GN/da3s8YKhXeIrlLhvD7YrD8aB45OUKH6HYFE8gh84jy8IVvCbQhtVfRRoGMvmRRamrD2chTHmP3rnxembLX+gff+KLcKbGViarHt0b17548Xjq4rI8sAaOMzivq2KqksFv0LHKrsVqcwZ8TAYVPgExvW/NlBJm7RGQ2pkstQSV5H1UfjUekx93IK/uJbnZE+/mB2GxBXl1a4vIldHmo2G0zEWtoMkCLvOxQKC9zVHqwnBdOgVbaUNoHD9Tg8YchyslkRzLACA+R9Pn44klL0FudbC+/kaKeWSnDah6I4DbXo0s81Wmm+mjj7BaX3ra7T1wpL9ZtQ5iP2szX0HZ9YEY5pyswPYEt2DYJ/JiQpJLxAGvNMcHsPIZEst6o0l4nm12Gi+GHV4dK3jTm3iZZQ/PSY4FIbLIU/aXqkl0SOBTiMaUL3buUuAQ2rz1sFEUb5RtF81bb5urKEKWY2K7w5RdTISL2Q/PjXefHifRAkCtKy8tu2g05zjrY1oFXKu2P2GcmMs3PNZ+0qbx9TLNUCnp/yGZ5DZ9hxz0ZP0zUPCUQFjsOCq7XFUMXNs1NBpE2YK6sCdG0+NKid1RnnIEVKeIfCQ2BQAebMko/HcWY2IclzCsA08X0EhZHKemFC3W1i3Pty9j8QOe+3q54dBsaC9n5XVtMf5lG+O4HcnLnUZkhohNH2CYi16Y8NArjYL7aAMItZvFYMz/YDCe+lUyPGeMoUVpMoqUEyPXnFrEC5CWjFDdjw9HYjXmiOXY1rAH3/qB9Tf0zUCRXfTcSslQhmJDIvSDWtyNmeA2DzNgHWfRBOUOGRoUhlGSY7jgOaDS/CMz0MI1eQ1nwhwqEvNuYAWVXbA3fF3+d5QQA3r17dXOZjF2BMPdio1VK+MMcBacbXDMtgUpZhVJnzutj1CztSunKL802uDjyFQN1Hsa0sPBaKtnGNb8yKb50xZG32NUHLjPefYQckcq/fHQq4m2IzzPEY0bdzNRYVjcXO7S0fPAowrZicVK0l+Xv7qfpzAYVaOiQH4ZVv05cWjnQqxbV43iZpWBu/QMNPKI+jPahpa/vpsel0uSqXfW2tfugqN4R9G0wHGY36349AjFlc4pFopVpL0fEy/6VX/GAB4u119Z5n6OaEglUWcRntWxhx0gltRoBWy0UdbCIDLO/K3L7iQM+zlqX96/k5d/dEyue4rBNfMf9uh4P+FDPsuqVAl+fWSp34jFSz3QnyjxXsKQkmRTerYegZzc/Nht5Ehb2zcTUsM/6DMBWbZsTjxsKvYYtmGO0YDsn6l0bVfAZWsuLQVBhZUStcz/RWISRDldjjblHH2kgAqdRHzYVCeLSB3pd323f+kdhLNOC3XpTA60U6ZW65Juqc9ZydyUFJr0I21WBp2HM8dF/fLkwuJfy1O6xasfJ8BL7sadUBu1zn9sjg9v9VK2ZYdeLWjoA8PrTXIp3n6/qf3xapHDctp3cPDr5zq2DVEFqZb9vE/6LdmzbSMc66dWs5o8vpQ965iE4Rng2ILrrC/83fCZQKREfO/fL5hvD7GzrVvjxBoUoLpsesJPOTUFmDHNot0CKyhtvqw6kPeklW6dycznbOq20eDV0n+5kMvd+n0aUuvciqc/aTutcoJXPzXLuZKjZsJC1drbrF+2pAX1353WPhvX57sCPH+jGK8pOpr/08Uegk/rSBwtpmeMVvqF92IUpRdzjeYRl797GFuW2qMXRnOX6gku9rvnOabyKmcJeSIuvP2kUGeF1/H3K8egBHf1h0lugV/PcFJtZNfU8Br8YaQT3L2H4Hnaj69Ov55r7gXL/cXkfGabgMqJZKTP98eM/2Cp5vLGBmVTsJqqeXJ+AuWcZnXT5YknrHm7Y38L7qqFj4ShebI5IsoXXMtRi0hLv3DRkAe3TKh0rpU3taR7VcyTn0VcWP6/TGlJaZwCeFKQCyr9Ugp5vEXk8L5qN1PhxDj0TaKAsIdg0cD9T97itlKZWHNxmDhT3DS4+4L1U/U1lRds+lMkS51utv8nSTA0YlTlMzcYhcYOExNtxLpqKTbGNvahrNpURQD9mWcfQ5R0NAPmlTbr5njYigNHQO6JmDKAPLiXCalgbyP74XT13OwproiRkz7XeN49VR0tFYVZ8oIwGsL+fqnxjQ2waU1GJAH4xnzJQAJm1hR1s4jlG2uhM25cEzu03kkVvPJZ3jCwRtPHTGwAbdhmrDqo/3qVfCQ5uzDw4iOb62OD4Wpoi57zNflyk9orynnV8xIM1/LRGYnllR1id2kb9TRr1XkKJwjrJ4jWdd4IbdJYKJXtC9vmAiMTN31IJd9sPhOtDW1RdUWRZSgZXnqnnh16Lu2bJKSqDBwYR9iEiWPB6sC/glMoMLlgD/njiFo2xPzKhLrPzKBsjVbHBwCjFdDSpoK6DC0yGKaQi5lpDeDRLIpJu34AtJim0kq+WmX012z4t/bI4S8IcflE/TqPSlBr28dSuY5ikt+hcXl82Lt3NhtwUPMxmhLczrYdx8NK1W1OEuYQyUT/Km+0LSQPXedbr1mYe6lJ9VF6pdB4Fa9zo98UCMObd5VMQEuMyXP9+2vh+5v0CvJg4osHLeLelWXY2SJdQO2Vyv8wlKLbtlZZRcoYkxm4OW1ivgemeuSISS0f74Ip5eUuLBOXAebpP+2uvftYoyLAe6Xprhz7o+hgJaB/7o2wvPXoMxeOCtFl3ioIJZK5sqMSIDwOu98vyOPw+U1ytfY+njI6vWYC0yHHfsd5b1b70VH2REEPAKXFzqcrXiAf26rVJmGooBmueD5tEmfKk9ZrLmDNkvMvHZn9fSemQOruvs6BE0iK4inHoHkSmgxBdUCPoCYscnIjt8JmNDjf14lSyMBqgBJyWRCWH7EYckUcGo/WCmyRB0Y5yhozMN+3hSm/gBOCJpMqTNDxtqp/d7nPcSTWyRnbVA/XwqwkeE4O1UU62J52pL89ngRytKlwT+gL2C5LesKDe72GgDT4q0HrigkEqrusn7uCRJPS4s3rD8p1ETnqjFsM6r9XlZHc9bQ82FrtaxPgt+SIw4Np+u4XKGPLlWpv8SC+Ba2Yvqgl/MLfsOmJR0Y77LKWXqc8rqTsAHGrqN2TjCSNpioPLX/IZ7i9yaHUV1DK+rNZr/zmW3dI+HVW670Sq10+g1NE60VReIkkOFfQTLe1ZHhcQ1VjBPMF511bEar/xnWIF/4nWqW1ycuXoReLDNtfWcu3bOxjUAr6UsQsFBG5c+4EFN7Vo5GEnwVeHSDFZIPRhl8WCvTZx6xOII61KuCbZVwuCHSXtGOKpW5+WlgJn/SEo9zPX7tCmbnJDNNK+g4+4P8QpSQ11e2fS7Mw3bXZX6uGE5QntNUwqn4VxA+Kl0B0jZuWM9TAcL6Kut8Z+ms2lBIrzjKMVcrWDBca+myZveYXyWPGkJKY77i0Jdr4116I/OSj8IHLLZhFsDIis9foeaObwGHuis23ddaTUXmCwtr9AOM6sa+LCJkqarFrLekuS8P2gsFW12lc9TDFNSaqJPXPUTovdM6HTzOaxIXwvhrkGlukbd2EcwrYP+njsmAvyiCBz/BuUzWFewcp3z4PsBZaxBd4g/lI/M+Nu+ie4Sk62MKC18HnsiexC6UD2ufdhqR4a0YzawSS3JqtnRjcuVTYEG/1VyWsA7XR+t6Se7EjK3bn7egzxJR0xMiYSGRZ0N2L4jeXY7ifNppbA0Mm0yAUp3Ty51om+hY1VfYdMLqiOjWE8hig5cWOq72IBdtGKvM0vWRbBtC+KAjIrRblyLeURvEbX3QIfijuX0Q8TARBt6138HQ12L7ZH+aPWqI9DMVo0rzFVusgJKzYkwQqNlPNSalw0lskj6Fhn7J9aI0ePx2F8zDRdexfIZWfGjHffYWpyVAARglS5K4stRnyOlKBWp3sO3Qbssw3IG5viuliiweN28En8MpMpfvndCzcrIpsrw8bL3HTTZIyHCRHds/8Uz5tzhm6aqQI6NvGHdKcnz/EKC5hUo2jUih63PRs8EpFyOzDkYJmu5C/b1yJZMvowbmc0ruWGzVAtIkDGsYtgYMnmlSBGO9VYAzt4IMDW+QVIh6PL96vTiToEzQcRyZIJHjd+44pMqw7+K0SE/ZB0rhhHEqI1SiveDX484Ph5TGLXVmKO8nAaj5UbL99QOqdNiYyUrLjcAJ0jh7EKWnCxUSxDR7YawdMBFnqNqKlRu1umUqvr9sFOUqkqZLZP8+SsjwNBnvcpOTVtRlGs2knmZCLF91ZJBzHDcyAevM6KJkorTpkpaqtyj6X9RGbYooRfoN9lQKQU4LYBfN1j0Buk5ew3ToklhF7OhEhXCDgpxPryAzp059TYZHx9xc9umWqULXJ/OW9ULQDiQA880CMRWm13nU6XOUNy5FWZbioISRRTKrw/dPdwjm9nDg7fCoWyK7FTJJaZ4MVP/ASbMrRRu4tj3dx3VT+oroBL7Md8vhryPIIkaO7ZyjStqSug/UtqwQdkqeT7vOjJN4AxMRRBtmH1dD9PJzJtW5RcytmD2apIadlw9A0rLLOIkg+5Po9Ho2Dy8aOy9PP1WyIqHn4YhZTzbt5g2aK8vB4N/lNpECWWnUj0nkAEJB8XKSPQr+8BYUF7YoRw9lupeHrUt3z/qaIWktSoAzm+oAG+ffrfLzE+lVi3oj0yRMCYSN6TuG1L9zl+q5iU3KgLPX7X95xM8I3g81Rw37M2j3RxEHv7S5TtVd99li/9p0Iqj1/teHoTAiMAxy8fso3N+6T7MgHs7W0W9pfAPlXeUzK50FNszbXDIBgwzJlP5f1y5Ln0PVUlbdfTLRmlQ1F8T3X/LGHg3zyA//ezCK6/TwX4d0/H/ytyBv70dBz7kwwT/CchBP5rwtD/N3NB/izbw/59kH+SS/j/cMf+SHBA/kj7+Js9w8H/hVke0P/7WR4o9C+yPP4sUQr5MznG/rvk+D+wKv/bZnk4QPPXLI8MOyDL6jkGrA7Kc9igpc/PEU5UsUNzzdrbxUGL6srmazWO6pzwcNiqULMGW78+JCbTe6hVtDn6LicsL//rVOXdkz3Df4JSUQtH8Pfx408Ix0HnfvzEe4z6ezuK7mQPcl3ZkMzq8LDVQwktleWIzKooxSIPMzhRnmSdU8tJNi2Zg9FEoUO29SEljkRzujYzN2uQlNozd+z6z/SlpaSEHC1RWiqKPKlQkBVNlWV9pCsM9SAo9jINDc1imhS7ixVT3Bc60adpVBc6t1ipg7SiSlY/N3M8fZAEzJ2TaFahSK7nKuZRiZBSM+SJfQEsaWmNGOKQaqhPH8KVCvpY2lRRVDcLWGgnFOJDvdBNmV3z7bh06vggTuYgHekgoDcuRdKJaFrwFuZvH+/kMotmGYriNmlgbtUgLbVh7jzwi4J+JkcLOliiFVcUm1OiraiY6WMnw6o20j8md0EeNPZ2vI7t/fJ08Q1JEz+coQTmj/KedG+NimdnYKTw9w0ZSp99hox3886BlpoiDmoBfoP+zspmkgeidw86EwFyHSVL1OMjgCHwBlJ5DecXvrnM+Qt9NsxMbHBoj8jt8rFL4Wesn8vN3oBGi9jpGa+1K3Y001O6GzfPVDEnLM2IRiGcYNwEaTB7s/cqGSlY/WbaT6QwAgoNlYEISV37otge2pgI7WuybYqb7GxnA52UR9G2CU1aoGA7WBWo2e02/3YAO9dhlKAhnWfu1GXoNGZkw0E0ZpO87NxvJDPn4iAYHIQdhGMWDOD6CYt3n95eKaW8xVTJjp0rYuVZLhYRHK+LfciBlxsBijRKilzpcqePIbWoCUli2iCSddkzXndBCdTSJt+IP2cjhEp+jGneDo+34YqXEMxascJGZ8xkJA3cgBYLk3c8kZ0hCxaDjpBLLh1Iiv3Lk3oXcSTf0R3f+SMAxdJ+A3BCUCQ2baTE/I4SOIPJZ//XaTaqACgasPylLOIoIUBGaTqAEodAqJLIDg3Ojmxul02BPc7Id+MGiDyiz89WtSL81USKLMz7py0q1sVCycjakTLSkyJWfKGgyRW0DJ8HsIfjgoptRm/lbWr4EjdvLpQJqT5nhmrnKpFYSEBqSRVPkVWbY/ooGkcfzPwemFmaRAoGdsI03dCnt0hYPqkPNwvGzMklrR0b0jRLRKQ+HZB+OUFdnLq+k6xy5zWIQeYRhNhWrFG/L+Kbm18HNXy94RHn83EFnBixWLeNUhaJ79IZXry78Pnsy9Nd3mKfaMAsAiYIvIMlWtY6XNOC4EDJ653hiCXnTZKR8Uike7Hqzke4i20J+/ppiY2Ptcjea3RO1aS0SayOsfQASFrS7+4PHEmz5fkYijxW0nsW5lQ7aV4W3dnTh+mINe22zZXdTLjpwxUnmbwznrXHbcDHvrSrz1VTPpJg83bSTgixfuRtnhr49DcN3zCwqC+p6YyLwrXNXOzUHEa4hQ6nzUCtUHAqFk2Om+VOF/bXR+2+oz2kbvNRKKHbRlbnGTlyPhVk1yMDQK4CbtG0sj7JSbXxhjYHn8xbDmG8a9j2c/IrVlw8k2CPAzQaMZO3xjGv9Xox4mDxkq4EoUIESGZvS9M1YxZOLhSPCTYDMy2uRYVPnWaGDiQoCvmag8w/YOxoL8kml/Brkw0ftnPTXnMQUL1yhOkzBp8pJCKn7aLl6znQVgEos4tG0wE8JMoo7/zH3Kgl2Ne803CBH9W0ciKmwIzyZX5yX/0EmWFCpFO2Nr9/elntcoPsRXFbYJYlKFeBWlnzXzM128ho3VPf/pwCfLuLNOg3fp+4xffKmm4RZ0ujDo44x23zeEN7dWN1aDSQjTui0in6Dl21++ZAgrh6Ukrtu4LRmBAtp+auzc+ctfp5rkbUvbYJ0Wo4lUkxmuSID+qw/E/iEkXUrLr4Vw1A5gdoqyDo5MD92hmoyjpP3LRO48n1hco3M+KzAsDiXjf+zA91NIbEna1wU2GCgL6HTpH6CvVMiSf/+fYuTcpbwmzkqnzerA/T7D9VOGdawzpkpWXYtxOjCCIYMjiFm4PkzibHWPRwiIXWrNmXbtb2wqRg+XUg7VPQxGpsCtmvuF20jwGWqu5A3mMA8QQlue2KyXxvfaWtOzvfyxJFFffHMwxvOdFY9ipiI7SP5D39NM8BbFyH1clagN6D3s2PaZQWg6sUqrrUiTdWtpIiuQTK07GNZmpDyrqY2RmUOrNpTqQfk3LRFFL2ZiRdQmVBx2GOiESFlL1IYjgGHBWyWsxPbrXIGwDFItnomLR78UfBxdbt3lOkBsTsSDRpEgRpx+u9ELRdd1ECQvMiwxP6gre/muRt2FARflxyj+s+dpzTDqXEjhEIcgz3LJYDXKZmEOq1QInShZ7JZhfIOyN15Y0pyq5/NcDCDsTXyGboFb33EKvYMV598V+gmBYAeL1VXWKdVSvkhNh4j+ActPqi4nkzhsjL1R5bOi3SNLW84VMZATZHFuEJ39M3n3SdtQEwraG8+AHemY/II8hpZvNhYp88F/MxqEnv9m1aUknJ59XPAl37K+w7JIt3ssAujCE3zkkYuJvjewowow4ka0cWGgaYABLyJuSCPwFbETdeFF/ewIYuHzNuol9MsF9//htM1cjucIIlUi9XwfhO9spRpLM+b0Kh+/JDu6TI9KU0lw8asCCKR/ESFOz4cnv4hRP1G51NUCSRlCtDu+Lz0RkpG2ymLTkJbZyczrB9SS8EhommrTeh494gn30eTkIZtMBWJlS6Yl3lfaLVCI0bIBKx1bw7HMXup1NV9GlbeCGCbfx1S63gM9sPWumIIw7/3PrZuJ0tSol9qo22vIFMhKK52rshZ6uMBQtrQvVfAbUe4Bs/H5SFzEcHHPorfwYjzgD1zS7wHLOwm7Mu3etB4L7d1cPFdYerOzLdUSP0PfOc0edl/VDsQlYyuN5CtIZS9565J4/y+jhmaWULtJ++lYbBQtle9SuHU24Nz8xVMpSq7x4+VIxx4wF9pQOFVFwWOwUy4YeNHD2Eoj3U0ZcASXfnUL7cj5iw1UMYrUXT6JJvRzJfFWpWjlcXntVMBOo+ZfWbNlZrh6cOf1K2rgKNR8EtDnIl4ey3tqpINwzvbzw4rogUeOArFS3pNNqt1/geXIa0ScLhMAixYpG+ldE3hYaB+uHuLXxsi87EIlBt/Cz9VKRmhfPI6+x3Ggu3Zsf++FpiwizBDTVW+FLCsEQfdkwV4dcslUZ5o1r50bojFlx2NnIAEDBLv3y/bOCI3W3Zhk7kvDlRNX0Pfg3zMM7axG6b4AjdN/zwmsU4loj6UL2hqUCxpRObcsckIzaR+K/pVFrAJ1mZ6rmkyDSXfWlO7tfNiNwI5R2Djyx7OeYHoKv6mdFHYY7Ugx8pv1OJJGMUEFBKdWHyUJ8J2/dKWNG0Jz4UqfDCLBDxSNNn73WYpvtICncFI5EKy5aJHYmxKyGZivOyZInhvQKhLooBF5uSFEej4orH3Y5oqt7Dy4N/Q6gd0pwz/UbGRhcyv3Pp0UcgELFI3QNWcgwxtLVGYJeYMx6dBjUi7QKVSVpXdIeNO94q/OQRNTzYcavytTbcgFToG5zyTemt/3D2Kx0e/JXYbNEGgqk48400mp4dXF4/G+fnRQuDlW9pcQKPp/SGiDcD4DGRLXomjad472+tPKzMnO2N6XRaYzEzy2A8NCs3EmIJavO0QWmYz3QEkRrP5h6pgw3aiN/4brSkF/TYW3agZt8pNmYwkAfUfVum3qzieFu/U5y/q5mplVpyamPRBHlbS9sgysLik7tuolkmMwOMBmt2mu4v4mWQfKn6jsLBQxjUeT3U5UWK5zMTprFGKbUJFCWDFgEjjvW4UleP6g6bgJQYmhUfR/ZbbmzOAgbPjiMEqoWSxvNDJ7juC/O9QrEN+a1KKmwf2y6OmM9lUqx9ouvSDrdJgXpMowmKaYmn8l94hMZiOjBSDjkA+emFECfRe2cROmDX5WDtlMY0lsecRM1Ffyxhmy4dAo+Fg4OQRkwqwsJ6Bu2K3aLkx7mzI2p7NSeZGtkHFcKVUsa3WnMhmk1GagqLRLIrRktmpz03TwHc5p0/E40wCzVNFg+8ZXAUt+z19wYWJcqASbctl/eWSr1Mlr6OLnwN1OzIOhQjOe/BsvM/fdSSSalTCvW4GQdkIP0EOIXUru3risJVgHjkEeTjdIMvCzlo741nPIQn2tdGwnNEPk8hrq0HKUiYwmKU5xbptEXIX0ug+dp73aOPJ76xElcTH03WUqdkmzyWkIf+hV9hk6avR+53mSOLgXAl64gbZRk0Cs6EmTJ0x9woNdi160iUfzYGcby525ymcNvEa6MfpOJBAmzcThTkYjAia/G2yAciDTWpOxrZnswQh+A4o1+gUw+9o+no4Hh1o88qBye4gn1xAZBlrpbqBGu/SiPQepx8NsBf52IhW8Gex9g0sDgUVfJFmmo+Wn0SnsV8cLi6UL2mXpa5k0hYiaKkPqayKlXzhA7a9+9ahKlCZPOXMnmPTr5ZKxSquY2lcJftciaLzZXndDdVsuqYHqwces2IYnBJAi2ZZb5w8BWLkjQ0f2j3elDHo+rWIuT5/H6DhH+oTv4JLoaH7YkO34MBJnudy8zXj0104f1cSElZpLUEq5e6RjdVwHeMtV+AdUbm4xewcY3DGlEZKQ0O9X6pp2Fl2awFxEumudzfDdeeYeZ5jcw9AhYMknAMWiSk8kbiOV5qj9K/g5/UpEOgHYGHajyh+L4RK4VAlsezqyopM1GlA2GkUzuMd2tKYbnQMdeumJ2idLyPqRPyMJHyjXJsqBFpTVLqRZGOvYFDrHiD1FRKsLZ8T+BLIwaamux0mny2hDqX9XN4dWdk38phS2ueMTDJVJe1e+0xc9r59VrT35BJce16c1Clyv2BFFOCdD1aX7/f88t5nBopVVF0SFLLc5mrNsCimWuWlK8690kxRPuh3BR8E9Ygm1M8qLPqCXW8zjpB1NZIdgeWHK2e6q87shwlra7N5me8ruMP++Oi9bpL1sq5xaw3Db273WYfi2GjTHgKEJ1SR7J96thEaK1qkQmLSx18OOrTsSa55SIPM68GcHI23+KBPG3WgryjyVeqqpZrtKIRcLPyvfFjsxAZgVKUu+1p0ST/JnooiVo+Hn0MtbQlJ2j9hposVshLCGYTwzXDhyNliqzjdD+GiPiemsiibyZjZqrDQwofl1glFtpE4wZ9c5BnIf2eW9g/rIuUChzVABhxiIgCHv/yG5lUBCW27/kG70PGM5TqKzZoAT6IXFDZbqNepafUHVwGePHValETVKkmiH6VcLMV3j563izp0qvrTMFSkyZmMRAxq8jsRGDHsBbUFCSmwq7zr6s6ERWMV2m3kqLrmF3YZ4Y4Nb1LWfG6rZt4Xmx6gjIJHINhcClSd3vThQEOzBu2mC0N0vWsgtLqEtIJSxIHOJVuqISJJuMdD2lyBR+e1jdj6DnL/fIu8zV37650MBxZP3z8s1Nnze9j33+iMmRNd8/c2MJ+PJ2CqXN7Tw6Lez2oL6iLM233d0aVgvfm51G+bv4ks1xTE1hLTygWyaq+sTmBvmg5jxDAHFuWgjevRs+VQKXcD9cp+sdwOu2BiTM7W7ql3/ACptiZEy9Zx783UZ/HIaNuJJY3bLC9Ma32Hqw+ZEp0YvOKlstopNNIsCVzaxe1sOTJ6zMqcwYr8+PplDTzIQ6ChbgyN/hdnHU4CCUkKWC7nwFI1abSppgI5cUBCepzhiq76N8vZTjLMI7Hgfd04xUFzdSnYSiuKVLx43dYzQ2NMk08+/fQA7YRDircyh+HKriqI/WOWfp8A5cV8Zonrgzr4x8YhlY2tN84Aieru+PJ3RDU18RF7l3o8Jup0AVcLoAfszKtwvtgJHir0pnH5WbWhd7/nrsC4iA2ekP7aIhtMXb96Jx1vsewcKpdqDKLg8DmKTQB8ztC20TMOGqK7qKkDzYX9q2WTFwsfl1u6SMrdyTVdGGXNdbOVjNrK3wmVSid6Znr5vWZa4aMvuqigvEFGoPGIiRmf0SRdxXrCJimF+h7LHN/mkDD8R6xwSQBEb92tBimf6fS628mj94xEO5ScP4S6A3Z4ohlJRqrJrO3g5nYFNKLA3B8NIb8bEMh7N9aLMptkOSRtS166dPi6kpFdb5FdzcgkaFkLeu99rp8lVN9jdRExbLZMeBDCUX94FjpA6MKTJHOPlTyTteNWGxxUTFOFFhCprerlrK2m/TN4vd7m+BYBmOe3Xd+fa2Zn5XppYkZObwx0EuydA59LrgVnZ7JvGFIiaTD2QaamRX9Xm1tKk1LXQ5dm5SnwCwiihMcubJdQl1YP1WCN8PIAMeIbGT89uk0r1yJaB7+92obHFNCV63EspAOZ1pgxyohUEwAnrkfRZNywKv7s1/clnhPqyt71A2atXjUymabTpQpoy2CVZZOtBnhBpYjEoXwQoydE0uLwLWVXHkivDcJPQOxqI5xOfZ4KS/rE3WVaO4sLlC2zoi3SU65DJ0za5Dv14winJpEsu2wU+cIXIdcyDlctrcl9s2usnjFbUWepiWR8dRr2zualWc0Qgsi9q/zrKFt7jcGuN1UJwRbAm/8i3VevrE8B83giCMt0nbHs3ReFOhl+p6xoLmm1JMok4/PwnltinGHpTZKiwCbPrznLW7h+d49BO/ZwxbUNoJVdEH+nzb+tTbeaI8qESfJZcw0/qQPkJRkuSg7N1JRFD8JBP+JHALoXzmk/U/lEPzp2et/2zfskT/JIcB++6C/UcDPL4swv5Hsm0xAkW9Wwf++yQT/8a37I5ng8w9b92c/L/LflkrwJxv3vzqV4J/Q/0AqAfin4oz+N4kz/P/jVAKL/psfjMiR4+tZgXCj/ZpUVfcFSNcNjkKaxMGHcfguPin/YUXXsaavzFyPc0FXeyHGlK0NFRUXq0B7BRBa9uxTF2lVqgAPQPBQEuImroX1GmMmAQAwOo20ca19zDb82FAIyuE8z04UNl5C1uzQjKInfu/f1IG+XQYj94GYBieStH09DZChbIp8y5lkAVGgiZCkTFLUwlwFaSqkMLBvFisVkOwVp8nOTNUz79GWNSuqEY5k3x8igHPGY02XtNk0rh3llk2KJLaGnxFkIFkSA7rK7VyCIiXJ0OASfJMogZni35D5/hmQepi0PoL89CQ+HPthjteDrhYLdj/shpbvr4hR9YC9X5joxinMY6+egilkTGo2wU033hNINKpvHMP0Xv0yg7WnZDU67zrFLSiHjR1EEaSqzXiIpCRnR5TUYD5DTlGRSB0W6vvFM05kv1oproNLqXx3+PQhvt9v5AIpskiRcRc2oFXuqtcEMysWWWO47frxyvoISJkhNdrSddKwIG3Rx012RhNS5dX3NEAAkscjf4jby/zxrPkYDnDrOriVrk9StplsbUvmfShV9Tmqk8+I58Ba1qp09JqcOTmQSDIRZlgCN38z/E9QEvSNOikuOhTIgzewtkzeUp+iaR2qKlanXQ45fb1dCvvzzIgzNE91kIgjyYJP7UvNYTCfNkZkKKFWXOhTBnH3ri8hLV/+rOJ+nN4DGD/nsdlD5EJy3H0XTiLVeAt4XvRoj9y2DEILfZbUflk0CyqDgnOlTrYaZcm5h7s3o3LK4QkYDHq9WgrE95xjUNyeHSHdgkJS9TAYP4uwY2TlyPee5+o8FpvKkYLE7YCV4Ui30s+5CD+6Jw6gGTDUELSnTkZa2aFDztpVe9c+p0/BTYQajQzyQp68nNznDgQuxZZgh6wawD6kDygOquliMCUwek9WEjOgghXfIGL4xtKpbeDHRH+Taa9QX8BcowLtsjOBMelGcJLVr03vfgDaGgCyJKt404sZQuVO6Ga3G+umsmFQgpTr5zCHCQujuLGgI9ROq43vJDlXtjKh7VKEYDhRwseBNiM6Xy+cTab810aiRexXOKZPFqFUh72WXuqi7ru1ifXcd+IEin1NQzQePziJgsGOnPEYDVESZ10vfiYDeCup6uXMKfIqOBZGHQX/DQE6hJH3OPWINfFSax7P9vd8CjPOLhkxhPDUvJxPNHH87aMmHxvbCiDKYZY9YnpnvPX9gu95vQGrEAW+qzKYvj4/Qy5mGCwU9UKw0OC9QqbNN+iMH17Btuz7yw/67HkFz5joSYT0NU6wTJ9cSBWAnn54clES9SoecSNpWvDHhhhOmd5T9DTxp72zkCqqBymWu4rVwdoXkxeasz/moETU27pKHjFppPRVmjTEnEtIAu9XBeAew1x9JrjXc8FZZkKDIoLHAVRn3nF8ZijMcLyi++Kr5UGeRpjA881QWN2N7rx49fukbS80EoI8SuWLKnkJa9cvorIOHEURL+IxQDNHRBFyQoUMdXg+txZkUSpd0Nng4ZVznbkuNX89zJa4z+UG7O/3hec+4JZSnXkiHQVnxgE+2HoggYqsLKpoj2KQGxR9aRZilfPp9xSI0R1aiZSqsGNGKOqSjqkk9BuVvEiZvkpucSYBnb0rlqrZA2c9uCPaMjYsB82Si6xwVBGet4DuDTMG10R1poAXwD76hJgWJLdq8e5ISkNBvuhRTWEOBdx9fuW5tCgLhA1NRZaNyCFer6hdup1P2m8mAGcCT6eXNp6PHeGKidBFvNYveGG60qZt5vN9HdO91cZc43rEPLiEegQMvDwp7LHSzUuHtqnHAKUW4KVKZI69LFEa6QCQtifs8KYos/MxmdezR+Gnn4rbdWU5JsF+qjBtxadDaTrAAvKZuxAT4NRqO7QBr7Fbw+9AHyiKLE8h6vAykzgFNUV5oW/hRDnW/d75AMM4Ypuy7aJNi5Vn9OsZMaU1InvBTA7T75tWgHqkLyqj2HxljnSKN5wkLN/zghUM71VGZAO3eAmT89pPJydMYlo90qTs6VWacNcbmZToLjtqlPN0snMyzg1sveWUtiItMh0KvoXDIZW+7+H3djyWCm3n0aVsZovL6s5+vpNugv2YPajYnRh4CwdTBX2+AILJdUZfyeLsK6jYk3yLESj9dY+3qTSjKAp9h5ZkC/QeMjjs6SDkKfcEraHug9AtqPUM8qXzyBIfHIRX0ZCuYSHzqEUCK2O1dmWpSvZMlX8Vixy/XBrdYBGy5GiAH+sIFNmg1jGzuffMVzicu3PJikQtUVP000aUo6KJI2YOm1BGciXpoRBAKJwGTZnrN4znNRRCyi7Hlnz1mI188edgYsENSrTWcZuBHGmzZOMop9KbGW4ifbeG320AYQrJXGRV8iaCZPxtUa5+ihFbHkmUer+2gPSe3TrvVwOYSt/BstpVjyYtRiAr7T2uN8d0imwsrIvXxE8wAfwE/B6lmViqVVqZJsF9xl+8bPGSwK1WX9xx4FjJnRdmr/Kq0sX3N2WCby9vb9iroZbuHBWX9rdNefYqMlkLxbfpDraULOuakxuNO+kyK+LH7mrFwZMv7vjw3CQk++x3/Al10Cb91+5OnjIRlSV9t+jqzet8rCW/+MzkDC9RUb+GMFQVdq+Avdki03DXdcStSjkIqt8rjoZI9p5/ol600nZY8GYzWGwnHnIsA3CNXGrANCGj3riI7hhpUxoe3kL+ffiujKnvz049FnU1RZObzQfB3u8mKLuf95AtSeoqP6RplcsocVHwPSOaQNz6JF5hkrHXM9CYbIk3z4zb2Z2mP8QOeTrYcHCQUxwSuocpuomPUnORyWxIA7vIaW8HRCnuw8L6kIjAJQygitKYBHnZbBw8CHQoxxeWTp0Jv0wcEuwjZbmW6JvbY37foJ8ZQ1hBRhSTumQM3ofAfWDFugUPXlOZZM5NaXX7Bbv31FQUViuGwd4KAlDHZlKlG3IpQymaGjI9UZ8oFLcsCt0sa7vS/IZk5dVHLG/xagmNH62dpUE25bMhVlIsuAJ8bFp45XbJmvQZVwO5RIpkXioZrp5L8mLbIBlPqvY0mczDV0KjNmnR81SqkjxVKAeKlbfuYRRz5xwAWVG+Y7rF/+nrX+krBihUyNhMtjzboS93opSCLcYeEvLSF9vbQPn/2d6VNTlqJOFf41cHiPuR+xIgQJxv3Ie4BRLw65dS93g8M23vRHi8a+86ol9oJSBlVX2ZWZmVn48+XuW40BHjCgy2j5mZHt6pekK73nUcu3xrssewnanwrMSPh+Vd4A6hOT2XeB+UTY1gbQKgOE30Yu7WxWbkvmNnYnm3f7ZjdyEFcYdNEQXez7dl8JmNeyiqMlWVqSInlL098j5Ir7Z3Iw9cV/xbDF83S7whbxvl+aRc8SQUeDSd9ZctmifOl3VQIzuuwT07P5c3ybc/4MOFUpYcNkmVPedVnupoVda1VmhIRP50ycczHii/v5oWc5dHtQa4b6etT0ZWKimZ/5wupLOxaFhmyuQtM4cFulDl+RkRQvp6resy8h8I0YHElYYt4IsaAI+0i4E5lkUpfkbDZ3GT0TK8Pqu1Dpvc5SxQy8RcMFYuTPSmtHlNWpcYLmqEOvySXEzijQiYbRQYesDihqcMr7KTS36GWJ4XKfnwma7giCsDw8tyuCMtWguVSw9yZnlYi9WZd/M3H2BN+WSM7k19AhKe3GY3OjeqYuQINZ6ZlQpUmNh3SWGBw+Rqu7ZjJYNmzE1IOfcI6niMmsuaW2+plMPPbLYCxwsubd5tqgzMvdcAn5RfqzzFH5Zx4HQZuaWQ1rrumZr8BLlXwTs1Gw2awHhFTOqS1HW31egGHFQK+UJ890x+35zbsGtxVE68igtjOoNOW2CHfmwark2zvq39+fRopGlPuCo51yAAiQOusAX1XnsQo9A7J2xVc27P7R0d3JznHrEzDilm6kdMsx6mU6PH2Z92rFqD3oVPotyKCDHToqnRux/hiN4mCnOKpnMoIToywcQFqR+PHCR6FMzwB1+aC21vxCAu3QOx2Q3ZiWkNb09eAa2HWFKQ924RR+fwPnaetuN+K8EcLI12LZiqPL4hqZvOrQETkUNyt2NjPrblwrmPr/fjqaVMtVVh5eI6gy7kqNW3r2CeVpqzd5swv5I3a9V8BLkG0az3yxYw8uiSbG3EEN7A082qsXq2NRFb5ySsEuuuVHwD5dJO3nXJckwDnOh353Cwy9lT7wPQc3Z4QsbkqzcPJSqv2OrFmKQEJNEDvRbpWvVTUEnme+sRFwbCLbYgVvd9fSl4yxzXBitIG7qKhi5NQcHxmzaBNNGrYTOIhRAWWielFIGSZJ922UowglPAbVXrTfjhefoBLcueab4a9djeKyfiGOH0KV6n9jl5bgMUPdmQQSesIxf6Ph8wChLC+ljEt1Y0DNFdsGRx/MqoZ67yqIvp18qT8DfGxtOADfD5nCcknHbr5o2ecqnVO2/R9cp7wWlfTXRVBJK96herEaGTK5GIKMRsUiZzDr/9mGN2NbQk5MbDHR3SBTGKf79oHWKh8wXfae9yTKfTFaIuVw2C74F6Z1pLgzhNg/F8v8FspBKs3DUonaTUuloortXSllUCMctdcoUOZ9PY74RhPQ1y3x9b40Y1+pgOV2c3jU7rdd6VRT7Ib8IEVhXmGwQ3vmJIy5gO1fC4di6e0fYMACL6nRw61xumjMt043NaaFg6JaXac5i3uM/HX4cDhg2jcakPm0nzTwsFYasBX/1ehcdrA2XmIRGdUaMt7uy9inRv9oi03TGkP3AUsa6xDRwsAmMQqg5OxtWBdZA6liKkvKg7UmjPAT/myd0sjlk+XPhj+UsZvqxHqF/NcSA6XFvEqtHaFHCJdbeBQgwEq1nCKJcTTPFBlY2TK8+tLtZ5v8EE2GUt8ZQmbeeMO2QrF5oiRiK62NUslnXzuFzovnLIqeFD5XUCVTs36BKTFBmAVl3d2SOxMlaeYjgShH6E7jGwJfAKWq46yFaCQpga1F1CQnQiDtdZq9JcNDN9A3Zzt6RNbTLEjdMGolO6qvrnTlB6upsLExx43vpazONdUkNWfqj/tMe9h+MZlqOphTGCIE5cL/GlfIYzAgK7b9D+QFRsWHIsPcXZOFyjlrWUwc8hLGnhK0PS996OrhYJ7UXKsxdhCI9Vs8vQeqYCDrdgqvOfDF8wYdgkcJoyPc0I7EPxwt02rlaJ0GjiFRNeLLRm2U8zMMSFWg3tsYYz051StNlNRrYKT+DF2IyMoEPXJj2duAWJ2MdoFLQiZ+whe0SLlAKWqDpLnLmoR+AJZh9jUAvR0TdaVdmqyaUAfysLkAIk48BZgEM8y9UnPYwLuO6KOlzqe7Ts516lhowWFOfpg73X2CqgaIQfMivv+/aqBnnQdujN0OGTVj0H6xJnjVOctfpGpPjI3GJIO0xiNscpW9xTg3uM55mxDy17+9IzIvcoFdAdQ+V1/liKHmcd8y5WhiowdfrMmyNEXteXXK3GZURhNhxftXkjzcwgKqOQbSJp9iMOLzZavgAs4y0k8aYIXvJ1ZaJlpY/l+/DrAdQx9oRxSwb98H3mI7pfd9c0SG9NaLnS7R6boT5dRag2bF7A0PKw2sX8ICE1lLa2icvCAOYukECXkAJ1aZY2GBMBvkQNneK6ZcKaqKtJe/D3Yb7qyq2BsYCUHx3YoVWohTRGmS7Ym4zCYpvfHJrlsFTWfWs1aZmBB12btOFJ0z94V3oQxJ5cSbZgzfw8MeOmgQCcSYunlWwW6IKSx88/mqREfyP985tJSuTbQ7MfZ3XgPytJSXyQpHxLSaIvHgQUECL87+Ymv3/EPuUm4Q8OOuPEfzA7SXwzHFlaZJ9+eD/NZV/0XdTwn//7leI+y5x7kE17jWCdzfP2rs5omfsvx/c3U533fpmS7N+nDedoKrL5d+Tenwd+y++Ow5Q10Vw9vmTt+eFK/nbO/6WVDH+nkk9/KSVT/w0lH7qdNh/cfyzk98vg159x6/vD366296s/fwX88MF5v/XSV938qy4FXxQWEF/j1NvXfL/n8wDT0xRtvxIbgMD9e9+Cf01Z9bX01xQzX8qDTerX+z/PtV/08Qd4QT5qjvAPJdY/lFh/e0qs088/fSLA+oLy6kOmK/onEgW0R7TwE8X9Qpj1JafWF9xX7w/+f6G/wr+jEgv/wGf/EexXH+PWR5VY/+DWP7j1t8ct5OcXXh2w8yqP/QZ5jk//n4j3kK+h5yPWsB8EPWAj7BeG0jcP6zPRK8L/Cw== \ No newline at end of file diff --git "a/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/write-through.png" "b/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/write-through.png" new file mode 100644 index 00000000000..ecdbd6d2c2e Binary files /dev/null and "b/docs/database/redis/images/\347\274\223\345\255\230\350\257\273\345\206\231\347\255\226\347\225\245/write-through.png" differ diff --git a/docs/database/Redis/redis-all.md "b/docs/database/redis/redis\347\237\245\350\257\206\347\202\271&\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" similarity index 87% rename from docs/database/Redis/redis-all.md rename to "docs/database/redis/redis\347\237\245\350\257\206\347\202\271&\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" index 3cd8ff627dc..f2ef0eb8756 100644 --- a/docs/database/Redis/redis-all.md +++ "b/docs/database/redis/redis\347\237\245\350\257\206\347\202\271&\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" @@ -1,45 +1,11 @@ -点击关注[公众号](#公众号)及时获取笔主最新更新文章,并可免费领取本文档配套的《Java 面试突击》以及 Java 工程师必备学习资源。 - - - - - -- [1. 简单介绍一下 Redis 呗!](#1-简单介绍一下-redis-呗) -- [2. 分布式缓存常见的技术选型方案有哪些?](#2-分布式缓存常见的技术选型方案有哪些) -- [3. 说一下 Redis 和 Memcached 的区别和共同点](#3-说一下-redis-和-memcached-的区别和共同点) -- [4. 缓存数据的处理流程是怎样的?](#4-缓存数据的处理流程是怎样的) -- [5. 为什么要用 Redis/为什么要用缓存?](#5-为什么要用-redis为什么要用缓存) -- [6. Redis 常见数据结构以及使用场景分析](#6-redis-常见数据结构以及使用场景分析) - - [6.1. string](#61-string) - - [6.2. list](#62-list) - - [6.3. hash](#63-hash) - - [6.4. set](#64-set) - - [6.5. sorted set](#65-sorted-set) - - [6.6 bitmap](#66-bitmap) -- [7. Redis 单线程模型详解](#7-redis-单线程模型详解) -- [8. Redis 没有使用多线程?为什么不使用多线程?](#8-redis-没有使用多线程为什么不使用多线程) -- [9. Redis6.0 之后为何引入了多线程?](#9-redis60-之后为何引入了多线程) -- [10. Redis 给缓存数据设置过期时间有啥用?](#10-redis-给缓存数据设置过期时间有啥用) -- [11. Redis 是如何判断数据是否过期的呢?](#11-redis-是如何判断数据是否过期的呢) -- [12. 过期的数据的删除策略了解么?](#12-过期的数据的删除策略了解么) -- [13. Redis 内存淘汰机制了解么?](#13-redis-内存淘汰机制了解么) -- [14. Redis 持久化机制(怎么保证 Redis 挂掉之后再重启数据可以进行恢复)](#14-redis-持久化机制怎么保证-redis-挂掉之后再重启数据可以进行恢复) -- [15. Redis 事务](#15-redis-事务) -- [16. 缓存穿透](#16-缓存穿透) - - [16.1. 什么是缓存穿透?](#161-什么是缓存穿透) - - [16.2. 缓存穿透情况的处理流程是怎样的?](#162-缓存穿透情况的处理流程是怎样的) - - [16.3. 有哪些解决办法?](#163-有哪些解决办法) -- [17. 缓存雪崩](#17-缓存雪崩) - - [17.1. 什么是缓存雪崩?](#171-什么是缓存雪崩) - - [17.2. 有哪些解决办法?](#172-有哪些解决办法) -- [18. 如何保证缓存和数据库数据的一致性?](#18-如何保证缓存和数据库数据的一致性) -- [19. 参考](#19-参考) -- [20. 公众号](#20-公众号) - - - - -### 1. 简单介绍一下 Redis 呗! +--- +title: Redis知识点&面试题总结 +category: 数据库 +tag: + - Redis +--- + +### 简单介绍一下 Redis 呗! 简单来说 **Redis 就是一个使用 C 语言开发的数据库**,不过与传统数据库不同的是 **Redis 的数据是存在内存中的** ,也就是它是内存数据库,所以读写速度非常快,因此 Redis 被广泛应用于缓存方向。 @@ -47,7 +13,7 @@ **Redis 提供了多种数据类型来支持不同的业务场景。Redis 还支持事务 、持久化、Lua 脚本、多种集群方案。** -### 2. 分布式缓存常见的技术选型方案有哪些? +### 分布式缓存常见的技术选型方案有哪些? 分布式缓存的话,使用的比较多的主要是 **Memcached** 和 **Redis**。不过,现在基本没有看过还有项目使用 **Memcached** 来做缓存,都是直接用 **Redis**。 @@ -55,7 +21,7 @@ Memcached 是分布式缓存最开始兴起的那会,比较常用的。后来 分布式缓存主要解决的是单机缓存的容量受服务器限制并且无法保存通用信息的问题。因为,本地缓存只在当前服务里有效,比如如果你部署了两个相同的服务,他们两者之间的缓存数据是无法共同的。 -### 3. 说一下 Redis 和 Memcached 的区别和共同点 +### 说一下 Redis 和 Memcached 的区别和共同点 现在公司一般都是用 Redis 来实现缓存,而且 Redis 自身也越来越强大了!不过,了解 Redis 和 Memcached 的区别和共同点,有助于我们在做相应的技术选型的时候,能够做到有理有据! @@ -78,7 +44,7 @@ Memcached 是分布式缓存最开始兴起的那会,比较常用的。后来 相信看了上面的对比之后,我们已经没有什么理由可以选择使用 Memcached 来作为自己项目的分布式缓存了。 -### 4. 缓存数据的处理流程是怎样的? +### 缓存数据的处理流程是怎样的? 作为暖男一号,我给大家画了一个草图。 @@ -91,7 +57,7 @@ Memcached 是分布式缓存最开始兴起的那会,比较常用的。后来 3. 数据库中存在的话就更新缓存中的数据。 4. 数据库中不存在的话就返回空数据。 -### 5. 为什么要用 Redis/为什么要用缓存? +### 为什么要用 Redis/为什么要用缓存? _简单,来说使用缓存主要是为了提升用户体验以及应对更多的用户。_ @@ -117,13 +83,21 @@ _简单,来说使用缓存主要是为了提升用户体验以及应对更多 由此可见,直接操作缓存能够承受的数据库请求数量是远远大于直接访问数据库的,所以我们可以考虑把数据库中的部分数据转移到缓存中去,这样用户的一部分请求会直接到缓存这里而不用经过数据库。进而,我们也就提高了系统整体的并发。 -### 6. Redis 常见数据结构以及使用场景分析 +### Redis 除了做缓存,还能做什么? + +- **分布式锁** : 通过 Redis 来做分布式锁是一种比较常见的方式。通常情况下,我们都是基于 Redisson 来实现分布式锁。相关阅读:[《分布式锁中的王者方案 - Redisson》](https://mp.weixin.qq.com/s/CbnPRfvq4m1sqo2uKI6qQw)。 +- **限流** :一般是通过 Redis + Lua 脚本的方式来实现限流。相关阅读:[《我司用了 6 年的 Redis 分布式限流器,可以说是非常厉害了!》](https://mp.weixin.qq.com/s/kyFAWH3mVNJvurQDt4vchA)。 +- **消息队列** :Redis 自带的 list 数据结构可以作为一个简单的队列使用。Redis5.0 中增加的 Stream 类型的数据结构更加适合用来做消息队列。它比较类似于 Kafka,有主题和消费组的概念,支持消息持久化以及 ACK 机制。 +- **复杂业务场景** :通过 Redis 以及 Redis 扩展(比如 Redisson)提供的数据结构,我们可以很方便地完成很多复杂的业务场景比如通过 bitmap 统计活跃用户、通过 sorted set 维护排行榜。 +- ...... + +### Redis 常见数据结构以及使用场景分析 你可以自己本机安装 redis 或者通过 redis 官网提供的[在线 redis 环境](https://try.redis.io/)。 ![try-redis](./images/redis-all/try-redis.png) -#### 6.1. string +#### string 1. **介绍** :string 数据结构是简单的 key-value 类型。虽然 Redis 是用 C 语言写的,但是 Redis 并没有使用 C 的字符串表示,而是自己构建了一种 **简单动态字符串**(simple dynamic string,**SDS**)。相比于 C 的原生字符串,Redis 的 SDS 不光可以保存文本数据还可以保存二进制数据,并且获取字符串长度复杂度为 O(1)(C 字符串为 O(N)),除此之外,Redis 的 SDS API 是安全的,不会造成缓冲区溢出。 2. **常用命令:** `set,get,strlen,exists,decr,incr,setex` 等等。 @@ -184,7 +158,7 @@ OK (integer) 56 ``` -#### 6.2. list +#### list 1. **介绍** :**list** 即是 **链表**。链表是一种非常常见的数据结构,特点是易于数据元素的插入和删除并且可以灵活调整链表长度,但是链表的随机访问困难。许多高级编程语言都内置了链表的实现比如 Java 中的 **LinkedList**,但是 C 语言并没有实现链表,所以 Redis 实现了自己的链表数据结构。Redis 的 list 的实现为一个 **双向链表**,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销。 2. **常用命令:** `rpush,lpop,lpush,rpop,lrange,llen` 等。 @@ -218,7 +192,7 @@ OK "value3" ``` -我专门花了一个图方便小伙伴们来理解: +我专门画了一个图方便小伙伴们来理解: ![redis list](./images/redis-all/redis-list.png) @@ -245,7 +219,7 @@ OK (integer) 3 ``` -#### 6.3. hash +#### hash 1. **介绍** :hash 类似于 JDK1.8 前的 HashMap,内部实现也差不多(数组 + 链表)。不过,Redis 的 hash 做了更多优化。另外,hash 是一个 string 类型的 field 和 value 的映射表,**特别适合用于存储对象**,后续操作的时候,你可以直接仅仅修改这个对象中的某个字段的值。 比如我们可以 hash 数据结构来存储用户信息,商品信息等等。 2. **常用命令:** `hset,hmset,hexists,hget,hgetall,hkeys,hvals` 等。 @@ -282,7 +256,7 @@ OK "GuideGeGe" ``` -#### 6.4. set +#### set 1. **介绍 :** set 类似于 Java 中的 `HashSet` 。Redis 中的 set 类型是一种无序集合,集合中的元素没有先后顺序。当你需要存储一个列表数据,又不希望出现重复数据时,set 是一个很好的选择,并且 set 提供了判断某个成员是否在一个 set 集合内的重要接口,这个也是 list 所不能提供的。可以基于 set 轻易实现交集、并集、差集的操作。比如:你可以将一个用户所有的关注人存在一个集合中,将其所有粉丝存在一个集合。Redis 可以非常方便的实现如共同关注、共同粉丝、共同喜好等功能。这个过程也就是求交集的过程。 2. **常用命令:** `sadd,spop,smembers,sismember,scard,sinterstore,sunion` 等。 @@ -310,7 +284,7 @@ OK 1) "value2" ``` -#### 6.5. sorted set +#### sorted set 1. **介绍:** 和 set 相比,sorted set 增加了一个权重参数 score,使得集合中的元素能够按 score 进行有序排列,还可以通过 score 的范围来获取元素的列表。有点像是 Java 中 HashMap 和 TreeSet 的结合体。 2. **常用命令:** `zadd,zcard,zscore,zrange,zrevrange,zrem` 等。 @@ -337,7 +311,7 @@ OK 2) "value2" ``` -#### 6.6 bitmap +#### bitmap 1. **介绍:** bitmap 存储的是连续的二进制数字(0 和 1),通过 bitmap, 只需要一个 bit 位来表示某个元素对应的值或者状态,key 就是对应元素本身 。我们知道 8 个 bit 可以组成一个 byte,所以 bitmap 本身会极大的节省储存空间。 2. **常用命令:** `setbit` 、`getbit` 、`bitcount`、`bitop` @@ -417,7 +391,7 @@ BITOP operation destkey key [key ...] 只需要一个 key,然后用户 ID 为 offset,如果在线就设置为 1,不在线就设置为 0。 -### 7. Redis 单线程模型详解 +### Redis 单线程模型详解 **Redis 基于 Reactor 模式来设计开发了自己的一套高效的事件处理模型** (Netty 的线程模型也基于 Reactor 模式,Reactor 模式不愧是高性能 IO 的基石),这套事件处理模型对应的是 Redis 中的文件事件处理器(file event handler)。由于文件事件处理器(file event handler)是单线程方式运行的,所以我们一般都说 Redis 是单线程模型。 @@ -450,7 +424,7 @@ Redis 通过**IO 多路复用程序** 来监听来自客户端的大量连接(

《Redis设计与实现:12章》

-### 8. Redis 没有使用多线程?为什么不使用多线程? +### Redis 没有使用多线程?为什么不使用多线程? 虽然说 Redis 是单线程模型,但是,实际上,**Redis 在 4.0 之后的版本中就已经加入了对多线程的支持。** @@ -468,7 +442,7 @@ Redis 通过**IO 多路复用程序** 来监听来自客户端的大量连接( 2. Redis 的性能瓶颈不在 CPU ,主要在内存和网络; 3. 多线程就会存在死锁、线程上下文切换等问题,甚至会影响性能。 -### 9. Redis6.0 之后为何引入了多线程? +### Redis6.0 之后为何引入了多线程? **Redis6.0 引入多线程主要是为了提高网络 IO 读写性能**,因为这个算是 Redis 中的一个性能瓶颈(Redis 的瓶颈主要受限于内存和网络)。 @@ -491,7 +465,7 @@ io-threads 4 #官网建议4核的机器建议设置为2或3个线程,8核的 1. [Redis 6.0 新特性-多线程连环 13 问!](https://mp.weixin.qq.com/s/FZu3acwK6zrCBZQ_3HoUgw) 2. [为什么 Redis 选择单线程模型](https://draveness.me/whys-the-design-redis-single-thread/) -### 10. Redis 给缓存数据设置过期时间有啥用? +### Redis 给缓存数据设置过期时间有啥用? 一般情况下,我们设置保存的缓存数据的时候都会设置一个过期时间。为什么呢? @@ -516,7 +490,7 @@ OK 如果使用传统的数据库来处理的话,一般都是自己判断过期,这样更麻烦并且性能要差很多。 -### 11. Redis 是如何判断数据是否过期的呢? +### Redis 是如何判断数据是否过期的呢? Redis 通过一个叫做过期字典(可以看作是 hash 表)来保存数据过期的时间。过期字典的键指向 Redis 数据库中的某个 key(键),过期字典的值是一个 long long 类型的整数,这个整数保存了 key 所指向的数据库键的过期时间(毫秒精度的 UNIX 时间戳)。 @@ -534,7 +508,7 @@ typedef struct redisDb { } redisDb; ``` -### 12. 过期的数据的删除策略了解么? +### 过期的数据的删除策略了解么? 如果假设你设置了一批 key 只能存活 1 分钟,那么 1 分钟后,Redis 是怎么对这批 key 进行删除的呢? @@ -549,7 +523,7 @@ typedef struct redisDb { 怎么解决这个问题呢?答案就是:**Redis 内存淘汰机制。** -### 13. Redis 内存淘汰机制了解么? +### Redis 内存淘汰机制了解么? > 相关问题:MySQL 里有 2000w 数据,Redis 中只存 20w 的数据,如何保证 Redis 中的数据都是热点数据? @@ -567,7 +541,7 @@ Redis 提供 6 种数据淘汰策略: 7. **volatile-lfu(least frequently used)**:从已设置过期时间的数据集(server.db[i].expires)中挑选最不经常使用的数据淘汰 8. **allkeys-lfu(least frequently used)**:当内存不足以容纳新写入数据时,在键空间中,移除最不经常使用的 key -### 14. Redis 持久化机制(怎么保证 Redis 挂掉之后再重启数据可以进行恢复) +### Redis 持久化机制(怎么保证 Redis 挂掉之后再重启数据可以进行恢复) 很多时候我们需要持久化数据也就是将内存中的数据写入到硬盘里面,大部分原因是为了之后重用数据(比如重启机器、机器故障之后恢复数据),或者是为了防止系统故障而将数据备份到一个远程位置。 @@ -595,7 +569,9 @@ save 60 10000 #在60秒(1分钟)之后,如果至少有10000个key发生 appendonly yes ``` -开启 AOF 持久化后每执行一条会更改 Redis 中的数据的命令,Redis 就会将该命令写入硬盘中的 AOF 文件。AOF 文件的保存位置和 RDB 文件的位置相同,都是通过 dir 参数设置的,默认的文件名是 appendonly.aof。 +开启 AOF 持久化后每执行一条会更改 Redis 中的数据的命令,Redis 就会将该命令写入到内存缓存 `server.aof_buf` 中,然后再根据 `appendfsync` 配置来决定何时将其同步到硬盘中的 AOF 文件。 + +AOF 文件的保存位置和 RDB 文件的位置相同,都是通过 dir 参数设置的,默认的文件名是 `appendonly.aof`。 在 Redis 的配置文件中存在三种不同的 AOF 持久化方式,它们分别是: @@ -605,7 +581,7 @@ appendfsync everysec #每秒钟同步一次,显示地将多个写命令同步 appendfsync no #让操作系统决定何时进行同步 ``` -为了兼顾数据和写入性能,用户可以考虑 appendfsync everysec 选项 ,让 Redis 每秒同步一次 AOF 文件,Redis 性能几乎没受到任何影响。而且这样即使出现系统崩溃,用户最多只会丢失一秒之内产生的数据。当硬盘忙于执行写入操作的时候,Redis 还会优雅的放慢自己的速度以便适应硬盘的最大写入速度。 +为了兼顾数据和写入性能,用户可以考虑 `appendfsync everysec` 选项 ,让 Redis 每秒同步一次 AOF 文件,Redis 性能几乎没受到任何影响。而且这样即使出现系统崩溃,用户最多只会丢失一秒之内产生的数据。当硬盘忙于执行写入操作的时候,Redis 还会优雅的放慢自己的速度以便适应硬盘的最大写入速度。 **相关 issue** :[783:Redis 的 AOF 方式](https://github.com/Snailclimb/JavaGuide/issues/783) @@ -615,15 +591,19 @@ Redis 4.0 开始支持 RDB 和 AOF 的混合持久化(默认关闭,可以通 如果把混合持久化打开,AOF 重写的时候就直接把 RDB 的内容写到 AOF 文件开头。这样做的好处是可以结合 RDB 和 AOF 的优点, 快速加载同时避免丢失过多的数据。当然缺点也是有的, AOF 里面的 RDB 部分是压缩格式不再是 AOF 格式,可读性较差。 +官方文档地址:https://redis.io/topics/persistence + +![](https://cdn.jsdelivr.net/gh/javaguide-tech/image-host-github-stars-01@main/webfunny_monitor/image-20210807145107290.png) + **补充内容:AOF 重写** AOF 重写可以产生一个新的 AOF 文件,这个新的 AOF 文件和原有的 AOF 文件所保存的数据库状态一样,但体积更小。 AOF 重写是一个有歧义的名字,该功能是通过读取数据库中的键值对来实现的,程序无须对现有 AOF 文件进行任何读入、分析或者写入操作。 -在执行 BGREWRITEAOF 命令时,Redis 服务器会维护一个 AOF 重写缓冲区,该缓冲区会在子进程创建新 AOF 文件期间,记录服务器执行的所有写命令。当子进程完成创建新 AOF 文件的工作之后,服务器会将重写缓冲区中的所有内容追加到新 AOF 文件的末尾,使得新旧两个 AOF 文件所保存的数据库状态一致。最后,服务器用新的 AOF 文件替换旧的 AOF 文件,以此来完成 AOF 文件重写操作。 +在执行 BGREWRITEAOF 命令时,Redis 服务器会维护一个 AOF 重写缓冲区,该缓冲区会在子进程创建新 AOF 文件期间,记录服务器执行的所有写命令。当子进程完成创建新 AOF 文件的工作之后,服务器会将重写缓冲区中的所有内容追加到新 AOF 文件的末尾,使得新的 AOF 文件保存的数据库状态与现有的数据库状态一致。最后,服务器用新的 AOF 文件替换旧的 AOF 文件,以此来完成 AOF 文件重写操作。 -### 15. Redis 事务 +### Redis 事务 Redis 可以通过 **`MULTI`,`EXEC`,`DISCARD` 和 `WATCH`** 等命令来实现事务(transaction)功能。 @@ -698,19 +678,19 @@ Redis 官网也解释了自己为啥不支持回滚。简单来说就是 Redis - [issue452: 关于 Redis 事务不满足原子性的问题](https://github.com/Snailclimb/JavaGuide/issues/452) 。 - [Issue491:关于 redis 没有事务回滚?](https://github.com/Snailclimb/JavaGuide/issues/491) -### 16. 缓存穿透 +### 缓存穿透 -#### 16.1. 什么是缓存穿透? +#### 什么是缓存穿透? 缓存穿透说简单点就是大量请求的 key 根本不存在于缓存中,导致请求直接到了数据库上,根本没有经过缓存这一层。举个例子:某个黑客故意制造我们缓存中不存在的 key 发起大量请求,导致大量请求落到数据库。 -#### 16.2. 缓存穿透情况的处理流程是怎样的? +#### 缓存穿透情况的处理流程是怎样的? 如下图所示,用户的请求最终都要跑到数据库中查询一遍。 ![缓存穿透情况](./images/redis-all/缓存穿透情况.png) -#### 16.3. 有哪些解决办法? +#### 有哪些解决办法? 最基本的就是首先做好参数校验,一些不合法的参数请求直接抛出异常信息返回给客户端。比如查询的数据库 id 不能小于 0、传入的邮箱格式不对的时候直接返回错误消息给客户端等等。 @@ -769,11 +749,11 @@ _为什么会出现误判的情况呢? 我们还要从布隆过滤器的原理 然后,一定会出现这样一种情况:**不同的字符串可能哈希出来的位置相同。** (可以适当增加位数组大小或者调整我们的哈希函数来降低概率) -更多关于布隆过滤器的内容可以看我的这篇原创:[《不了解布隆过滤器?一文给你整的明明白白!》](https://github.com/Snailclimb/JavaGuide/blob/master/docs/dataStructures-algorithms/data-structure/bloom-filter.md) ,强烈推荐,个人感觉网上应该找不到总结的这么明明白白的文章了。 +更多关于布隆过滤器的内容可以看我的这篇原创:[《不了解布隆过滤器?一文给你整的明明白白!》](https://github.com/Snailclimb/JavaGuide/blob/master/docs/cs-basics/data-structure/bloom-filter.md) ,强烈推荐,个人感觉网上应该找不到总结的这么明明白白的文章了。 -### 17. 缓存雪崩 +### 缓存雪崩 -#### 17.1. 什么是缓存雪崩? +#### 什么是缓存雪崩? 我发现缓存雪崩这名字起的有点意思,哈哈。 @@ -785,7 +765,7 @@ _为什么会出现误判的情况呢? 我们还要从布隆过滤器的原理 举个例子 :秒杀开始 12 个小时之前,我们统一存放了一批商品到 Redis 中,设置的缓存过期时间也是 12 个小时,那么秒杀开始的时候,这些秒杀的商品的访问直接就失效了。导致的情况就是,相应的请求直接就落到了数据库上,就像雪崩一样可怕。 -#### 17.2. 有哪些解决办法? +#### 有哪些解决办法? **针对 Redis 服务不可用的情况:** @@ -797,7 +777,7 @@ _为什么会出现误判的情况呢? 我们还要从布隆过滤器的原理 1. 设置不同的失效时间比如随机设置缓存的失效时间。 2. 缓存永不失效。 -### 18. 如何保证缓存和数据库数据的一致性? +### 如何保证缓存和数据库数据的一致性? 细说的话可以扯很多,但是我觉得其实没太大必要(小声 BB:很多解决方案我也没太弄明白)。我个人觉得引入缓存之后,如果为了短时间的不一致性问题,选择让系统设计变得更加复杂的话,完全没必要。 @@ -810,20 +790,10 @@ Cache Aside Pattern 中遇到写请求是这样的:更新 DB,然后直接删 1. **缓存失效时间变短(不推荐,治标不治本)** :我们让缓存数据的过期时间变短,这样的话缓存就会从数据库中加载数据。另外,这种解决办法对于先操作缓存后操作数据库的场景不适用。 2. **增加 cache 更新重试机制(常用)**: 如果 cache 服务当前不可用导致缓存删除失败的话,我们就隔一段时间进行重试,重试次数可以自己定。如果多次重试还是失败的话,我们可以把当前更新失败的 key 存入队列中,等缓存服务可用之后,再将缓存中对应的 key 删除即可。 -### 19. 参考 +### 参考 - 《Redis 开发与运维》 - 《Redis 设计与实现》 - Redis 命令总结:http://Redisdoc.com/string/set.html - 通俗易懂的 Redis 数据结构基础教程:[https://juejin.im/post/5b53ee7e5188251aaa2d2e16](https://juejin.im/post/5b53ee7e5188251aaa2d2e16) - WHY Redis choose single thread (vs multi threads): [https://medium.com/@jychen7/sharing-redis-single-thread-vs-multi-threads-5870bd44d153](https://medium.com/@jychen7/sharing-redis-single-thread-vs-multi-threads-5870bd44d153) - -### 20. 公众号 - -如果大家想要实时关注我更新的文章以及分享的干货的话,可以关注我的公众号。 - -**《Java 面试突击》:** 由本文档衍生的专为面试而生的《Java 面试突击》V2.0 PDF 版本[公众号](#公众号)后台回复 **"Java 面试突击"** 即可免费领取! - -**Java 工程师必备学习资源:** 一些 Java 工程师常用学习资源公众号后台回复关键字 **“1”** 即可免费无套路获取。 - -![我的公众号](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-6/167598cd2e17b8ec.png) \ No newline at end of file diff --git "a/docs/database/\345\255\227\347\254\246\351\233\206.md" "b/docs/database/\345\255\227\347\254\246\351\233\206.md" new file mode 100644 index 00000000000..1cca2575e6e --- /dev/null +++ "b/docs/database/\345\255\227\347\254\246\351\233\206.md" @@ -0,0 +1,160 @@ +--- +title: 字符集 +category: 数据库 +tag: + - 数据库基础 +--- + + +MySQL 字符编码集中有两套 UTF-8 编码实现:**`utf8`** 和 **`utf8mb4`**。 + +如果使用 **`utf8`** 的话,存储emoji 符号和一些比较复杂的汉字、繁体字就会出错。 + +为什么会这样呢?这篇文章可以从源头给你解答。 + +## 何为字符集? + +字符是各种文字和符号的统称,包括各个国家文字、标点符号、表情、数字等等。 **字符集** 就是一系列字符的集合。字符集的种类较多,每个字符集可以表示的字符范围通常不同,就比如说有些字符集是无法表示汉字的。 + +**计算机只能存储二进制的数据,那英文、汉字、表情等字符应该如何存储呢?** + +我们要将这些字符和二级制的数据一一对应起来,比如说字符“a”对应“01100001”,反之,“01100001”对应 “a”。我们将字符对应二进制数据的过程称为"**字符编码**",反之,二进制数据解析成字符的过程称为“**字符解码**”。 + +## 有哪些常见的字符集? + +常见的字符集有 ASCII、GB2312、GBK、UTF-8......。 + +不同的字符集的主要区别在于: + +- 可以表示的字符范围 +- 编码方式 + +### ASCII + +**ASCII** (**A**merican **S**tandard **C**ode for **I**nformation **I**nterchange,美国信息交换标准代码) 是一套主要用于现代美国英语的字符集(这也是 ASCII 字符集的局限性所在)。 + +**为什么 ASCII 字符集没有考虑到中文等其他字符呢?** 因为计算机是美国人发明的,当时,计算机的发展还处于比较雏形的时代,还未在其他国家大规模使用。因此,美国发布 ASCII 字符集的时候没有考虑兼容其他国家的语言。 + +ASCII 字符集至今为止共定义了 128 个字符,其中有 33 个控制字符(比如回车、删除)无法显示。 + +一个 ASCII 码长度是一个字节也就是 8 个 bit,比如“a”对应的 ASCII 码是“01100001”。不过,最高位是 0 仅仅作为校验位,其余 7 位使用 0 和 1 进行组合,所以,ASCII 字符集可以定义 128(2^7)个字符。 + +由于,ASCII 码可以表示的字符实在是太少了。后来,人们对其进行了扩展得到了 **ASCII 扩展字符集** 。ASCII 扩展字符集使用 8 位(bits)表示一个字符,所以,ASCII 扩展字符集可以定义 256(2^8)个字符。 + +![ASCII字符编码](https://img-blog.csdnimg.cn/img_convert/c1c6375d08ca268690cef2b13591a5b4.png) + +### GB2312 + +我们上面说了,ASCII 字符集是一种现代美国英语适用的字符集。因此,很多国家都捣鼓了一个适合自己国家语言的字符集。 + +GB2312 字符集是一种对汉字比较友好的字符集,共收录 6700 多个汉字,基本涵盖了绝大部分常用汉字。不过,GB2312 字符集不支持绝大部分的生僻字和繁体字。 + +对于英语字符,GB2312 编码和 ASCII 码是相同的,1 字节编码即可。对于非英字符,需要 2 字节编码。 + +### GBK + +GBK 字符集可以看作是 GB2312 字符集的扩展,兼容 GB2312 字符集,共收录了 20000 多个汉字。 + +GBK 中 K 是汉语拼音 Kuo Zhan(扩展)中的“Kuo”的首字母。 + +### GB18030 + +GB18030 完全兼容 GB2312 和 GBK 字符集,纳入中国国内少数民族的文字,且收录了日韩汉字,是目前为止最全面的汉字字符集,共收录汉字 70000 多个。 + +### BIG5 + +BIG5 主要针对的是繁体中文,收录了 13000 多个汉字。 + +### Unicode & UTF-8编码 + +为了更加适合本国语言,诞生了很多种字符集。 + +我们上面也说了不同的字符集可以表示的字符范围以及编码规则存在差异。这就导致了一个非常严重的问题:**使用错误的编码方式查看一个包含字符的文件就会产生乱码现象。** + +就比如说你使用 UTF-8 编码方式打开 GB2312 编码格式的文件就会出现乱码。示例:“牛”这个汉字 GB2312 编码后的十六进制数值为 “C5A3”,而 “C5A3” 用 UTF-8 解码之后得到的却是 “ţ”。 + +你可以通过这个网站在线进行编码和解码:https://www.haomeili.net/HanZi/ZiFuBianMaZhuanHuan + +![](https://img-blog.csdnimg.cn/836c49b117ee4408871b0020b74c991d.png) + +这样我们就搞懂了乱码的本质: **编码和解码时用了不同或者不兼容的字符集** 。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/javaguide/a8808cbabeea49caa3af27d314fa3c02-1.jpg) + +为了解决这个问题,人们就想:“如果我们能够有一种字符集将世界上所有的字符都纳入其中就好了!”。 + +然后,**Unicode** 带着这个使命诞生了。 + +Unicode 字符集中包含了世界上几乎所有已知的字符。不过,Unicode 字符集并没有规定如何存储这些字符(也就是如何使用二进制数据表示这些字符)。 + +然后,就有了 **UTF-8**(**8**-bit **U**nicode **T**ransformation **F**ormat)。类似的还有 UTF-16、 UTF-32。 + +UTF-8 使用 1 到 4 个字节为每个字符编码, UTF-16 使用 2 或 4 个字节为每个字符编码,UTF-32 固定位 4 个字节为每个字符编码。 + +UTF-8 可以根据不同的符号自动选择编码的长短,像英文字符只需要 1 个字节就够了,这一点 ASCII 字符集一样 。因此,对于英语字符,UTF-8 编码和 ASCII 码是相同的。 + +UTF-32 的规则最简单,不过缺陷也比较明显,对于英文字母这类字符消耗的空间是 UTF-8 的 4 倍之多。 + +**UTF-8** 是目前使用最广的一种字符编码,。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/javaguide/1280px-Utf8webgrowth.svg.png) + +## MySQL 字符集 + +MySQL 支持很多种字符编码的方式,比如 UTF-8、GB2312、GBK、BIG5。 + +你可以通过 `SHOW CHARSET` 命令来查看。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/javaguide/image-20211008164229671.png) + +通常情况下,我们建议使用 UTF-8 作为默认的字符编码方式。 + +不过,这里有一个小坑。 + +MySQL 字符编码集中有两套 UTF-8 编码实现: + +- **`utf8`** : `utf8`编码只支持`1-3`个字节 。 在 `utf8` 编码中,中文是占 3 个字节,其他数字、英文、符号占一个字节。但 emoji 符号占 4 个字节,一些较复杂的文字、繁体字也是 4 个字节。 +- **`utf8mb4`** : UTF-8 的完整实现,正版!最多支持使用 4 个字节表示字符,因此,可以用来存储 emoji 符号。 + +**为什么有两套 UTF-8 编码实现呢?** 原因如下: + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/javaguide/image-20211008164542347.png) + +因此,如果你需要存储`emoji`类型的数据或者一些比较复杂的文字、繁体字到 MySQL 数据库的话,数据库的编码一定要指定为`utf8mb4` 而不是`utf8` ,要不然存储的时候就会报错了。 + +演示一下吧!(环境:MySQL 5.7+) + +建表语句如下,我们指定数据库 CHARSET 为 `utf8` 。 + +```sql +CREATE TABLE `user` ( + `id` varchar(66) CHARACTER SET utf8mb4 NOT NULL, + `name` varchar(33) CHARACTER SET utf8mb4 NOT NULL, + `phone` varchar(33) CHARACTER SET utf8mb4 DEFAULT NULL, + `password` varchar(100) CHARACTER SET utf8mb4 DEFAULT NULL +) ENGINE=InnoDB DEFAULT CHARSET=utf8; +``` + +当我们执行下面的 insert 语句插入数据到数据库时,果然报错! + +```sql +INSERT INTO `user` (`id`, `name`, `phone`, `password`) +VALUES + ('A00003', 'guide哥😘😘😘', '181631312312', '123456'); + +``` + +报错信息如下: + +``` +Incorrect string value: '\xF0\x9F\x98\x98\xF0\x9F...' for column 'name' at row 1 +``` + +## 参考 + +- 字符集和字符编码(Charset & Encoding): https://www.cnblogs.com/skynet/archive/2011/05/03/2035105.html +- 十分钟搞清字符集和字符编码:http://cenalulu.github.io/linux/character-encoding/ +- Unicode-维基百科:https://zh.wikipedia.org/wiki/Unicode +- GB2312-维基百科:https://zh.wikipedia.org/wiki/GB_2312 +- UTF-8-维基百科:https://zh.wikipedia.org/wiki/UTF-8 +- GB18030-维基百科: https://zh.wikipedia.org/wiki/GB_18030 \ No newline at end of file diff --git "a/docs/database/\346\225\260\346\215\256\345\272\223\345\237\272\347\241\200\347\237\245\350\257\206.md" "b/docs/database/\346\225\260\346\215\256\345\272\223\345\237\272\347\241\200\347\237\245\350\257\206.md" new file mode 100644 index 00000000000..92d30998a71 --- /dev/null +++ "b/docs/database/\346\225\260\346\215\256\345\272\223\345\237\272\347\241\200\347\237\245\350\257\206.md" @@ -0,0 +1,150 @@ +--- +title: 数据库基础知识 +category: 数据库 +tag: + - 数据库基础 +--- + +数据库知识基础,这部分内容一定要理解记忆。虽然这部分内容只是理论知识,但是非常重要,这是后面学习 MySQL 数据库的基础。PS: 这部分内容由于涉及太多概念性内容,所以参考了维基百科和百度百科相应的介绍。 + +## 什么是数据库, 数据库管理系统, 数据库系统, 数据库管理员? + +* **数据库** : 数据库(DataBase 简称 DB)就是信息的集合或者说数据库是由数据库管理系统管理的数据的集合。 +* **数据库管理系统** : 数据库管理系统(Database Management System 简称 DBMS)是一种操纵和管理数据库的大型软件,通常用于建立、使用和维护数据库。 +* **数据库系统** : 数据库系统(Data Base System,简称 DBS)通常由软件、数据库和数据管理员(DBA)组成。 +* **数据库管理员** : 数据库管理员(Database Administrator, 简称 DBA)负责全面管理和控制数据库系统。 + +数据库系统基本构成如下图所示: + +![数据库系统基本构成](https://img-blog.csdnimg.cn/img_convert/e21120184e63406526a4e873cacd23f2.png) + +## 什么是元组, 码, 候选码, 主码, 外码, 主属性, 非主属性? + +* **元组** : 元组(tuple)是关系数据库中的基本概念,关系是一张表,表中的每行(即数据库中的每条记录)就是一个元组,每列就是一个属性。 在二维表里,元组也称为行。 +* **码** :码就是能唯一标识实体的属性,对应表中的列。 +* **候选码** : 若关系中的某一属性或属性组的值能唯一的标识一个元组,而其任何、子集都不能再标识,则称该属性组为候选码。例如:在学生实体中,“学号”是能唯一的区分学生实体的,同时又假设“姓名”、“班级”的属性组合足以区分学生实体,那么{学号}和{姓名,班级}都是候选码。 +* **主码** : 主码也叫主键。主码是从候选码中选出来的。 一个实体集中只能有一个主码,但可以有多个候选码。 +* **外码** : 外码也叫外键。如果一个关系中的一个属性是另外一个关系中的主码则这个属性为外码。 +* **主属性** : 候选码中出现过的属性称为主属性。比如关系 工人(工号,身份证号,姓名,性别,部门). 显然工号和身份证号都能够唯一标示这个关系,所以都是候选码。工号、身份证号这两个属性就是主属性。如果主码是一个属性组,那么属性组中的属性都是主属性。 +* **非主属性:** 不包含在任何一个候选码中的属性称为非主属性。比如在关系——学生(学号,姓名,年龄,性别,班级)中,主码是“学号”,那么其他的“姓名”、“年龄”、“性别”、“班级”就都可以称为非主属性。 + +## 主键和外键有什么区别? + +* **主键(主码)** :主键用于唯一标识一个元组,不能有重复,不允许为空。一个表只能有一个主键。 +* **外键(外码)** :外键用来和其他表建立联系用,外键是另一表的主键,外键是可以有重复的,可以是空值。一个表可以有多个外键。 + +## 为什么不推荐使用外键与级联? + +对于外键和级联,阿里巴巴开发手册这样说到: + +> 【强制】不得使用外键与级联,一切外键概念必须在应用层解决。 +> +> 说明: 以学生和成绩的关系为例,学生表中的 student_id 是主键,那么成绩表中的 student_id 则为外键。如果更新学生表中的 student_id,同时触发成绩表中的 student_id 更新,即为级联更新。外键与级联更新适用于单机低并发,不适合分布式、高并发集群; 级联更新是强阻塞,存在数据库更新风暴的风 险; 外键影响数据库的插入速度 + +为什么不要用外键呢?大部分人可能会这样回答: + +> 1. **增加了复杂性:** a. 每次做DELETE 或者UPDATE都必须考虑外键约束,会导致开发的时候很痛苦, 测试数据极为不方便; b. 外键的主从关系是定的,假如那天需求有变化,数据库中的这个字段根本不需要和其他表有关联的话就会增加很多麻烦。 +> 2. **增加了额外工作**: 数据库需要增加维护外键的工作,比如当我们做一些涉及外键字段的增,删,更新操作之后,需要触发相关操作去检查,保证数据的的一致性和正确性,这样会不得不消耗资源;(个人觉得这个不是不用外键的原因,因为即使你不使用外键,你在应用层面也还是要保证的。所以,我觉得这个影响可以忽略不计。) +> 3. 外键还会因为需要请求对其他表内部加锁而容易出现死锁情况; +> 4. **对分库分表不友好** :因为分库分表下外键是无法生效的。 +> 5. ...... + +我个人觉得上面这种回答不是特别的全面,只是说了外键存在的一个常见的问题。实际上,我们知道外键也是有很多好处的,比如: + +1. 保证了数据库数据的一致性和完整性; +2. 级联操作方便,减轻了程序代码量; +3. ...... + +所以说,不要一股脑的就抛弃了外键这个概念,既然它存在就有它存在的道理,如果系统不涉及分库分表,并发量不是很高的情况还是可以考虑使用外键的。 + + +## 什么是 ER 图? + +> 我们做一个项目的时候一定要试着画 ER 图来捋清数据库设计,这个也是面试官问你项目的时候经常会被问道的。 + +**E-R 图** 也称实体-联系图(Entity Relationship Diagram),提供了表示实体类型、属性和联系的方法,用来描述现实世界的概念模型。 它是描述现实世界关系概念模型的有效方法。 是表示概念关系模型的一种方式。 + +下图是一个学生选课的 ER 图,每个学生可以选若干门课程,同一门课程也可以被若干人选择,所以它们之间的关系是多对多(M: N)。另外,还有其他两种关系是:1 对 1(1:1)、1 对多(1: N)。 + +![ER图示例](https://img-blog.csdnimg.cn/img_convert/4717673e36966e0e4b33fccfd753f6ea.png) + +我们试着将上面的 ER 图转换成数据库实际的关系模型(实际设计中,我们通常会将任课教师也作为一个实体来处理): + +![关系模型](https://img-blog.csdnimg.cn/img_convert/5897753dfb301dfa3a814ab06e718a5e.png) + +## 数据库范式了解吗? + +**1NF(第一范式)** + +属性(对应于表中的字段)不能再被分割,也就是这个字段只能是一个值,不能再分为多个其他的字段了。**1NF 是所有关系型数据库的最基本要求** ,也就是说关系型数据库中创建的表一定满足第一范式。 + +**2NF(第二范式)** + +2NF 在 1NF 的基础之上,消除了非主属性对于码的部分函数依赖。如下图所示,展示了第一范式到第二范式的过渡。第二范式在第一范式的基础上增加了一个列,这个列称为主键,非主属性都依赖于主键。 + +![第二范式](https://img-blog.csdnimg.cn/img_convert/bd1d31be3779342427fc9e462bf7f05c.png) + +一些重要的概念: + +* **函数依赖(functional dependency)** :若在一张表中,在属性(或属性组)X 的值确定的情况下,必定能确定属性 Y 的值,那么就可以说 Y 函数依赖于 X,写作 X → Y。 +* **部分函数依赖(partial functional dependency)** :如果 X→Y,并且存在 X 的一个真子集 X0,使得 X0→Y,则称 Y 对 X 部分函数依赖。比如学生基本信息表 R 中(学号,身份证号,姓名)当然学号属性取值是唯一的,在 R 关系中,(学号,身份证号)->(姓名),(学号)->(姓名),(身份证号)->(姓名);所以姓名部分函数依赖与(学号,身份证号); +* **完全函数依赖(Full functional dependency)** :在一个关系中,若某个非主属性数据项依赖于全部关键字称之为完全函数依赖。比如学生基本信息表 R(学号,班级,姓名)假设不同的班级学号有相同的,班级内学号不能相同,在 R 关系中,(学号,班级)->(姓名),但是(学号)->(姓名)不成立,(班级)->(姓名)不成立,所以姓名完全函数依赖与(学号,班级); +* **传递函数依赖** : 在关系模式 R(U)中,设 X,Y,Z 是 U 的不同的属性子集,如果 X 确定 Y、Y 确定 Z,且有 X 不包含 Y,Y 不确定 X,(X∪Y)∩Z=空集合,则称 Z 传递函数依赖(transitive functional dependency) 于 X。传递函数依赖会导致数据冗余和异常。传递函数依赖的 Y 和 Z 子集往往同属于某一个事物,因此可将其合并放到一个表中。比如在关系 R(学号 , 姓名, 系名,系主任)中,学号 → 系名,系名 → 系主任,所以存在非主属性系主任对于学号的传递函数依赖。。 + +**3NF(第三范式)** + +3NF 在 2NF 的基础之上,消除了非主属性对于码的传递函数依赖 。符合 3NF 要求的数据库设计,**基本**上解决了数据冗余过大,插入异常,修改异常,删除异常的问题。比如在关系 R(学号 , 姓名, 系名,系主任)中,学号 → 系名,系名 → 系主任,所以存在非主属性系主任对于学号的传递函数依赖,所以该表的设计,不符合 3NF 的要求。 + +**总结** + +* 1NF:属性不可再分。 +* 2NF:1NF 的基础之上,消除了非主属性对于码的部分函数依赖。 +* 3NF:3NF 在 2NF 的基础之上,消除了非主属性对于码的传递函数依赖 。 + +## 什么是存储过程? + +我们可以把存储过程看成是一些 SQL 语句的集合,中间加了点逻辑控制语句。存储过程在业务比较复杂的时候是非常实用的,比如很多时候我们完成一个操作可能需要写一大串 SQL 语句,这时候我们就可以写有一个存储过程,这样也方便了我们下一次的调用。存储过程一旦调试完成通过后就能稳定运行,另外,使用存储过程比单纯 SQL 语句执行要快,因为存储过程是预编译过的。 + +存储过程在互联网公司应用不多,因为存储过程难以调试和扩展,而且没有移植性,还会消耗数据库资源。 + +阿里巴巴 Java 开发手册里要求禁止使用存储过程。 + +![阿里巴巴Java开发手册: 禁止存储过程](https://img-blog.csdnimg.cn/img_convert/0fa082bc4d4f919065767476a41b2156.png) + +## drop、delete 与 truncate 区别? + +### 用法不同 + +* drop(丢弃数据): `drop table 表名` ,直接将表都删除掉,在删除表的时候使用。 +* truncate (清空数据) : `truncate table 表名` ,只删除表中的数据,再插入数据的时候自增长 id 又从 1 开始,在清空表中数据的时候使用。 +* delete(删除数据) : `delete from 表名 where 列名=值`,删除某一列的数据,如果不加 where 子句和`truncate table 表名`作用类似。 + +truncate 和不带 where 子句的 delete、以及 drop 都会删除表内的数据,但是 **truncate 和 delete 只删除数据不删除表的结构(定义),执行 drop 语句,此表的结构也会删除,也就是执行 drop 之后对应的表不复存在。** + +### 属于不同的数据库语言 + +truncate 和 drop 属于 DDL(数据定义语言)语句,操作立即生效,原数据不放到 rollback segment 中,不能回滚,操作不触发 trigger。而 delete 语句是 DML (数据库操作语言)语句,这个操作会放到 rollback segement 中,事务提交之后才生效。 + +**DML 语句和 DDL 语句区别:** + +* DML 是数据库操作语言(Data Manipulation Language)的缩写,是指对数据库中表记录的操作,主要包括表记录的插入(insert)、更新(update)、删除(delete)和查询(select),是开发人员日常使用最频繁的操作。 +* DDL (Data Definition Language)是数据定义语言的缩写,简单来说,就是对数据库内部的对象进行创建、删除、修改的操作语言。它和 DML 语言的最大区别是 DML 只是对表内部数据的操作,而不涉及到表的定义、结构的修改,更不会涉及到其他对象。DDL 语句更多的被数据库管理员(DBA)所使用,一般的开发人员很少使用。 + +### 执行速度不同 + +一般来说:drop>truncate>delete(这个我没有设计测试过)。 + +## 数据库设计通常分为哪几步? + +1. **需求分析** : 分析用户的需求,包括数据、功能和性能需求。 +2. **概念结构设计** : 主要采用 E-R 模型进行设计,包括画 E-R 图。 +3. **逻辑结构设计** : 通过将 E-R 图转换成表,实现从 E-R 模型到关系模型的转换。 +4. **物理结构设计** : 主要是为所设计的数据库选择合适的存储结构和存取路径。 +5. **数据库实施** : 包括编程、测试和试运行 +6. **数据库的运行和维护** : 系统的运行与数据库的日常维护。 + +## 参考 + +* +* +* diff --git "a/docs/database/\346\225\260\346\215\256\345\272\223\350\277\236\346\216\245\346\261\240.md" "b/docs/database/\346\225\260\346\215\256\345\272\223\350\277\236\346\216\245\346\261\240.md" deleted file mode 100644 index 3e84dfc8efd..00000000000 --- "a/docs/database/\346\225\260\346\215\256\345\272\223\350\277\236\346\216\245\346\261\240.md" +++ /dev/null @@ -1,21 +0,0 @@ -- 公众号和Github待发文章:[数据库:数据库连接池原理详解与自定义连接池实现](https://www.fangzhipeng.com/javainterview/2019/07/15/mysql-connector-pool.html) -- [基于JDBC的数据库连接池技术研究与应用](http://blog.itpub.net/9403012/viewspace-111794/) -- [数据库连接池技术详解](https://juejin.im/post/5b7944c6e51d4538c86cf195) - -数据库连接本质就是一个 socket 的连接。数据库服务端还要维护一些缓存和用户权限信息之类的 所以占用了一些内存 - -连接池是维护的数据库连接的缓存,以便将来需要对数据库的请求时可以重用这些连接。为每个用户打开和维护数据库连接,尤其是对动态数据库驱动的网站应用程序的请求,既昂贵又浪费资源。**在连接池中,创建连接后,将其放置在池中,并再次使用它,因此不必建立新的连接。如果使用了所有连接,则会建立一个新连接并将其添加到池中。**连接池还减少了用户必须等待建立与数据库的连接的时间。 - -操作过数据库的朋友应该都知道数据库连接池这个概念,它几乎每天都在和我们打交道,但是你真的了解 **数据库连接池** 吗? - -### 没有数据库连接池之前 - -我相信你一定听过这样一句话:**Java语言中,JDBC(Java DataBase Connection)是应用程序与数据库沟通的桥梁**。 - - - - - - - - diff --git "a/docs/database/\351\230\277\351\207\214\345\267\264\345\267\264\345\274\200\345\217\221\346\211\213\345\206\214\346\225\260\346\215\256\345\272\223\351\203\250\345\210\206\347\232\204\344\270\200\344\272\233\346\234\200\344\275\263\345\256\236\350\267\265.md" "b/docs/database/\351\230\277\351\207\214\345\267\264\345\267\264\345\274\200\345\217\221\346\211\213\345\206\214\346\225\260\346\215\256\345\272\223\351\203\250\345\210\206\347\232\204\344\270\200\344\272\233\346\234\200\344\275\263\345\256\236\350\267\265.md" deleted file mode 100644 index b3031d50b0d..00000000000 --- "a/docs/database/\351\230\277\351\207\214\345\267\264\345\267\264\345\274\200\345\217\221\346\211\213\345\206\214\346\225\260\346\215\256\345\272\223\351\203\250\345\210\206\347\232\204\344\270\200\344\272\233\346\234\200\344\275\263\345\256\236\350\267\265.md" +++ /dev/null @@ -1,41 +0,0 @@ -# 阿里巴巴Java开发手册数据库部分的一些最佳实践总结 - -## 模糊查询 - -对于模糊查询阿里巴巴开发手册这样说到: - -> 【强制】页面搜索严禁左模糊或者全模糊,如果需要请走搜索引擎来解决。 -> -> 说明:索引文件具有 B-Tree 的最左前缀匹配特性,如果左边的值未确定,那么无法使用此索引。 - -## 外键和级联 - -对于外键和级联,阿里巴巴开发手册这样说到: - ->【强制】不得使用外键与级联,一切外键概念必须在应用层解决。 -> ->说明:以学生和成绩的关系为例,学生表中的 student_id 是主键,那么成绩表中的 student_id 则为外键。如果更新学生表中的 student_id,同时触发成绩表中的 student_id 更新,即为级联更新。外键与级联更新适用于单机低并发,不适合分布式、高并发集群;级联更新是强阻塞,存在数据库更新风暴的风 险;外键影响数据库的插入速度 - -为什么不要用外键呢?大部分人可能会这样回答: - -> 1. **增加了复杂性:** a.每次做DELETE 或者UPDATE都必须考虑外键约束,会导致开发的时候很痛苦,测试数据极为不方便;b.外键的主从关系是定的,假如那天需求有变化,数据库中的这个字段根本不需要和其他表有关联的话就会增加很多麻烦。 -> 2. **增加了额外工作**: 数据库需要增加维护外键的工作,比如当我们做一些涉及外键字段的增,删,更新操作之后,需要触发相关操作去检查,保证数据的的一致性和正确性,这样会不得不消耗资源;(个人觉得这个不是不用外键的原因,因为即使你不使用外键,你在应用层面也还是要保证的。所以,我觉得这个影响可以忽略不计。) -> 3. 外键还会因为需要请求对其他表内部加锁而容易出现死锁情况; -> 4. **对分库分表不友好** :因为分库分表下外键是无法生效的。 -> 5. ...... - -我个人觉得上面这种回答不是特别的全面,只是说了外键存在的一个常见的问题。实际上,我们知道外键也是有很多好处的,比如: - -1. 保证了数据库数据的一致性和完整性; -2. 级联操作方便,减轻了程序代码量; -3. ...... - -所以说,不要一股脑的就抛弃了外键这个概念,既然它存在就有它存在的道理,如果系统不涉及分库分表,并发量不是很高的情况还是可以考虑使用外键的。 - -我个人是不太喜欢外键约束,比较喜欢在应用层去进行相关操作。 - -## 关于@Transactional注解 - -对于`@Transactional`事务注解,阿里巴巴开发手册这样说到: - ->【参考】@Transactional事务不要滥用。事务会影响数据库的QPS,另外使用事务的地方需要考虑各方面的回滚方案,包括缓存回滚、搜索引擎回滚、消息补偿、统计修正等。 diff --git a/docs/distributed-system/api-gateway.md b/docs/distributed-system/api-gateway.md new file mode 100644 index 00000000000..11bab874ff1 --- /dev/null +++ b/docs/distributed-system/api-gateway.md @@ -0,0 +1,107 @@ + +# 网关 + +## 何为网关?为什么要网关? + +![微服务-网关](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/javaguide/%E5%BE%AE%E6%9C%8D%E5%8A%A1-%E7%BD%91%E5%85%B3.png) + +微服务背景下,一个系统被拆分为多个服务,但是像安全认证,流量控制,日志,监控等功能是每个服务都需要的,没有网关的话,我们就需要在每个服务中单独实现,这使得我们做了很多重复的事情并且没有一个全局的视图来统一管理这些功能。 + +综上:**一般情况下,网关都会提供请求转发、安全认证(身份/权限认证)、流量控制、负载均衡、容灾、日志、监控这些功能。** + +上面介绍了这么多功能,实际上,网关主要做了一件事情:**请求过滤** 。 + +## 有哪些常见的网关系统? + +### Netflix Zuul + +Zuul 是 Netflix 开发的一款提供动态路由、监控、弹性、安全的网关服务。 + +Zuul 主要通过过滤器(类似于 AOP)来过滤请求,从而实现网关必备的各种功能。 + +![Zuul架构](https://img-blog.csdnimg.cn/img_convert/865991e34f69f8cb345b4aff918e946e.png) + +我们可以自定义过滤器来处理请求,并且,Zuul 生态本身就有很多现成的过滤器供我们使用。就比如限流可以直接用国外朋友写的 [spring-cloud-zuul-ratelimit](https://github.com/marcosbarbero/spring-cloud-zuul-ratelimit) (这里只是举例说明,一般是配合 hystrix 来做限流): + +```xml + + org.springframework.cloud + spring-cloud-starter-netflix-zuul + + + com.marcosbarbero.cloud + spring-cloud-zuul-ratelimit + 2.2.0.RELEASE + +``` + +Zuul 1.x 基于同步 IO,性能较差。Zuul 2.x 基于 Netty 实现了异步 IO,性能得到了大幅改进。 + +- Github 地址 : https://github.com/Netflix/zuul +- 官方 Wiki : https://github.com/Netflix/zuul/wiki + +### Spring Cloud Gateway + +SpringCloud Gateway 属于 Spring Cloud 生态系统中的网关,其诞生的目标是为了替代老牌网关 **Zuul **。准确点来说,应该是 Zuul 1.x。SpringCloud Gateway 起步要比 Zuul 2.x 更早。 + +为了提升网关的性能,SpringCloud Gateway 基于 Spring WebFlux 。Spring WebFlux 使用 Reactor 库来实现响应式编程模型,底层基于 Netty 实现异步 IO。 + +Spring Cloud Gateway 的目标,不仅提供统一的路由方式,并且基于 Filter 链的方式提供了网关基本的功能,例如:安全,监控/指标,和限流。 + +Spring Cloud Gateway 和 Zuul 2.x 的差别不大,也是通过过滤器来处理请求。不过,目前更加推荐使用 Spring Cloud Gateway 而非 Zuul,Spring Cloud 生态对其支持更加友好。 + +- Github 地址 : https://github.com/spring-cloud/spring-cloud-gateway +- 官网 : https://spring.io/projects/spring-cloud-gateway + +### Kong + +Kong 是一款基于 [OpenResty](https://github.com/openresty/) 的高性能、云原生、可扩展的网关系统。 + +> OpenResty 是一个基于 Nginx 与 Lua 的高性能 Web 平台,其内部集成了大量精良的 Lua 库、第三方模块以及大多数的依赖项。用于方便地搭建能够处理超高并发、扩展性极高的动态 Web 应用、Web 服务和动态网关。 + +Kong 提供了插件机制来扩展其功能。比如、在服务上启用 Zipkin 插件 + +```shell +$ curl -X POST http://kong:8001/services/{service}/plugins \ + --data "name=zipkin" \ + --data "config.http_endpoint=http://your.zipkin.collector:9411/api/v2/spans" \ + --data "config.sample_ratio=0.001" +``` + +- Github 地址: https://github.com/Kong/kong +- 官网地址 : https://konghq.com/kong + +### APISIX + +APISIX 是一款基于 Nginx 和 etcd 的高性能、云原生、可扩展的网关系统。 + +> *etcd*是使用 Go 语言开发的一个开源的、高可用的分布式 key-value 存储系统,使用 Raft 协议做分布式共识。 + +与传统 API 网关相比,APISIX 具有动态路由和插件热加载,特别适合微服务系统下的 API 管理。并且,APISIX 与 SkyWalking(分布式链路追踪系统)、Zipkin(分布式链路追踪系统)、Prometheus(监控系统) 等 DevOps 生态工具对接都十分方便。 + +![apisix架构图](https://img-blog.csdnimg.cn/img_convert/727732fad2e943bdd2c502b83ddb1b89.png) + +作为 NGINX 和 Kong 的替代项目,APISIX 目前已经是 Apache 顶级开源项目,并且是最快毕业的国产开源项目。国内目前已经有很多知名企业(比如金山、有赞、爱奇艺、腾讯、贝壳)使用 APISIX 处理核心的业务流量。 + +根据官网介绍:“APISIX 已经生产可用,功能、性能、架构全面优于 Kong”。 + +- Github 地址 :https://github.com/apache/apisix +- 官网地址: https://apisix.apache.org/zh/ + +相关阅读: + +- [有了 NGINX 和 Kong,为什么还需要 Apache APISIX](https://www.apiseven.com/zh/blog/why-we-need-Apache-APISIX) +- [APISIX 技术博客](https://www.apiseven.com/zh/blog) +- [APISIX 用户案例](https://www.apiseven.com/zh/usercases) + +### Shenyu + +Shenyu 是一款基于 WebFlux 的可扩展、高性能、响应式网关,Apache 顶级开源项目。 + +![Shenyu架构](https://img-blog.csdnimg.cn/1104eb413cba468cba4dce119165e84e.png) + +Shenyu 通过插件扩展功能,插件是 ShenYu 的灵魂,并且插件也是可扩展和热插拔的。不同的插件实现不同的功能。Shenyu 自带了诸如限流、熔断、转发 、重写、重定向、和路由监控等插件。 + +- Github 地址: https://github.com/apache/incubator-shenyu +- 官网地址 : https://shenyu.apache.org/ + diff --git a/docs/distributed-system/distributed-id.md b/docs/distributed-system/distributed-id.md new file mode 100644 index 00000000000..0ec45819e55 --- /dev/null +++ b/docs/distributed-system/distributed-id.md @@ -0,0 +1,357 @@ +# 分布式 ID + +## 分布式 ID 介绍 + +### 何为 ID? + +日常开发中,我们需要对系统中的各种数据使用 ID 唯一表示,比如用户 ID 对应且仅对应一个人,商品 ID 对应且仅对应一件商品,订单 ID 对应且仅对应一个订单。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/javaguide/up-79beb853b8319f850638c9708f83039dfda.png) + +我们现实生活中也有各种 ID,比如身份证 ID 对应且仅对应一个人、地址 ID 对应且仅对应 + +简单来说,**ID 就是数据的唯一标识**。 + +### 何为分布式 ID? + +分布式 ID 是分布式系统下的 ID。分布式 ID 不存在与现实生活中,属于计算机系统中的一个概念。 + +我简单举一个分库分表的例子。 + +我司的一个项目,使用的是单机 MySQL 。但是,没想到的是,项目上线一个月之后,随着使用人数越来越多,整个系统的数据量将越来越大。 + +单机 MySQL 已经没办法支撑了,需要进行分库分表(推荐 Sharding-JDBC)。 + +在分库之后, 数据遍布在不同服务器上的数据库,数据库的自增主键已经没办法满足生成的主键唯一了。**我们如何为不同的数据节点生成全局唯一主键呢?** + +![](https://oscimg.oschina.net/oscnet/up-d78d9d5362c71f4713a090baf7ec65d2b6d.png) + +这个时候就需要生成**分布式 ID**了。 + +### 分布式 ID 需要满足哪些要求? + +![](https://img-blog.csdnimg.cn/20210610082309988.png) + +分布式 ID 作为分布式系统中必不可少的一环,很多地方都要用到分布式 ID。 + +一个最基本的分布式 ID 需要满足下面这些要求: + +- **全局唯一** :ID 的全局唯一性肯定是首先要满足的! +- **高性能** : 分布式 ID 的生成速度要快,对本地资源消耗要小。 +- **高可用** :生成分布式 ID 的服务要保证可用性无限接近于 100%。 +- **方便易用** :拿来即用,使用方便,快速接入! + +除了这些之外,一个比较好的分布式 ID 还应保证: + +- **安全** :ID 中不包含敏感信息。 +- **有序递增** :如果要把 ID 存放在数据库的话,ID 的有序性可以提升数据库写入速度。并且,很多时候 ,我们还很有可能会直接通过 ID 来进行排序。 +- **有具体的业务含义** :生成的 ID 如果能有具体的业务含义,可以让定位问题以及开发更透明化(通过 ID 就能确定是哪个业务)。 +- **独立部署** :也就是分布式系统单独有一个发号器服务,专门用来生成分布式 ID。这样就生成 ID 的服务可以和业务相关的服务解耦。不过,这样同样带来了网络调用消耗增加的问题。总的来说,如果需要用到分布式 ID 的场景比较多的话,独立部署的发号器服务还是很有必要的。 + +## 分布式 ID 常见解决方案 + +### 数据库 + +#### 数据库主键自增 + +这种方式就比较简单直白了,就是通过关系型数据库的自增主键产生来唯一的 ID。 + +![](https://img-blog.csdnimg.cn/20210610081957287.png) + +以 MySQL 举例,我们通过下面的方式即可。 + +**1.创建一个数据库表。** + +```sql +CREATE TABLE `sequence_id` ( + `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT, + `stub` char(10) NOT NULL DEFAULT '', + PRIMARY KEY (`id`), + UNIQUE KEY `stub` (`stub`) +) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4; +``` + +`stub` 字段无意义,只是为了占位,便于我们插入或者修改数据。并且,给 `stub` 字段创建了唯一索引,保证其唯一性。 + +**2.通过 `replace into` 来插入数据。** + +```java +BEGIN; +REPLACE INTO sequence_id (stub) VALUES ('stub'); +SELECT LAST_INSERT_ID(); +COMMIT; +``` + +插入数据这里,我们没有使用 `insert into` 而是使用 `replace into` 来插入数据,具体步骤是这样的: + +1)第一步: 尝试把数据插入到表中。 + +2)第二步: 如果主键或唯一索引字段出现重复数据错误而插入失败时,先从表中删除含有重复关键字值的冲突行,然后再次尝试把数据插入到表中。 + +这种方式的优缺点也比较明显: + +- **优点** :实现起来比较简单、ID 有序递增、存储消耗空间小 +- **缺点** : 支持的并发量不大、存在数据库单点问题(可以使用数据库集群解决,不过增加了复杂度)、ID 没有具体业务含义、安全问题(比如根据订单 ID 的递增规律就能推算出每天的订单量,商业机密啊! )、每次获取 ID 都要访问一次数据库(增加了对数据库的压力,获取速度也慢) + +#### 数据库号段模式 + +数据库主键自增这种模式,每次获取 ID 都要访问一次数据库,ID 需求比较大的时候,肯定是不行的。 + +如果我们可以批量获取,然后存在在内存里面,需要用到的时候,直接从内存里面拿就舒服了!这也就是我们说的 **基于数据库的号段模式来生成分布式 ID。** + +数据库的号段模式也是目前比较主流的一种分布式 ID 生成方式。像滴滴开源的[Tinyid](https://github.com/didi/tinyid/wiki/tinyid%E5%8E%9F%E7%90%86%E4%BB%8B%E7%BB%8D) 就是基于这种方式来做的。不过,TinyId 使用了双号段缓存、增加多 db 支持等方式来进一步优化。 + +以 MySQL 举例,我们通过下面的方式即可。 + +**1.创建一个数据库表。** + +```sql +CREATE TABLE `sequence_id_generator` ( + `id` int(10) NOT NULL, + `current_max_id` bigint(20) NOT NULL COMMENT '当前最大id', + `step` int(10) NOT NULL COMMENT '号段的长度', + `version` int(20) NOT NULL COMMENT '版本号', + `biz_type` int(20) NOT NULL COMMENT '业务类型', + PRIMARY KEY (`id`) +) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4; +``` + +`current_max_id` 字段和`step`字段主要用于获取批量 ID,获取的批量 id 为: `current_max_id ~ current_max_id+step`。 + +![](https://img-blog.csdnimg.cn/20210610081149228.png) + +`version` 字段主要用于解决并发问题(乐观锁),`biz_type` 主要用于表示业余类型。 + +**2.先插入一行数据。** + +```sql +INSERT INTO `sequence_id_generator` (`id`, `current_max_id`, `step`, `version`, `biz_type`) +VALUES + (1, 0, 100, 0, 101); +``` + +**3.通过 SELECT 获取指定业务下的批量唯一 ID** + +```sql +SELECT `current_max_id`, `step`,`version` FROM `sequence_id_generator` where `biz_type` = 101 +``` + +结果: + +``` +id current_max_id step version biz_type +1 0 100 1 101 +``` + +**4.不够用的话,更新之后重新 SELECT 即可。** + +```sql +UPDATE sequence_id_generator SET current_max_id = 0+100, version=version+1 WHERE version = 0 AND `biz_type` = 101 +SELECT `current_max_id`, `step`,`version` FROM `sequence_id_generator` where `biz_type` = 101 +``` + +结果: + +``` +id current_max_id step version biz_type +1 100 100 1 101 +``` + +相比于数据库主键自增的方式,**数据库的号段模式对于数据库的访问次数更少,数据库压力更小。** + +另外,为了避免单点问题,你可以从使用主从模式来提高可用性。 + +**数据库号段模式的优缺点:** + +- **优点** :ID 有序递增、存储消耗空间小 +- **缺点** :存在数据库单点问题(可以使用数据库集群解决,不过增加了复杂度)、ID 没有具体业务含义、安全问题(比如根据订单 ID 的递增规律就能推算出每天的订单量,商业机密啊! ) + +#### NoSQL + +![](https://img-blog.csdnimg.cn/2021061008245858.png) + +一般情况下,NoSQL 方案使用 Redis 多一些。我们通过 Redis 的 `incr` 命令即可实现对 id 原子顺序递增。 + +```bash +127.0.0.1:6379> set sequence_id_biz_type 1 +OK +127.0.0.1:6379> incr sequence_id_biz_type +(integer) 2 +127.0.0.1:6379> get sequence_id_biz_type +"2" +``` + +为了提高可用性和并发,我们可以使用 Redis Cluser。Redis Cluser 是 Redis 官方提供的 Redis 集群解决方案(3.0+版本)。 + +除了 Redis Cluser 之外,你也可以使用开源的 Redis 集群方案[Codis](https://github.com/CodisLabs/codis) (大规模集群比如上百个节点的时候比较推荐)。 + +除了高可用和并发之外,我们知道 Redis 基于内存,我们需要持久化数据,避免重启机器或者机器故障后数据丢失。Redis 支持两种不同的持久化方式:**快照(snapshotting,RDB)**、**只追加文件(append-only file, AOF)**。 并且,Redis 4.0 开始支持 **RDB 和 AOF 的混合持久化**(默认关闭,可以通过配置项 `aof-use-rdb-preamble` 开启)。 + +关于 Redis 持久化,我这里就不过多介绍。不了解这部分内容的小伙伴,可以看看 [JavaGuide 对于 Redis 知识点的总结](https://snailclimb.gitee.io/javaguide/#/docs/database/Redis/redis-all)。 + +**Redis 方案的优缺点:** + +- **优点** : 性能不错并且生成的 ID 是有序递增的 +- **缺点** : 和数据库主键自增方案的缺点类似 + +除了 Redis 之外,MongoDB ObjectId 经常也会被拿来当做分布式 ID 的解决方案。 + +![](https://img-blog.csdnimg.cn/20210207103320582.png) + +MongoDB ObjectId 一共需要 12 个字节存储: + +- 0~3:时间戳 +- 3~6: 代表机器 ID +- 7~8:机器进程 ID +- 9~11 :自增值 + +**MongoDB 方案的优缺点:** + +- **优点** : 性能不错并且生成的 ID 是有序递增的 +- **缺点** : 需要解决重复 ID 问题(当机器时间不对的情况下,可能导致会产生重复 ID) 、有安全性问题(ID 生成有规律性) + +### 算法 + +#### UUID + +UUID 是 Universally Unique Identifier(通用唯一标识符) 的缩写。UUID 包含 32 个 16 进制数字(8-4-4-4-12)。 + +JDK 就提供了现成的生成 UUID 的方法,一行代码就行了。 + +```java +//输出示例:cb4a9ede-fa5e-4585-b9bb-d60bce986eaa +UUID.randomUUID() +``` + +[RFC 4122](https://tools.ietf.org/html/rfc4122) 中关于 UUID 的示例是这样的: + +![](https://img-blog.csdnimg.cn/20210202110824430.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM0MzM3Mjcy,size_16,color_FFFFFF,t_70) + +我们这里重点关注一下这个 Version(版本),不同的版本对应的 UUID 的生成规则是不同的。 + +5 种不同的 Version(版本)值分别对应的含义(参考[维基百科对于 UUID 的介绍](https://zh.wikipedia.org/wiki/%E9%80%9A%E7%94%A8%E5%94%AF%E4%B8%80%E8%AF%86%E5%88%AB%E7%A0%81)): + +- **版本 1** : UUID 是根据时间和节点 ID(通常是 MAC 地址)生成; +- **版本 2** : UUID 是根据标识符(通常是组或用户 ID)、时间和节点 ID 生成; +- **版本 3、版本 5** : 版本 5 - 确定性 UUID 通过散列(hashing)名字空间(namespace)标识符和名称生成; +- **版本 4** : UUID 使用[随机性](https://zh.wikipedia.org/wiki/随机性)或[伪随机性](https://zh.wikipedia.org/wiki/伪随机性)生成。 + +下面是 Version 1 版本下生成的 UUID 的示例: + +![](https://img-blog.csdnimg.cn/20210202113013477.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM0MzM3Mjcy,size_16,color_FFFFFF,t_70) + +JDK 中通过 `UUID` 的 `randomUUID()` 方法生成的 UUID 的版本默认为 4。 + +```java +UUID uuid = UUID.randomUUID(); +int version = uuid.version();// 4 +``` + +另外,Variant(变体)也有 4 种不同的值,这种值分别对应不同的含义。这里就不介绍了,貌似平时也不怎么需要关注。 + +需要用到的时候,去看看维基百科对于 UUID 的 Variant(变体) 相关的介绍即可。 + +从上面的介绍中可以看出,UUID 可以保证唯一性,因为其生成规则包括 MAC 地址、时间戳、名字空间(Namespace)、随机或伪随机数、时序等元素,计算机基于这些规则生成的 UUID 是肯定不会重复的。 + +虽然,UUID 可以做到全局唯一性,但是,我们一般很少会使用它。 + +比如使用 UUID 作为 MySQL 数据库主键的时候就非常不合适: + +- 数据库主键要尽量越短越好,而 UUID 的消耗的存储空间比较大(32 个字符串,128 位)。 +- UUID 是无顺序的,InnoDB 引擎下,数据库主键的无序性会严重影响数据库性能。 + +最后,我们再简单分析一下 **UUID 的优缺点** (面试的时候可能会被问到的哦!) : + +- **优点** :生成速度比较快、简单易用 +- **缺点** : 存储消耗空间大(32 个字符串,128 位) 、 不安全(基于 MAC 地址生成 UUID 的算法会造成 MAC 地址泄露)、无序(非自增)、没有具体业务含义、需要解决重复 ID 问题(当机器时间不对的情况下,可能导致会产生重复 ID) + +#### Snowflake(雪花算法) + +Snowflake 是 Twitter 开源的分布式 ID 生成算法。Snowflake 由 64 bit 的二进制数字组成,这 64bit 的二进制被分成了几部分,每一部分存储的数据都有特定的含义: + +- **第 0 位**: 符号位(标识正负),始终为 0,没有用,不用管。 +- **第 1~41 位** :一共 41 位,用来表示时间戳,单位是毫秒,可以支撑 2 ^41 毫秒(约 69 年) +- **第 42~52 位** :一共 10 位,一般来说,前 5 位表示机房 ID,后 5 位表示机器 ID(实际项目中可以根据实际情况调整)。这样就可以区分不同集群/机房的节点。 +- **第 53~64 位** :一共 12 位,用来表示序列号。 序列号为自增值,代表单台机器每毫秒能够产生的最大 ID 数(2^12 = 4096),也就是说单台机器每毫秒最多可以生成 4096 个 唯一 ID。 + +![](https://oscimg.oschina.net/oscnet/up-a7e54a77b5ab1d9fa16d5ae3a3c50c5aee9.png) + +如果你想要使用 Snowflake 算法的话,一般不需要你自己再造轮子。有很多基于 Snowflake 算法的开源实现比如美团 的 Leaf、百度的 UidGenerator,并且这些开源实现对原有的 Snowflake 算法进行了优化。 + +另外,在实际项目中,我们一般也会对 Snowflake 算法进行改造,最常见的就是在 Snowflake 算法生成的 ID 中加入业务类型信息。 + +我们再来看看 Snowflake 算法的优缺点 : + +- **优点** :生成速度比较快、生成的 ID 有序递增、比较灵活(可以对 Snowflake 算法进行简单的改造比如加入业务 ID) +- **缺点** : 需要解决重复 ID 问题(依赖时间,当机器时间不对的情况下,可能导致会产生重复 ID)。 + +### 开源框架 + +#### UidGenerator(百度) + +[UidGenerator](https://github.com/baidu/uid-generator) 是百度开源的一款基于 Snowflake(雪花算法)的唯一 ID 生成器。 + +不过,UidGenerator 对 Snowflake(雪花算法)进行了改进,生成的唯一 ID 组成如下。 + +![](https://oscimg.oschina.net/oscnet/up-ad5b9dd0077a949db923611b2450277e406.png) + +可以看出,和原始 Snowflake(雪花算法)生成的唯一 ID 的组成不太一样。并且,上面这些参数我们都可以自定义。 + +UidGenerator 官方文档中的介绍如下: + +![](https://oscimg.oschina.net/oscnet/up-358b1a4cddb3675018b8595f66ece9cae88.png) + +自 18 年后,UidGenerator 就基本没有再维护了,我这里也不过多介绍。想要进一步了解的朋友,可以看看 [UidGenerator 的官方介绍](https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md)。 + +#### Leaf(美团) + +**[Leaf](https://github.com/Meituan-Dianping/Leaf)** 是美团开源的一个分布式 ID 解决方案 。这个项目的名字 Leaf(树叶) 起源于德国哲学家、数学家莱布尼茨的一句话: “There are no two identical leaves in the world”(世界上没有两片相同的树叶) 。这名字起得真心挺不错的,有点文艺青年那味了! + +![](https://img-blog.csdnimg.cn/20210422145229617.png) + +Leaf 提供了 **号段模式** 和 **Snowflake(雪花算法)** 这两种模式来生成分布式 ID。并且,它支持双号段,还解决了雪花 ID 系统时钟回拨问题。不过,时钟问题的解决需要弱依赖于 Zookeeper 。 + +Leaf 的诞生主要是为了解决美团各个业务线生成分布式 ID 的方法多种多样以及不可靠的问题。 + +Leaf 对原有的号段模式进行改进,比如它这里增加了双号段避免获取 DB 在获取号段的时候阻塞请求获取 ID 的线程。简单来说,就是我一个号段还没用完之前,我自己就主动提前去获取下一个号段(图片来自于美团官方文章:[《Leaf——美团点评分布式 ID 生成系统》](https://tech.meituan.com/2017/04/21/mt-leaf.html))。 + +![](https://img-blog.csdnimg.cn/20210422144846724.png) + +根据项目 README 介绍,在 4C8G VM 基础上,通过公司 RPC 方式调用,QPS 压测结果近 5w/s,TP999 1ms。 + +#### Tinyid(滴滴) + +[Tinyid](https://github.com/didi/tinyid) 是滴滴开源的一款基于数据库号段模式的唯一 ID 生成器。 + +数据库号段模式的原理我们在上面已经介绍过了。**Tinyid 有哪些亮点呢?** + +为了搞清楚这个问题,我们先来看看基于数据库号段模式的简单架构方案。(图片来自于 Tinyid 的官方 wiki:[《Tinyid 原理介绍》](https://github.com/didi/tinyid/wiki/tinyid%E5%8E%9F%E7%90%86%E4%BB%8B%E7%BB%8D)) + +![](https://oscimg.oschina.net/oscnet/up-4afc0e45c0c86ba5ad645d023dce11e53c2.png) + +在这种架构模式下,我们通过 HTTP 请求向发号器服务申请唯一 ID。负载均衡 router 会把我们的请求送往其中的一台 tinyid-server。 + +这种方案有什么问题呢?在我看来(Tinyid 官方 wiki 也有介绍到),主要由下面这 2 个问题: + +- 获取新号段的情况下,程序获取唯一 ID 的速度比较慢。 +- 需要保证 DB 高可用,这个是比较麻烦且耗费资源的。 + +除此之外,HTTP 调用也存在网络开销。 + +Tinyid 的原理比较简单,其架构如下图所示: + +![](https://oscimg.oschina.net/oscnet/up-53f74cd615178046d6c04fe50513fee74ce.png) + +相比于基于数据库号段模式的简单架构方案,Tinyid 方案主要做了下面这些优化: + +- **双号段缓存** :为了避免在获取新号段的情况下,程序获取唯一 ID 的速度比较慢。 Tinyid 中的号段在用到一定程度的时候,就会去异步加载下一个号段,保证内存中始终有可用号段。 +- **增加多 db 支持** :支持多个 DB,并且,每个 DB 都能生成唯一 ID,提高了可用性。 +- **增加 tinyid-client** :纯本地操作,无 HTTP 请求消耗,性能和可用性都有很大提升。 + +Tinyid 的优缺点这里就不分析了,结合数据库号段模式的优缺点和 Tinyid 的原理就能知道。 + +## 分布式 ID 生成方案总结 + +这篇文章中,我基本上已经把最常见的分布式 ID 生成方案都总结了一波。 + +除了上面介绍的方式之外,像 ZooKeeper 这类中间件也可以帮助我们生成唯一 ID。**没有银弹,一定要结合实际项目来选择最适合自己的方案。** \ No newline at end of file diff --git a/docs/distributed-system/distributed-transaction.md b/docs/distributed-system/distributed-transaction.md new file mode 100644 index 00000000000..985fefbee09 --- /dev/null +++ b/docs/distributed-system/distributed-transaction.md @@ -0,0 +1,7 @@ +# 分布式事务 + +这部分内容为我的星球专属,已经整理到了[《Java面试进阶指北 打造个人的技术竞争力》](https://www.yuque.com/docs/share/f37fc804-bfe6-4b0d-b373-9c462188fec7?# )中。 + +欢迎加入我的星球,[一个纯 Java 面试交流圈子 !Ready!](https://mp.weixin.qq.com/s?__biz=Mzg2OTA0Njk0OA==&mid=100015911&idx=1&sn=2e8a0f5acb749ecbcbb417aa8a4e18cc&chksm=4ea1b0ec79d639fae37df1b86f196e8ce397accfd1dd2004bcadb66b4df5f582d90ae0d62448#rd) (点击链接了解星球详细信息,还有专属优惠款可以领取)。 + +![](https://img-blog.csdnimg.cn/57cedfa4d3d1425a8e4c6a6807d8f732.png) diff --git a/docs/system-design/distributed-system/rpc/Dubbo.md b/docs/distributed-system/rpc/dubbo.md similarity index 97% rename from docs/system-design/distributed-system/rpc/Dubbo.md rename to docs/distributed-system/rpc/dubbo.md index 452c7f1b2f0..870cc45dc5f 100644 --- a/docs/system-design/distributed-system/rpc/Dubbo.md +++ b/docs/distributed-system/rpc/dubbo.md @@ -1,3 +1,5 @@ +# Dubbo知识点&面试题总结 + 这篇文章是我根据官方文档以及自己平时的使用情况,对 Dubbo 所做的一个总结。欢迎补充! ## RPC基础 @@ -9,7 +11,7 @@ **为什么要 RPC ?** 因为,两个不同的服务器上的服务提供的方法不在一个内存空间,所以,需要通过网络编程才能传递方法调用所需要的参数。并且,方法调用的结果也需要通过网络编程来接收。但是,如果我们自己手动网络编程来实现这个调用过程的话工作量是非常大的,因为,我们需要考虑底层传输方式(TCP还是UDP)、序列化方式等等方面。 -**RPC 能帮助我们做什么呢? ** 简单来说,通过 RPC 可以帮助我们调用远程计算机上某个服务的方法,这个过程就像调用本地方法一样简单。并且!我们不需要了解底层网络编程的具体细节。 +**RPC 能帮助我们做什么呢?** 简单来说,通过 RPC 可以帮助我们调用远程计算机上某个服务的方法,这个过程就像调用本地方法一样简单。并且!我们不需要了解底层网络编程的具体细节。 举个例子:两个不同的服务 A、B 部署在两台不同的机器上,服务 A 如果想要调用服务 B 中的某个方法的话就可以通过 RPC 来做。 @@ -52,7 +54,7 @@ ![](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2020-8/427f2168-1930-4c14-8760-415fac8db1d0-20200802184737978.png) -[Apache Dubbo](https://github.com/apache/incubator-dubbo) (incubating) |ˈdʌbəʊ| 是一款高性能、轻量级的开源 Java RPC 框架。 +[Apache Dubbo](https://github.com/apache/dubbo) |ˈdʌbəʊ| 是一款高性能、轻量级的开源 Java RPC 框架。 根据 [Dubbo 官方文档](https://dubbo.apache.org/zh/)的介绍,Dubbo 提供了六大核心能力 @@ -85,7 +87,7 @@ Dubbo 是由阿里开源,后来加入了 Apache 。正式由于 Dubbo 的出 不过,Dubbo 的出现让上述问题得到了解决。**Dubbo 帮助我们解决了什么问题呢?** -1. **负载均衡** : 同一个服务部署在不同的机器时该调用那一台机器上的服务。 +1. **负载均衡** : 同一个服务部署在不同的机器时该调用哪一台机器上的服务。 2. **服务调用链路生成** : 随着系统的发展,服务越来越多,服务间依赖关系变得错踪复杂,甚至分不清哪个应用要在哪个应用之前启动,架构师都不能完整的描述应用的架构关系。Dubbo 可以为我们解决服务之间互相是如何调用的。 3. **服务访问压力以及时长统计、资源调度和治理** :基于访问压力实时管理集群容量,提高集群利用率。 4. ...... @@ -186,7 +188,7 @@ public class XxxLoadBalance implements LoadBalance { } ``` -我们将这个是实现类的路径写入到`resources` 目录下的 `META-INF/dubbo/org.apache.dubbo.rpc.cluster.LoadBalance`文件中即可。 +我们将这个实现类的路径写入到`resources` 目录下的 `META-INF/dubbo/org.apache.dubbo.rpc.cluster.LoadBalance`文件中即可。 ```java src @@ -229,7 +231,7 @@ Dubbo 采用 微内核(Microkernel) + 插件(Plugin) 模式,简单来 正是因为Dubbo基于微内核架构,才使得我们可以随心所欲替换Dubbo的功能点。比如你觉得Dubbo 的序列化模块实现的不满足自己要求,没关系啊!你自己实现一个序列化模块就好了啊! -通常情况下,微核心都会采用 Factory、IoC、OSGi 等方式管理插件生命周期。Dubbo 不想依赖 Spring 等 IoC 容器,也不想自已造一个小的 IoC 容器(过度设计),因此采用了一种最简单的 Factory 方式管理插件 :**JDK 标准的 SPI 扩展机制** (`java.util.ServiceLoader`)。 +通常情况下,微核心都会采用 Factory、IoC、OSGi 等方式管理插件生命周期。Dubbo 不想依赖 Spring 等 IoC 容器,也不想自己造一个小的 IoC 容器(过度设计),因此采用了一种最简单的 Factory 方式管理插件 :**JDK 标准的 SPI 扩展机制** (`java.util.ServiceLoader`)。 ### 关于Dubbo架构的一些自测小问题 @@ -299,7 +301,7 @@ public abstract class AbstractLoadBalance implements LoadBalance { ` RandomLoadBalance` 具体的实现原理非常简单,假如有两个提供相同服务的服务器 S1,S2,S1的权重为7,S2的权重为3。 -我们把这些权重值分布在坐标区间会得到:S1->[0, 7) ,S2->(7, 10]。我们生成[0, 10) 之间的随机数,随机数落到对应的区间,我们就选择对应的服务器来处理请求。 +我们把这些权重值分布在坐标区间会得到:S1->[0, 7) ,S2->[7, 10)。我们生成[0, 10) 之间的随机数,随机数落到对应的区间,我们就选择对应的服务器来处理请求。 ![RandomLoadBalance](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/java-guide-blog/%20RandomLoadBalance.png) diff --git "a/docs/system-design/distributed-system/rpc/\346\234\215\345\212\241\344\271\213\351\227\264\347\232\204\350\260\203\347\224\250\344\270\272\345\225\245\344\270\215\347\233\264\346\216\245\347\224\250HTTP\350\200\214\347\224\250RPC.md" b/docs/distributed-system/rpc/why-use-rpc.md similarity index 85% rename from "docs/system-design/distributed-system/rpc/\346\234\215\345\212\241\344\271\213\351\227\264\347\232\204\350\260\203\347\224\250\344\270\272\345\225\245\344\270\215\347\233\264\346\216\245\347\224\250HTTP\350\200\214\347\224\250RPC.md" rename to docs/distributed-system/rpc/why-use-rpc.md index 532e2cded3f..a2fe5dbefa2 100644 --- "a/docs/system-design/distributed-system/rpc/\346\234\215\345\212\241\344\271\213\351\227\264\347\232\204\350\260\203\347\224\250\344\270\272\345\225\245\344\270\215\347\233\264\346\216\245\347\224\250HTTP\350\200\214\347\224\250RPC.md" +++ b/docs/distributed-system/rpc/why-use-rpc.md @@ -1,3 +1,5 @@ +# 服务之间的调用为啥不直接用 HTTP 而用 RPC? + ## 什么是 RPC?RPC原理是什么? ### **什么是 RPC?** @@ -29,7 +31,7 @@ RPC(Remote Procedure Call)—远程过程调用,它是一种通过网络 - **RMI(JDK自带):** JDK自带的RPC,有很多局限性,不推荐使用。 - **Dubbo:** Dubbo是 阿里巴巴公司开源的一个高性能优秀的服务框架,使得应用可通过高性能的 RPC 实现服务的输出和输入功能,可以和 Spring框架无缝集成。目前 Dubbo 已经成为 Spring Cloud Alibaba 中的官方组件。 - **gRPC** :gRPC是可以在任何环境中运行的现代开源高性能RPC框架。它可以通过可插拔的支持来有效地连接数据中心内和跨数据中心的服务,以实现负载平衡,跟踪,运行状况检查和身份验证。它也适用于分布式计算的最后一英里,以将设备,移动应用程序和浏览器连接到后端服务。 -- **Hessian:** Hessian是一个轻量级的remotingonhttp工具,使用简单的方法提供了RMI的功能。 相比WebService,Hessian更简单、快捷。采用的是二进制RPC协议,因为采用的是二进制协议,所以它很适合于发送二进制数据。 +- **Hessian:** Hessian是一个轻量级的remoting on http工具,使用简单的方法提供了RMI的功能。 相比WebService,Hessian更简单、快捷。采用的是二进制RPC协议,因为采用的是二进制协议,所以它很适合于发送二进制数据。 - **Thrift:** Apache Thrift是Facebook开源的跨语言的RPC通信框架,目前已经捐献给Apache基金会管理,由于其跨语言特性和出色的性能,在很多互联网公司得到应用,有能力的公司甚至会基于thrift研发一套分布式服务框架,增加诸如服务注册、服务发现等功能。 ### RPC学习材料 @@ -50,9 +52,9 @@ RPC 只是一种概念、一种设计,就是为了解决 **不同服务之间 > 我们通常谈计算机网络的五层协议的体系结构是指:应用层、传输层、网络层、数据链路层、物理层。 > -> **应用层(application-layer)的任务是通过应用进程间的交互来完成特定网络应用。**HTTP 属于应用层协议,它会基于TCP/IP通信协议来传递数据(HTML 文件, 图片文件, 查询结果等)。HTTP协议工作于客户端-服务端架构为上。浏览器作为HTTP客户端通过 URL 向HTTP服务端即WEB服务器发送所有请求。Web服务器根据接收到的请求后,向客户端发送响应信息。HTTP协议建立在 TCP 协议之上。 +> **应用层(application-layer)的任务是通过应用进程间的交互来完成特定网络应用。** HTTP 属于应用层协议,它会基于TCP/IP通信协议来传递数据(HTML 文件, 图片文件, 查询结果等)。HTTP协议工作于客户端-服务端架构上。浏览器作为HTTP客户端通过 URL 向HTTP服务端即WEB服务器发送所有请求。Web服务器根据接收到的请求后,向客户端发送响应信息。HTTP协议建立在 TCP 协议之上。 > -> **运输层(transport layer)的主要任务就是负责向两台主机进程之间的通信提供通用的数据传输服务**。TCP是传输层协议,主要解决数据如何在网络中传输。相比于UDP,**TCP** 提供的是**面向连接**的,**可靠的**数据传输服务。 +> **传输层(transport layer)的主要任务就是负责向两台主机进程之间的通信提供通用的数据传输服务**。TCP是传输层协议,主要解决数据如何在网络中传输。相比于UDP,**TCP** 提供的是**面向连接**的,**可靠的**数据传输服务。 ### RPC框架功能更齐全 @@ -65,7 +67,7 @@ RPC 进行服务注册和发现的一方面原因吧! ### 一个常见的错误观点 -很多文章中还会提到说 HTTP 协议相较于自定义 TCP 报文协议,增加的开销在于连接的建立与断开,但是这个观点已经被否认,下面截取自知乎中一个回答,原回答地址:https://www.zhihu.com/question/41609070/answer/191965937。 +很多文章中还会提到说 HTTP 协议相较于自定义 TCP 报文协议,增加的开销在于连接的建立与断开,但是这个观点已经被否认,下面截取自知乎中一个回答,原回答地址:https://www.zhihu.com/question/41609070/answer/191965937 。 >首先要否认一点 HTTP 协议相较于自定义 TCP 报文协议,增加的开销在于连接的建立与断开。HTTP 协议是支持连接池复用的,也就是建立一定数量的连接不断开,并不会频繁的创建和销毁连接。二一要说的是 HTTP 也可以使用 Protobuf 这种二进制编码协议对内容进行编码,因此二者最大的区别还是在传输协议上。 diff --git a/docs/system-design/distributed-system/zookeeper/images/curator.png "b/docs/distributed-system/\345\210\206\345\270\203\345\274\217\345\215\217\350\260\203/zookeeper/images/curator.png" similarity index 100% rename from docs/system-design/distributed-system/zookeeper/images/curator.png rename to "docs/distributed-system/\345\210\206\345\270\203\345\274\217\345\215\217\350\260\203/zookeeper/images/curator.png" diff --git "a/docs/system-design/distributed-system/zookeeper/images/watche\346\234\272\345\210\266.png" "b/docs/distributed-system/\345\210\206\345\270\203\345\274\217\345\215\217\350\260\203/zookeeper/images/watche\346\234\272\345\210\266.png" similarity index 100% rename from "docs/system-design/distributed-system/zookeeper/images/watche\346\234\272\345\210\266.png" rename to "docs/distributed-system/\345\210\206\345\270\203\345\274\217\345\215\217\350\260\203/zookeeper/images/watche\346\234\272\345\210\266.png" diff --git a/docs/system-design/distributed-system/zookeeper/images/znode-structure.png "b/docs/distributed-system/\345\210\206\345\270\203\345\274\217\345\215\217\350\260\203/zookeeper/images/znode-structure.png" similarity index 100% rename from docs/system-design/distributed-system/zookeeper/images/znode-structure.png rename to "docs/distributed-system/\345\210\206\345\270\203\345\274\217\345\215\217\350\260\203/zookeeper/images/znode-structure.png" diff --git "a/docs/system-design/distributed-system/zookeeper/images/zookeeper\351\233\206\347\276\244.png" "b/docs/distributed-system/\345\210\206\345\270\203\345\274\217\345\215\217\350\260\203/zookeeper/images/zookeeper\351\233\206\347\276\244.png" similarity index 100% rename from "docs/system-design/distributed-system/zookeeper/images/zookeeper\351\233\206\347\276\244.png" rename to "docs/distributed-system/\345\210\206\345\270\203\345\274\217\345\215\217\350\260\203/zookeeper/images/zookeeper\351\233\206\347\276\244.png" diff --git "a/docs/system-design/distributed-system/zookeeper/images/zookeeper\351\233\206\347\276\244\344\270\255\347\232\204\350\247\222\350\211\262.png" "b/docs/distributed-system/\345\210\206\345\270\203\345\274\217\345\215\217\350\260\203/zookeeper/images/zookeeper\351\233\206\347\276\244\344\270\255\347\232\204\350\247\222\350\211\262.png" similarity index 100% rename from "docs/system-design/distributed-system/zookeeper/images/zookeeper\351\233\206\347\276\244\344\270\255\347\232\204\350\247\222\350\211\262.png" rename to "docs/distributed-system/\345\210\206\345\270\203\345\274\217\345\215\217\350\260\203/zookeeper/images/zookeeper\351\233\206\347\276\244\344\270\255\347\232\204\350\247\222\350\211\262.png" diff --git "a/docs/system-design/distributed-system/zookeeper/images/\350\277\236\346\216\245ZooKeeper\346\234\215\345\212\241.png" "b/docs/distributed-system/\345\210\206\345\270\203\345\274\217\345\215\217\350\260\203/zookeeper/images/\350\277\236\346\216\245ZooKeeper\346\234\215\345\212\241.png" similarity index 100% rename from "docs/system-design/distributed-system/zookeeper/images/\350\277\236\346\216\245ZooKeeper\346\234\215\345\212\241.png" rename to "docs/distributed-system/\345\210\206\345\270\203\345\274\217\345\215\217\350\260\203/zookeeper/images/\350\277\236\346\216\245ZooKeeper\346\234\215\345\212\241.png" diff --git a/docs/system-design/distributed-system/zookeeper/zookeeper-in-action.md "b/docs/distributed-system/\345\210\206\345\270\203\345\274\217\345\215\217\350\260\203/zookeeper/zookeeper-in-action.md" similarity index 84% rename from docs/system-design/distributed-system/zookeeper/zookeeper-in-action.md rename to "docs/distributed-system/\345\210\206\345\270\203\345\274\217\345\215\217\350\260\203/zookeeper/zookeeper-in-action.md" index 4b1f9eb9175..71dad09a4a2 100644 --- a/docs/system-design/distributed-system/zookeeper/zookeeper-in-action.md +++ "b/docs/distributed-system/\345\210\206\345\270\203\345\274\217\345\215\217\350\260\203/zookeeper/zookeeper-in-action.md" @@ -1,31 +1,4 @@ - - - - - -- [1. 前言](#1-前言) -- [2. ZooKeeper 安装和使用](#2-zookeeper-安装和使用) - - [2.1. 使用Docker 安装 zookeeper](#21-使用docker-安装-zookeeper) - - [2.2. 连接 ZooKeeper 服务](#22-连接-zookeeper-服务) - - [2.3. 常用命令演示](#23-常用命令演示) - - [2.3.1. 查看常用命令(help 命令)](#231-查看常用命令help-命令) - - [2.3.2. 创建节点(create 命令)](#232-创建节点create-命令) - - [2.3.3. 更新节点数据内容(set 命令)](#233-更新节点数据内容set-命令) - - [2.3.4. 获取节点的数据(get 命令)](#234-获取节点的数据get-命令) - - [2.3.5. 查看某个目录下的子节点(ls 命令)](#235-查看某个目录下的子节点ls-命令) - - [2.3.6. 查看节点状态(stat 命令)](#236-查看节点状态stat-命令) - - [2.3.7. 查看节点信息和状态(ls2 命令)](#237-查看节点信息和状态ls2-命令) - - [2.3.8. 删除节点(delete 命令)](#238-删除节点delete-命令) -- [3. ZooKeeper Java客户端 Curator简单使用](#3-zookeeper-java客户端-curator简单使用) - - [3.1. 连接 ZooKeeper 客户端](#31-连接-zookeeper-客户端) - - [3.2. 数据节点的增删改查](#32-数据节点的增删改查) - - [3.2.1. 创建节点](#321-创建节点) - - [3.2.2. 删除节点](#322-删除节点) - - [3.2.3. 获取/更新节点数据内容](#323-获取更新节点数据内容) - - [3.2.4. 获取某个节点的所有子节点路径](#324-获取某个节点的所有子节点路径) - - - +# ZooKeeper 实战 ## 1. 前言 diff --git a/docs/system-design/distributed-system/zookeeper/zookeeper-intro.md "b/docs/distributed-system/\345\210\206\345\270\203\345\274\217\345\215\217\350\260\203/zookeeper/zookeeper-intro.md" similarity index 83% rename from docs/system-design/distributed-system/zookeeper/zookeeper-intro.md rename to "docs/distributed-system/\345\210\206\345\270\203\345\274\217\345\215\217\350\260\203/zookeeper/zookeeper-intro.md" index 4978fb1a979..3ead663c4b3 100644 --- a/docs/system-design/distributed-system/zookeeper/zookeeper-intro.md +++ "b/docs/distributed-system/\345\210\206\345\270\203\345\274\217\345\215\217\350\260\203/zookeeper/zookeeper-intro.md" @@ -1,36 +1,4 @@ - - - - - -- [1. 前言](#1-前言) -- [2. ZooKeeper 介绍](#2-zookeeper-介绍) - - [2.1. ZooKeeper 由来](#21-zookeeper-由来) - - [2.2. ZooKeeper 概览](#22-zookeeper-概览) - - [2.3. ZooKeeper 特点](#23-zookeeper-特点) - - [2.4. ZooKeeper 典型应用场景](#24-zookeeper-典型应用场景) - - [2.5. 有哪些著名的开源项目用到了 ZooKeeper?](#25-有哪些著名的开源项目用到了-zookeeper) -- [3. ZooKeeper 重要概念解读](#3-zookeeper-重要概念解读) - - [3.1. Data model(数据模型)](#31-data-model数据模型) - - [3.2. znode(数据节点)](#32-znode数据节点) - - [3.2.1. znode 4种类型](#321-znode-4种类型) - - [3.2.2. znode 数据结构](#322-znode-数据结构) - - [3.3. 版本(version)](#33-版本version) - - [3.4. ACL(权限控制)](#34-acl权限控制) - - [3.5. Watcher(事件监听器)](#35-watcher事件监听器) - - [3.6. 会话(Session)](#36-会话session) -- [4. ZooKeeper 集群](#4-zookeeper-集群) - - [4.1. ZooKeeper 集群角色](#41-zookeeper-集群角色) - - [4.2. ZooKeeper 集群中的服务器状态](#42-zookeeper-集群中的服务器状态) - - [4.3. ZooKeeper 集群为啥最好奇数台?](#43-zookeeper-集群为啥最好奇数台) -- [5. ZAB 协议和Paxos 算法](#5-zab-协议和paxos-算法) - - [5.1. ZAB 协议介绍](#51-zab-协议介绍) - - [5.2. ZAB 协议两种基本的模式:崩溃恢复和消息广播](#52-zab-协议两种基本的模式崩溃恢复和消息广播) -- [6. 总结](#6-总结) -- [7. 参考](#7-参考) - - - +# ZooKeeper 相关概念总结(入门) ## 1. 前言 @@ -50,7 +18,7 @@ 另外,本文不光会涉及到 ZooKeeper 的一些概念,后面的文章会介绍到 ZooKeeper 常见命令的使用以及使用 Apache Curator 作为 ZooKeeper 的客户端。 -*如果文章有任何需要改善和完善的地方,欢迎在评论区指出,共同进步!* +_如果文章有任何需要改善和完善的地方,欢迎在评论区指出,共同进步!_ ## 2. ZooKeeper 介绍 @@ -109,7 +77,7 @@ ZooKeeper 数据模型采用层次化的多叉树形结构,每个节点上都 强调一句:**ZooKeeper 主要是用来协调服务的,而不是用来存储业务数据的,所以不要放比较大的数据在 znode 上,ZooKeeper 给出的上限是每个结点的数据大小最大是 1M。** -从下图可以更直观地看出:ZooKeeper 节点路径标识方式和 Unix 文件系统路径非常相似,都是由一系列使用斜杠"/"进行分割的路径表示,开发人员可以向这个节点中写人数据,也可以在节点下面创建子节点。这些操作我们后面都会介绍到。 +从下图可以更直观地看出:ZooKeeper 节点路径标识方式和 Unix 文件系统路径非常相似,都是由一系列使用斜杠"/"进行分割的路径表示,开发人员可以向这个节点中写入数据,也可以在节点下面创建子节点。这些操作我们后面都会介绍到。 ![ZooKeeper 数据模型](images/znode-structure.png) @@ -117,7 +85,7 @@ ZooKeeper 数据模型采用层次化的多叉树形结构,每个节点上都 介绍了 ZooKeeper 树形数据模型之后,我们知道每个数据节点在 ZooKeeper 中被称为 **znode**,它是 ZooKeeper 中数据的最小单元。你要存放的数据就放在上面,是你使用 ZooKeeper 过程中经常需要接触到的一个概念。 -#### 3.2.1. znode 4种类型 +#### 3.2.1. znode 4 种类型 我们通常是将 znode 分为 4 大类: @@ -237,8 +205,8 @@ ZooKeeper 集群中的所有机器通过一个 **Leader 选举过程** 来选定 | 角色 | 说明 | | -------- | ------------------------------------------------------------ | | Leader | 为客户端提供读和写的服务,负责投票的发起和决议,更新系统状态。 | -| Follower | 为客户端提供读服务,如果是写服务则转发给 Leader。在选举过程中参与投票。 | -| Observer | 为客户端提供读服务器,如果是写服务则转发给 Leader。不参与选举过程中的投票,也不参与“过半写成功”策略。在不影响写性能的情况下提升集群的读性能。此角色于 ZooKeeper3.3 系列新增的角色。 | +| Follower | 为客户端提供读服务,如果是写服务则转发给 Leader。参与选举过程中的投票。 | +| Observer | 为客户端提供读服务,如果是写服务则转发给 Leader。不参与选举过程中的投票,也不参与“过半写成功”策略。在不影响写性能的情况下提升集群的读性能。此角色于 ZooKeeper3.3 系列新增的角色。 | 当 Leader 服务器出现网络中断、崩溃退出与重启等异常情况时,就会进入 Leader 选举过程,这个过程会选举产生新的 Leader 服务器。 @@ -260,14 +228,27 @@ ZooKeeper 集群中的所有机器通过一个 **Leader 选举过程** 来选定 ### 4.3. ZooKeeper 集群为啥最好奇数台? ZooKeeper 集群在宕掉几个 ZooKeeper 服务器之后,如果剩下的 ZooKeeper 服务器个数大于宕掉的个数的话整个 ZooKeeper 才依然可用。假如我们的集群中有 n 台 ZooKeeper 服务器,那么也就是剩下的服务数必须大于 n/2。先说一下结论,2n 和 2n-1 的容忍度是一样的,都是 n-1,大家可以先自己仔细想一想,这应该是一个很简单的数学问题了。 + 比如假如我们有 3 台,那么最大允许宕掉 1 台 ZooKeeper 服务器,如果我们有 4 台的的时候也同样只允许宕掉 1 台。 假如我们有 5 台,那么最大允许宕掉 2 台 ZooKeeper 服务器,如果我们有 6 台的的时候也同样只允许宕掉 2 台。 综上,何必增加那一个不必要的 ZooKeeper 呢? -## 5. ZAB 协议和Paxos 算法 +### 4.4. ZooKeeper 选举的过半机制防止脑裂 + +**何为集群脑裂?** + +对于一个集群,通常多台机器会部署在不同机房,来提高这个集群的可用性。保证可用性的同时,会发生一种机房间网络线路故障,导致机房间网络不通,而集群被割裂成几个小集群。这时候子集群各自选主导致“脑裂”的情况。 + +举例说明:比如现在有一个由 6 台服务器所组成的一个集群,部署在了 2 个机房,每个机房 3 台。正常情况下只有 1 个 leader,但是当两个机房中间网络断开的时候,每个机房的 3 台服务器都会认为另一个机房的 3 台服务器下线,而选出自己的 leader 并对外提供服务。若没有过半机制,当网络恢复的时候会发现有 2 个 leader。仿佛是 1 个大脑(leader)分散成了 2 个大脑,这就发生了脑裂现象。脑裂期间 2 个大脑都可能对外提供了服务,这将会带来数据一致性等问题。 + +**过半机制是如何防止脑裂现象产生的?** + +ZooKeeper 的过半机制导致不可能产生 2 个 leader,因为少于等于一半是不可能产生 leader 的,这就使得不论机房的机器如何分配都不可能发生脑裂。 + +## 5. ZAB 协议和 Paxos 算法 -Paxos 算法应该可以说是 ZooKeeper 的灵魂了。但是,ZooKeeper 并没有完全采用 Paxos算法 ,而是使用 ZAB 协议作为其保证数据一致性的核心算法。另外,在ZooKeeper的官方文档中也指出,ZAB协议并不像 Paxos 算法那样,是一种通用的分布式一致性算法,它是一种特别为Zookeeper设计的崩溃可恢复的原子消息广播算法。 +Paxos 算法应该可以说是 ZooKeeper 的灵魂了。但是,ZooKeeper 并没有完全采用 Paxos 算法 ,而是使用 ZAB 协议作为其保证数据一致性的核心算法。另外,在 ZooKeeper 的官方文档中也指出,ZAB 协议并不像 Paxos 算法那样,是一种通用的分布式一致性算法,它是一种特别为 Zookeeper 设计的崩溃可恢复的原子消息广播算法。 ### 5.1. ZAB 协议介绍 @@ -275,15 +256,15 @@ ZAB(ZooKeeper Atomic Broadcast 原子广播) 协议是为分布式协调服 ### 5.2. ZAB 协议两种基本的模式:崩溃恢复和消息广播 -ZAB 协议包括两种基本的模式,分别是 +ZAB 协议包括两种基本的模式,分别是 -- **崩溃恢复** :当整个服务框架在启动过程中,或是当 Leader 服务器出现网络中断、崩溃退出与重启等异常情况时,ZAB 协议就会进入恢复模式并选举产生新的Leader服务器。当选举产生了新的 Leader 服务器,同时集群中已经有过半的机器与该Leader服务器完成了状态同步之后,ZAB协议就会退出恢复模式。其中,**所谓的状态同步是指数据同步,用来保证集群中存在过半的机器能够和Leader服务器的数据状态保持一致**。 -- **消息广播** :**当集群中已经有过半的Follower服务器完成了和Leader服务器的状态同步,那么整个服务框架就可以进入消息广播模式了。** 当一台同样遵守ZAB协议的服务器启动后加入到集群中时,如果此时集群中已经存在一个Leader服务器在负责进行消息广播,那么新加入的服务器就会自觉地进入数据恢复模式:找到Leader所在的服务器,并与其进行数据同步,然后一起参与到消息广播流程中去。 +- **崩溃恢复** :当整个服务框架在启动过程中,或是当 Leader 服务器出现网络中断、崩溃退出与重启等异常情况时,ZAB 协议就会进入恢复模式并选举产生新的 Leader 服务器。当选举产生了新的 Leader 服务器,同时集群中已经有过半的机器与该 Leader 服务器完成了状态同步之后,ZAB 协议就会退出恢复模式。其中,**所谓的状态同步是指数据同步,用来保证集群中存在过半的机器能够和 Leader 服务器的数据状态保持一致**。 +- **消息广播** :**当集群中已经有过半的 Follower 服务器完成了和 Leader 服务器的状态同步,那么整个服务框架就可以进入消息广播模式了。** 当一台同样遵守 ZAB 协议的服务器启动后加入到集群中时,如果此时集群中已经存在一个 Leader 服务器在负责进行消息广播,那么新加入的服务器就会自觉地进入数据恢复模式:找到 Leader 所在的服务器,并与其进行数据同步,然后一起参与到消息广播流程中去。 -关于 **ZAB 协议&Paxos算法** 需要讲和理解的东西太多了,具体可以看下面这两篇文章: +关于 **ZAB 协议&Paxos 算法** 需要讲和理解的东西太多了,具体可以看下面这两篇文章: -- [图解 Paxos 一致性协议](http://codemacro.com/2014/10/15/explain-poxos/) -- [Zookeeper ZAB 协议分析](https://dbaplus.cn/news-141-1875-1.html) +- [图解 Paxos 一致性协议](http://codemacro.com/2014/10/15/explain-poxos/) +- [Zookeeper ZAB 协议分析](https://dbaplus.cn/news-141-1875-1.html) ## 6. 总结 @@ -296,4 +277,4 @@ ZAB 协议包括两种基本的模式,分别是 ## 7. 参考 -1. 《从 Paxos 到 ZooKeeper 分布式一致性原理与实践》 \ No newline at end of file +1. 《从 Paxos 到 ZooKeeper 分布式一致性原理与实践》 diff --git a/docs/system-design/distributed-system/zookeeper/zookeeper-plus.md "b/docs/distributed-system/\345\210\206\345\270\203\345\274\217\345\215\217\350\260\203/zookeeper/zookeeper-plus.md" similarity index 95% rename from docs/system-design/distributed-system/zookeeper/zookeeper-plus.md rename to "docs/distributed-system/\345\210\206\345\270\203\345\274\217\345\215\217\350\260\203/zookeeper/zookeeper-plus.md" index b70ab4c03bf..11f2ac5a1a8 100644 --- a/docs/system-design/distributed-system/zookeeper/zookeeper-plus.md +++ "b/docs/distributed-system/\345\210\206\345\270\203\345\274\217\345\215\217\350\260\203/zookeeper/zookeeper-plus.md" @@ -1,39 +1,6 @@ -[FrancisQ](https://juejin.im/user/5c33853851882525ea106810) 投稿。 - - - - - - -- [1. 好久不见](#1-好久不见) -- [2. 什么是ZooKeeper](#2-什么是zookeeper) -- [3. 一致性问题](#3-一致性问题) -- [4. 一致性协议和算法](#4-一致性协议和算法) - - [4.1. 2PC(两阶段提交)](#41-2pc两阶段提交) - - [4.2. 3PC(三阶段提交)](#42-3pc三阶段提交) - - [4.3. `Paxos` 算法](#43-paxos-算法) - - [4.3.1. prepare 阶段](#431-prepare-阶段) - - [4.3.2. accept 阶段](#432-accept-阶段) - - [4.3.3. `paxos` 算法的死循环问题](#433-paxos-算法的死循环问题) -- [5. 引出 `ZAB`](#5-引出-zab) - - [5.1. `Zookeeper` 架构](#51-zookeeper-架构) - - [5.2. `ZAB` 中的三个角色](#52-zab-中的三个角色) - - [5.3. 消息广播模式](#53-消息广播模式) - - [5.4. 崩溃恢复模式](#54-崩溃恢复模式) -- [6. Zookeeper的几个理论知识](#6-zookeeper的几个理论知识) - - [6.1. 数据模型](#61-数据模型) - - [6.2. 会话](#62-会话) - - [6.3. ACL](#63-acl) - - [6.4. Watcher机制](#64-watcher机制) -- [7. Zookeeper的几个典型应用场景](#7-zookeeper的几个典型应用场景) - - [7.1. 选主](#71-选主) - - [7.2. 分布式锁](#72-分布式锁) - - [7.3. 命名服务](#73-命名服务) - - [7.4. 集群管理和注册中心](#74-集群管理和注册中心) -- [8. 总结](#8-总结) - - +# ZooKeeper 相关概念总结(进阶) +> [FrancisQ](https://juejin.im/user/5c33853851882525ea106810) 投稿。 ## 1. 好久不见 @@ -184,7 +151,7 @@ ### 5.1. `Zookeeper` 架构 -作为一个优秀高效且可靠的分布式协调框架,`ZooKeeper` 在解决分布式数据一致性问题时并没有直接使用 `Paxos` ,而是专门定制了一致性协议叫做 `ZAB(ZooKeeper Automic Broadcast)` 原子广播协议,该协议能够很好地支持 **崩溃恢复** 。 +作为一个优秀高效且可靠的分布式协调框架,`ZooKeeper` 在解决分布式数据一致性问题时并没有直接使用 `Paxos` ,而是专门定制了一致性协议叫做 `ZAB(ZooKeeper Atomic Broadcast)` 原子广播协议,该协议能够很好地支持 **崩溃恢复** 。 ![Zookeeper架构](https://img-blog.csdnimg.cn/img_convert/0c38d08ea026e25bf3849cc7654a4e79.png) @@ -373,7 +340,7 @@ 看到这里是不是觉得 `zookeeper` 实在是太强大了,它怎么能这么能干! -别急,它能干的事情还很多呢。可能我们会有这样的需求,我们需要了解整个集群中有多少机器在工作,我们想对及群众的每台机器的运行时状态进行数据采集,对集群中机器进行上下线操作等等。 +别急,它能干的事情还很多呢。可能我们会有这样的需求,我们需要了解整个集群中有多少机器在工作,我们想对集群中的每台机器的运行时状态进行数据采集,对集群中机器进行上下线操作等等。 而 `zookeeper` 天然支持的 `watcher` 和 临时节点能很好的实现这些需求。我们可以为每条机器创建临时节点,并监控其父节点,如果子节点列表有变动(我们可能创建删除了临时节点),那么我们可以使用在其父节点绑定的 `watcher` 进行状态监控和回调。 @@ -405,4 +372,4 @@ * `zookeeper` 的典型应用场景,比如选主,注册中心等等。 - 如果忘了可以回去看看再次理解一下,如果有疑问和建议欢迎提出🤝🤝🤝。 \ No newline at end of file + 如果忘了可以回去看看再次理解一下,如果有疑问和建议欢迎提出🤝🤝🤝。 diff --git "a/docs/system-design/distributed-system/CAP\347\220\206\350\256\272.md" "b/docs/distributed-system/\347\220\206\350\256\272&\347\256\227\346\263\225/cap&base\347\220\206\350\256\272.md" similarity index 57% rename from "docs/system-design/distributed-system/CAP\347\220\206\350\256\272.md" rename to "docs/distributed-system/\347\220\206\350\256\272&\347\256\227\346\263\225/cap&base\347\220\206\350\256\272.md" index d12ffaa17f9..3340409a799 100644 --- "a/docs/system-design/distributed-system/CAP\347\220\206\350\256\272.md" +++ "b/docs/distributed-system/\347\220\206\350\256\272&\347\256\227\346\263\225/cap&base\347\220\206\350\256\272.md" @@ -1,3 +1,6 @@ + +# CAP & BASE理论 + 经历过技术面试的小伙伴想必对这个两个概念已经再熟悉不过了! Guide哥当年参加面试的时候,不夸张地说,只要问到分布式相关的内容,面试官几乎是必定会问这两个分布式相关的理论。 @@ -24,11 +27,11 @@ Guide哥当年参加面试的时候,不夸张地说,只要问到分布式相 CAP 理论的提出者布鲁尔在提出 CAP 猜想的时候,并没有详细定义 **Consistency**、**Availability**、**Partition Tolerance** 三个单词的明确定义。 -因此,对于 CAP 的民间解读有很多,一般比较被大家推荐的是下面 👇 这种版本的解。 +因此,对于 CAP 的民间解读有很多,一般比较被大家推荐的是下面 👇 这种版本的解读。 -在理论计算机科学中,CAP 定理(CAP theorem)指出对于一个分布式系统来说,当设计读写操作时,只能能同时满足以下三点中的两个: +在理论计算机科学中,CAP 定理(CAP theorem)指出对于一个分布式系统来说,当设计读写操作时,只能同时满足以下三点中的两个: -- **一致性(Consistence)** : 所有节点访问同一份最新的数据副本 +- **一致性(Consistency)** : 所有节点访问同一份最新的数据副本 - **可用性(Availability)**: 非故障的节点在合理的时间内返回合理的响应(不是错误或者超时的响应)。 - **分区容错性(Partition tolerance)** : 分布式系统出现网络分区的时候,仍然能够对外提供服务。 @@ -84,4 +87,71 @@ CAP 理论的提出者布鲁尔在提出 CAP 猜想的时候,并没有详细 1. [CAP 定理简化](https://medium.com/@ravindraprasad/cap-theorem-simplified-28499a67eab4) (英文,有趣的案例) 2. [神一样的 CAP 理论被应用在何方](https://juejin.im/post/6844903936718012430) (中文,列举了很多实际的例子) -3. [请停止呼叫数据库 CP 或 AP ](https://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html) (英文,带给你不一样的思考) \ No newline at end of file +3. [请停止呼叫数据库 CP 或 AP ](https://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html) (英文,带给你不一样的思考) + +## BASE 理论 + +[BASE 理论](https://dl.acm.org/doi/10.1145/1394127.1394128)起源于 2008 年, 由eBay的架构师Dan Pritchett在ACM上发表。 + +### 简介 + +**BASE** 是 **Basically Available(基本可用)** 、**Soft-state(软状态)** 和 **Eventually Consistent(最终一致性)** 三个短语的缩写。BASE 理论是对 CAP 中一致性 C 和可用性 A 权衡的结果,其来源于对大规模互联网系统分布式实践的总结,是基于 CAP 定理逐步演化而来的,它大大降低了我们对系统的要求。 + +### BASE 理论的核心思想 + +即使无法做到强一致性,但每个应用都可以根据自身业务特点,采用适当的方式来使系统达到最终一致性。 + +> 也就是牺牲数据的一致性来满足系统的高可用性,系统中一部分数据不可用或者不一致时,仍需要保持系统整体“主要可用”。 + +**BASE 理论本质上是对 CAP 的延伸和补充,更具体地说,是对 CAP 中 AP 方案的一个补充。** + +**为什么这样说呢?** + +CAP 理论这节我们也说过了: + +> 如果系统没有发生“分区”的话,节点间的网络连接通信正常的话,也就不存在 P 了。这个时候,我们就可以同时保证 C 和 A 了。因此,**如果系统发生“分区”,我们要考虑选择 CP 还是 AP。如果系统没有发生“分区”的话,我们要思考如何保证 CA 。** + +因此,AP 方案只是在系统发生分区的时候放弃一致性,而不是永远放弃一致性。在分区故障恢复后,系统应该达到最终一致性。这一点其实就是 BASE 理论延伸的地方。 + +### BASE 理论三要素 + +![BASE理论三要素](https://imgconvert.csdnimg.cn/aHR0cHM6Ly91c2VyLWdvbGQtY2RuLnhpdHUuaW8vMjAxOC81LzI0LzE2MzkxNDgwNmQ5ZTE1YzY?x-oss-process=image/format,png) + +#### 1. 基本可用 + +基本可用是指分布式系统在出现不可预知故障的时候,允许损失部分可用性。但是,这绝不等价于系统不可用。 + +**什么叫允许损失部分可用性呢?** + +- **响应时间上的损失**: 正常情况下,处理用户请求需要 0.5s 返回结果,但是由于系统出现故障,处理用户请求的时间变为 3 s。 +- **系统功能上的损失**:正常情况下,用户可以使用系统的全部功能,但是由于系统访问量突然剧增,系统的部分非核心功能无法使用。 + +#### 2. 软状态 + +软状态指允许系统中的数据存在中间状态(**CAP 理论中的数据不一致**),并认为该中间状态的存在不会影响系统的整体可用性,即允许系统在不同节点的数据副本之间进行数据同步的过程存在延时。 + +#### 3. 最终一致性 + +最终一致性强调的是系统中所有的数据副本,在经过一段时间的同步后,最终能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性。 + +> 分布式一致性的 3 种级别: +> +> 1. **强一致性** :系统写入了什么,读出来的就是什么。 +> +> 2. **弱一致性** :不一定可以读取到最新写入的值,也不保证多少时间之后读取到的数据是最新的,只是会尽量保证某个时刻达到数据一致的状态。 +> +> 3. **最终一致性** :弱一致性的升级版,系统会保证在一定时间内达到数据一致的状态。 +> +> **业界比较推崇是最终一致性级别,但是某些对数据一致要求十分严格的场景比如银行转账还是要保证强一致性。** + +那实现最终一致性的具体方式是什么呢? [《分布式协议与算法实战》](http://gk.link/a/10rZM) 中是这样介绍: + +> - **读时修复** : 在读取数据时,检测数据的不一致,进行修复。比如 Cassandra 的 Read Repair 实现,具体来说,在向 Cassandra 系统查询数据的时候,如果检测到不同节点 的副本数据不一致,系统就自动修复数据。 +> - **写时修复** : 在写入数据,检测数据的不一致时,进行修复。比如 Cassandra 的 Hinted Handoff 实现。具体来说,Cassandra 集群的节点之间远程写数据的时候,如果写失败 就将数据缓存下来,然后定时重传,修复数据的不一致性。 +> - **异步修复** : 这个是最常用的方式,通过定时对账检测副本数据的一致性,并修复。 + +比较推荐 **写时修复**,这种方式对性能消耗比较低。 + +### 总结 + +**ACID 是数据库事务完整性的理论,CAP 是分布式系统设计理论,BASE 是 CAP 理论中 AP 方案的延伸。** diff --git "a/docs/distributed-system/\347\220\206\350\256\272&\347\256\227\346\263\225/paxos&raft\347\256\227\346\263\225.md" "b/docs/distributed-system/\347\220\206\350\256\272&\347\256\227\346\263\225/paxos&raft\347\256\227\346\263\225.md" new file mode 100644 index 00000000000..36bd77241dd --- /dev/null +++ "b/docs/distributed-system/\347\220\206\350\256\272&\347\256\227\346\263\225/paxos&raft\347\256\227\346\263\225.md" @@ -0,0 +1,4 @@ +# Paxos 算法和 Raft 算法 + +Paxos 算法诞生于 1990 年,这是一种解决分布式系统一致性的经典算法 。但是,由于 Paxos 算法非常难以理解和实现,不断有人尝试简化这一算法。到了2013 年才诞生了一个比 Paxos 算法更易理解和实现的分布式一致性算法—Raft 算法。 + diff --git a/docs/high-availability/limit-request.md b/docs/high-availability/limit-request.md new file mode 100644 index 00000000000..1c611e55a41 --- /dev/null +++ b/docs/high-availability/limit-request.md @@ -0,0 +1,203 @@ +# 限流 + +## 何为限流?为什么要限流? + +针对软件系统来说,限流就是对请求的速率进行限制,避免瞬时的大量请求击垮软件系统。毕竟,软件系统的处理能力是有限的。如果说超过了其处理能力的范围,软件系统可能直接就挂掉了。 + +限流可能会导致用户的请求无法被正确处理,不过,这往往也是权衡了软件系统的稳定性之后得到的最优解。 + +现实生活中,处处都有限流的实际应用,就比如排队买票是为了避免大量用户涌入购票而导致售票员无法处理。 + +![排队示意图](https://img-blog.csdnimg.cn/f9f17071fc4d489d85d2a234fb298df1.png) + +## 常见限流算法 + +简单介绍 4 种非常好理解并且容易实现的限流算法! + +> 图片来源于 InfoQ 的一篇文章[《分布式服务限流实战,已经为你排好坑了》](https://www.infoq.cn/article/Qg2tX8fyw5Vt-f3HH673)。 + +### 固定窗口计数器算法 + +固定窗口其实就是时间窗口。**固定窗口计数器算法** 规定了我们单位时间处理的请求数量。 + +假如我们规定系统中某个接口 1 分钟只能访问 33 次的话,使用固定窗口计数器算法的实现思路如下: + +- 给定一个变量 `counter` 来记录当前接口处理的请求数量,初始值为 0(代表接口当前 1 分钟内还未处理请求)。 +- 1 分钟之内每处理一个请求之后就将 `counter+1` ,当 `counter=33` 之后(也就是说在这 1 分钟内接口已经被访问 33 次的话),后续的请求就会被全部拒绝。 +- 等到 1 分钟结束后,将 `counter` 重置 0,重新开始计数。 + +**这种限流算法无法保证限流速率,因而无法保证突然激增的流量。** + +就比如说我们限制某个接口 1 分钟只能访问 1000 次,该接口的 QPS 为 500,前 55s 这个接口 1 个请求没有接收,后 1s 突然接收了 1000 个请求。然后,在当前场景下,这 1000 个请求在 1s 内是没办法被处理的,系统直接就被瞬时的大量请求给击垮了。 + +![固定窗口计数器算法](https://static001.infoq.cn/resource/image/8d/15/8ded7a2b90e1482093f92fff555b3615.png) + +### 滑动窗口计数器算法 + +**滑动窗口计数器算法** 算的上是固定窗口计数器算法的升级版。 + +滑动窗口计数器算法相比于固定窗口计数器算法的优化在于:**它把时间以一定比例分片** 。 + +例如我们的借口限流每分钟处理 60 个请求,我们可以把 1 分钟分为 60 个窗口。每隔 1 秒移动一次,每个窗口一秒只能处理 不大于 `60(请求数)/60(窗口数)` 的请求, 如果当前窗口的请求计数总和超过了限制的数量的话就不再处理其他请求。 + +很显然, **当滑动窗口的格子划分的越多,滑动窗口的滚动就越平滑,限流的统计就会越精确。** + +![滑动窗口计数器算法](https://static001.infoq.cn/resource/image/ae/15/ae4d3cd14efb8dc7046d691c90264715.png) + +### 漏桶算法 + +我们可以把发请求的动作比作成注水到桶中,我们处理请求的过程可以比喻为漏桶漏水。我们往桶中以任意速率流入水,以一定速率流出水。当水超过桶流量则丢弃,因为桶容量是不变的,保证了整体的速率。 + +如果想要实现这个算法的话也很简单,准备一个队列用来保存请求,然后我们定期从队列中拿请求来执行就好了(和消息队列削峰/限流的思想是一样的)。 + +![漏桶算法](https://static001.infoq.cn/resource/image/75/03/75938d1010138ce66e38c6ed0392f103.png) + +### 令牌桶算法 + +令牌桶算法也比较简单。和漏桶算法算法一样,我们的主角还是桶(这限流算法和桶过不去啊)。不过现在桶里装的是令牌了,请求在被处理之前需要拿到一个令牌,请求处理完毕之后将这个令牌丢弃(删除)。我们根据限流大小,按照一定的速率往桶里添加令牌。如果桶装满了,就不能继续往里面继续添加令牌了。 + +![令牌桶算法](https://static001.infoq.cn/resource/image/ec/93/eca0e5eaa35dac938c673fecf2ec9a93.png) + +## 单机限流 + +单机限流可以直接使用 Google Guava 自带的限流工具类 `RateLimiter` 。 `RateLimiter` 基于令牌桶算法,可以应对突发流量。 + +> Guava 地址:https://github.com/google/guava + +除了最基本的令牌桶算法(平滑突发限流)实现之外,Guava 的`RateLimiter`还提供了 **平滑预热限流** 的算法实现。 + +平滑突发限流就是按照指定的速率放令牌到桶里,而平滑预热限流会有一段预热时间,预热时间之内,速率会逐渐提升到配置的速率。 + +我们下面通过两个简单的小例子来详细了解吧! + +我们直接在项目中引入 Guava 相关的依赖即可使用。 + +```xml + + com.google.guava + guava + 31.0.1-jre + +``` + +下面是一个简单的 Guava 平滑突发限流的 Demo。 + +```java +import com.google.common.util.concurrent.RateLimiter; + +/** + * 微信搜 JavaGuide 回复"面试突击"即可免费领取个人原创的 Java 面试手册 + * + * @author Guide哥 + * @date 2021/10/08 19:12 + **/ +public class RateLimiterDemo { + + public static void main(String[] args) { + // 1s 放 5 个令牌到桶里也就是 0.2s 放 1个令牌到桶里 + RateLimiter rateLimiter = RateLimiter.create(5); + for (int i = 0; i < 10; i++) { + double sleepingTime = rateLimiter.acquire(1); + System.out.printf("get 1 tokens: %ss%n", sleepingTime); + } + } +} + +``` + +输出: + +```bash +get 1 tokens: 0.0s +get 1 tokens: 0.188413s +get 1 tokens: 0.197811s +get 1 tokens: 0.198316s +get 1 tokens: 0.19864s +get 1 tokens: 0.199363s +get 1 tokens: 0.193997s +get 1 tokens: 0.199623s +get 1 tokens: 0.199357s +get 1 tokens: 0.195676s +``` + +下面是一个简单的 Guava 平滑预热限流的 Demo。 + +```java +import com.google.common.util.concurrent.RateLimiter; +import java.util.concurrent.TimeUnit; + +/** + * 微信搜 JavaGuide 回复"面试突击"即可免费领取个人原创的 Java 面试手册 + * + * @author Guide哥 + * @date 2021/10/08 19:12 + **/ +public class RateLimiterDemo { + + public static void main(String[] args) { + // 1s 放 5 个令牌到桶里也就是 0.2s 放 1个令牌到桶里 + // 预热时间为3s,也就说刚开始的 3s 内发牌速率会逐渐提升到 0.2s 放 1 个令牌到桶里 + RateLimiter rateLimiter = RateLimiter.create(5, 3, TimeUnit.SECONDS); + for (int i = 0; i < 20; i++) { + double sleepingTime = rateLimiter.acquire(1); + System.out.printf("get 1 tokens: %sds%n", sleepingTime); + } + } +} +``` + +输出: + +```bash +get 1 tokens: 0.0s +get 1 tokens: 0.561919s +get 1 tokens: 0.516931s +get 1 tokens: 0.463798s +get 1 tokens: 0.41286s +get 1 tokens: 0.356172s +get 1 tokens: 0.300489s +get 1 tokens: 0.252545s +get 1 tokens: 0.203996s +get 1 tokens: 0.198359s +``` + +另外,**Bucket4j** 是一个非常不错的基于令牌/漏桶算法的限流库。 + +> Bucket4j 地址:https://github.com/vladimir-bukhtoyarov/bucket4j + +相对于,Guava 的限流工具类来说,Bucket4j 提供的限流功能更加全面。不仅支持单机限流和分布式限流,还可以集成监控,搭配 Prometheus 和 Grafana 使用。 + +不过,毕竟 Guava 也只是一个功能全面的工具类库,其提供的开箱即用的限流功能在很多单机场景下还是比较实用的。 + +Spring Cloud Gateway 中自带的单机限流的早期版本就是基于 Bucket4j 实现的。后来,替换成了 **Resilience4j**。 + +Resilience4j 是一个轻量级的容错组件,其灵感来自于 Hystrix。自[Netflix 宣布不再积极开发 Hystrix](https://github.com/Netflix/Hystrix/commit/a7df971cbaddd8c5e976b3cc5f14013fe6ad00e6) 之后,Spring 官方和 Netflix 都更推荐使用 Resilience4j 来做限流熔断。 + +> Resilience4j 地址: https://github.com/resilience4j/resilience4j + +一般情况下,为了保证系统的高可用,项目的限流和熔断都是要一起做的。 + +Resilience4j 不仅提供限流,还提供了熔断、负载保护、自动重试等保障系统高可用开箱即用的功能。并且,Resilience4j 的生态也更好,很多网关都使用 Resilience4j 来做限流熔断的。 + +因此,在绝大部分场景下 Resilience4j 或许会是更好的选择。如果是一些比较简单的限流场景的话,Guava 或者 Bucket4j 也是不错的选择。 + +## 分布式限流 + +分布式限流常见的方案: + +- **借助中间件架限流** :可以借助 Sentinel 或者使用 Redis 来自己实现对应的限流逻辑。 +- **网关层限流** :比较常用的一种方案,直接在网关层把限流给安排上了。不过,通常网关层限流通常也需要借助到中间件/框架。就比如 Spring Cloud Gateway 的分布式限流实现`RedisRateLimiter`就是基于 Redis+Lua 来实现的,再比如 Spring Cloud Gateway 还可以整合 Sentinel 来做限流。 + +如果你要基于 Redis 来手动实现限流逻辑的话,建议配合 Lua 脚本来做。 + +网上也有很多现成的脚本供你参考,就比如 Apache 网关项目 ShenYu 的 RateLimiter 限流插件就基于 Redis + Lua 实现了令牌桶算法/并发令牌桶算法、漏桶算法、滑动窗口算法。 + +> ShenYu 地址: https://github.com/apache/incubator-shenyu + +![](https://img-blog.csdnimg.cn/e1e2a75f489e4854990dabe3b6cec522.png) + +## 相关阅读 + +- 服务治理之轻量级熔断框架 Resilience4j :https://xie.infoq.cn/article/14786e571c1a4143ad1ef8f19 +- 超详细的 Guava RateLimiter 限流原理解析:https://cloud.tencent.com/developer/article/1408819 +- 实战 Spring Cloud Gateway 之限流篇 👍:https://www.aneasystone.com/archives/2020/08/spring-cloud-gateway-current-limiting.html diff --git "a/docs/high-availability/\346\200\247\350\203\275\346\265\213\350\257\225.md" "b/docs/high-availability/\346\200\247\350\203\275\346\265\213\350\257\225.md" new file mode 100644 index 00000000000..dc3ff9ba749 --- /dev/null +++ "b/docs/high-availability/\346\200\247\350\203\275\346\265\213\350\257\225.md" @@ -0,0 +1,150 @@ +# 性能测试入门 + +性能测试一般情况下都是由测试这个职位去做的,那还需要我们开发学这个干嘛呢?了解性能测试的指标、分类以及工具等知识有助于我们更好地去写出性能更好的程序,另外作为开发这个角色,如果你会性能测试的话,相信也会为你的履历加分不少。 + +这篇文章是我会结合自己的实际经历以及在测试这里取的经所得,除此之外,我还借鉴了一些优秀书籍,希望对你有帮助。 + +本文思维导图: + + + +## 一 不同角色看网站性能 + +### 1.1 用户 + +当用户打开一个网站的时候,最关注的是什么?当然是网站响应速度的快慢。比如我们点击了淘宝的主页,淘宝需要多久将首页的内容呈现在我的面前,我点击了提交订单按钮需要多久返回结果等等。 + +所以,用户在体验我们系统的时候往往根据你的响应速度的快慢来评判你的网站的性能。 + +### 1.2 开发人员 + +用户与开发人员都关注速度,这个速度实际上就是我们的系统**处理用户请求的速度**。 + +开发人员一般情况下很难直观的去评判自己网站的性能,我们往往会根据网站当前的架构以及基础设施情况给一个大概的值,比如: + +1. 项目架构是分布式的吗? +2. 用到了缓存和消息队列没有? +3. 高并发的业务有没有特殊处理? +4. 数据库设计是否合理? +5. 系统用到的算法是否还需要优化? +6. 系统是否存在内存泄露的问题? +7. 项目使用的 Redis 缓存多大?服务器性能如何?用的是机械硬盘还是固态硬盘? +8. ...... + +### 1.3 测试人员 + +测试人员一般会根据性能测试工具来测试,然后一般会做出一个表格。这个表格可能会涵盖下面这些重要的内容: + +1. 响应时间; +2. 请求成功率; +3. 吞吐量; +4. ...... + +### 1.4 运维人员 + +运维人员会倾向于根据基础设施和资源的利用率来判断网站的性能,比如我们的服务器资源使用是否合理、数据库资源是否存在滥用的情况、当然,这是传统的运维人员,现在 Devpos 火起来后,单纯干运维的很少了。我们这里暂且还保留有这个角色。 + +## 二 性能测试需要注意的点 + +几乎没有文章在讲性能测试的时候提到这个问题,大家都会讲如何去性能测试,有哪些性能测试指标这些东西。 + +### 2.1 了解系统的业务场景 + +**性能测试之前更需要你了解当前的系统的业务场景。** 对系统业务了解的不够深刻,我们很容易犯测试方向偏执的错误,从而导致我们忽略了对系统某些更需要性能测试的地方进行测试。比如我们的系统可以为用户提供发送邮件的功能,用户配置成功邮箱后只需输入相应的邮箱之后就能发送,系统每天大概能处理上万次发邮件的请求。很多人看到这个可能就直接开始使用相关工具测试邮箱发送接口,但是,发送邮件这个场景可能不是当前系统的性能瓶颈,这么多人用我们的系统发邮件, 还可能有很多人一起发邮件,单单这个场景就这么人用,那用户管理可能才是性能瓶颈吧! + +### 2.2 历史数据非常有用 + +当前系统所留下的历史数据非常重要,一般情况下,我们可以通过相应的些历史数据初步判定这个系统哪些接口调用的比较多、哪些 service 承受的压力最大,这样的话,我们就可以针对这些地方进行更细致的性能测试与分析。 + +另外,这些地方也就像这个系统的一个短板一样,优化好了这些地方会为我们的系统带来质的提升。 + +### 三 性能测试的指标 + +### 3.1 响应时间 + +**响应时间就是用户发出请求到用户收到系统处理结果所需要的时间。** 重要吗?实在太重要! + +比较出名的 2-5-8 原则是这样描述的:通常来说,2到5秒,页面体验会比较好,5到8秒还可以接受,8秒以上基本就很难接受了。另外,据统计当网站慢一秒就会流失十分之一的客户。 + +但是,在某些场景下我们也并不需要太看重 2-5-8 原则 ,比如我觉得系统导出导入大数据量这种就不需要,系统生成系统报告这种也不需要。 + +### 3.2 并发数 + +**并发数是系统能同时处理请求的数目即同时提交请求的用户数目。** + +不得不说,高并发是现在后端架构中非常非常火热的一个词了,这个与当前的互联网环境以及中国整体的互联网用户量都有很大关系。一般情况下,你的系统并发量越大,说明你的产品做的就越大。但是,并不是每个系统都需要达到像淘宝、12306 这种亿级并发量的。 + +### 3.3 吞吐量 + +吞吐量指的是系统单位时间内系统处理的请求数量。衡量吞吐量有几个重要的参数:QPS(TPS)、并发数、响应时间。 + +1. QPS(Query Per Second):服务器每秒可以执行的查询次数; +2. TPS(Transaction Per Second):服务器每秒处理的事务数(这里的一个事务可以理解为客户发出请求到收到服务器的过程); +3. 并发数;系统能同时处理请求的数目即同时提交请求的用户数目。 +4. 响应时间: 一般取多次请求的平均响应时间 + +理清他们的概念,就很容易搞清楚他们之间的关系了。 + +- **QPS(TPS)** = 并发数/平均响应时间 +- **并发数** = QPS\平均响应时间 + +书中是这样描述 QPS 和 TPS 的区别的。 + +> QPS vs TPS:QPS 基本类似于 TPS,但是不同的是,对于一个页面的一次访问,形成一个TPS;但一次页面请求,可能产生多次对服务器的请求,服务器对这些请求,就可计入“QPS”之中。如,访问一个页面会请求服务器2次,一次访问,产生一个“T”,产生2个“Q”。 + +### 3.4 性能计数器 + +**性能计数器是描述服务器或者操作系统的一些数据指标如内存使用、CPU使用、磁盘与网络I/O等情况。** + +### 四 几种常见的性能测试 + +### 性能测试 + +性能测试方法是通过测试工具模拟用户请求系统,目的主要是为了测试系统的性能是否满足要求。通俗地说,这种方法就是要在特定的运行条件下验证系统的能力状态。 + +性能测试是你在对系统性能已经有了解的前提之后进行的,并且有明确的性能指标。 + +### 负载测试 + +对被测试的系统继续加大请求压力,直到服务器的某个资源已经达到饱和了,比如系统的缓存已经不够用了或者系统的响应时间已经不满足要求了。 + +负载测试说白点就是测试系统的上线。 + +### 压力测试 + +不去管系统资源的使用情况,对系统继续加大请求压力,直到服务器崩溃无法再继续提供服务。 + +### 稳定性测试 + +模拟真实场景,给系统一定压力,看看业务是否能稳定运行。 + +## 五 常用性能测试工具 + +这里就不多扩展了,有时间的话会单独拎一个熟悉的说一下。 + +### 5.1 后端常用 + +没记错的话,除了 LoadRunner 其他几款性能测试工具都是开源免费的。 + +1. Jmeter :Apache JMeter 是 JAVA 开发的性能测试工具。 +2. LoadRunner:一款商业的性能测试工具。 +3. Galtling :一款基于Scala 开发的高性能服务器性能测试工具。 +4. ab :全称为 Apache Bench 。Apache 旗下的一款测试工具,非常实用。 + +### 5.2 前端常用 + +1. Fiddler:抓包工具,它可以修改请求的数据,甚至可以修改服务器返回的数据,功能非常强大,是Web 调试的利器。 +2. HttpWatch: 可用于录制HTTP请求信息的工具。 + +## 六 常见的性能优化策略 + +性能优化之前我们需要对请求经历的各个环节进行分析,排查出可能出现性能瓶颈的地方,定位问题。 + +下面是一些性能优化时,我经常拿来自问的一些问题: + +1. 系统是否需要缓存? +2. 系统架构本身是不是就有问题? +3. 系统是否存在死锁的地方? +4. 系统是否存在内存泄漏?(Java 的自动回收内存虽然很方便,但是,有时候代码写的不好真的会造成内存泄漏) +5. 数据库索引使用是否合理? +6. ...... \ No newline at end of file diff --git "a/docs/high-availability/\347\201\276\345\244\207\350\256\276\350\256\241\345\222\214\345\274\202\345\234\260\345\244\232\346\264\273.md" "b/docs/high-availability/\347\201\276\345\244\207\350\256\276\350\256\241\345\222\214\345\274\202\345\234\260\345\244\232\346\264\273.md" new file mode 100644 index 00000000000..18756b69127 --- /dev/null +++ "b/docs/high-availability/\347\201\276\345\244\207\350\256\276\350\256\241\345\222\214\345\274\202\345\234\260\345\244\232\346\264\273.md" @@ -0,0 +1,14 @@ +# 灾备设计&异地多活 + +**灾备** = 容灾+备份。 + +- **备份** : 将系统所产生的所有重要数据多备份几份。 +- **容灾** : 在异地建立两个完全相同的系统。当某个地方的系统突然挂掉,整个应用系统可以切换到另一个,这样系统就可以正常提供服务了。 + +**异地多活** 描述的是将服务部署在异地并且服务同时对外提供服务。和传统的灾备设计的最主要区别在于“多活”,即所有站点都是同时在对外提供服务的。异地多活是为了应对突发状况比如火灾、地震等自然或者人为灾害。 + +相关阅读: + +- [搞懂异地多活,看这篇就够了](https://mp.weixin.qq.com/s/T6mMDdtTfBuIiEowCpqu6Q) +- [四步构建异地多活](https://mp.weixin.qq.com/s/hMD-IS__4JE5_nQhYPYSTg) +- [《从零开始学架构》— 28 | 业务高可用的保障:异地多活架构](http://gk.link/a/10pKZ) \ No newline at end of file diff --git "a/docs/high-availability/\350\266\205\346\227\266\345\222\214\351\207\215\350\257\225\346\234\272\345\210\266.md" "b/docs/high-availability/\350\266\205\346\227\266\345\222\214\351\207\215\350\257\225\346\234\272\345\210\266.md" new file mode 100644 index 00000000000..ee4f90f2056 --- /dev/null +++ "b/docs/high-availability/\350\266\205\346\227\266\345\222\214\351\207\215\350\257\225\346\234\272\345\210\266.md" @@ -0,0 +1,5 @@ +# 超时&重试机制 + +**一旦用户的请求超过某个时间得不到响应就结束此次请求并抛出异常。** 如果不进行超时设置可能会导致请求响应速度慢,甚至导致请求堆积进而让系统无法再处理请求。 + +另外,重试的次数一般设为 3 次,再多次的重试没有好处,反而会加重服务器压力(部分场景使用失败重试机制会不太适合)。 \ No newline at end of file diff --git "a/docs/high-availability/\351\231\215\347\272\247&\347\206\224\346\226\255.md" "b/docs/high-availability/\351\231\215\347\272\247&\347\206\224\346\226\255.md" new file mode 100644 index 00000000000..2ff7b922893 --- /dev/null +++ "b/docs/high-availability/\351\231\215\347\272\247&\347\206\224\346\226\255.md" @@ -0,0 +1,9 @@ +# 降级&熔断 + +降级是从系统功能优先级的角度考虑如何应对系统故障。 + +服务降级指的是当服务器压力剧增的情况下,根据当前业务情况及流量对一些服务和页面有策略的降级,以此释放服务器资源以保证核心任务的正常运行。 + +熔断和降级是两个比较容易混淆的概念,两者的含义并不相同。 + +降级的目的在于应对系统自身的故障,而熔断的目的在于应对当前系统依赖的外部系统或者第三方系统的故障。 \ No newline at end of file diff --git "a/docs/high-availability/\351\233\206\347\276\244.md" "b/docs/high-availability/\351\233\206\347\276\244.md" new file mode 100644 index 00000000000..5da34020f32 --- /dev/null +++ "b/docs/high-availability/\351\233\206\347\276\244.md" @@ -0,0 +1,3 @@ +# 集群 + +相同的服务部署多份,避免单点故障。 \ No newline at end of file diff --git "a/docs/system-design/high-availability/\345\246\202\344\275\225\350\256\276\350\256\241\344\270\200\344\270\252\351\253\230\345\217\257\347\224\250\347\263\273\347\273\237\350\246\201\350\200\203\350\231\221\345\223\252\344\272\233\345\234\260\346\226\271.md" "b/docs/high-availability/\351\253\230\345\217\257\347\224\250\347\263\273\347\273\237\350\256\276\350\256\241.md" similarity index 89% rename from "docs/system-design/high-availability/\345\246\202\344\275\225\350\256\276\350\256\241\344\270\200\344\270\252\351\253\230\345\217\257\347\224\250\347\263\273\347\273\237\350\246\201\350\200\203\350\231\221\345\223\252\344\272\233\345\234\260\346\226\271.md" rename to "docs/high-availability/\351\253\230\345\217\257\347\224\250\347\263\273\347\273\237\350\256\276\350\256\241.md" index cc24d0bd072..e336f676251 100644 --- "a/docs/system-design/high-availability/\345\246\202\344\275\225\350\256\276\350\256\241\344\270\200\344\270\252\351\253\230\345\217\257\347\224\250\347\263\273\347\273\237\350\246\201\350\200\203\350\231\221\345\223\252\344\272\233\345\234\260\346\226\271.md" +++ "b/docs/high-availability/\351\253\230\345\217\257\347\224\250\347\263\273\347\273\237\350\256\276\350\256\241.md" @@ -1,8 +1,10 @@ +# 高可用系统设计 + 一篇短小的文章,面试经常遇到的这个问题。本文主要包括下面这些内容: 1. 高可用的定义 2. 哪些情况可能会导致系统不可用? -3. 有些提高系统可用性的方法?只是简单的提一嘴,更具体内容在后续的文章中介绍,就拿限流来说,你需要搞懂:何为限流?如何限流?为什么要限流?如何做呢?说一下原理?。 +3. 有哪些提高系统可用性的方法?只是简单的提一嘴,更具体内容在后续的文章中介绍,就拿限流来说,你需要搞懂:何为限流?如何限流?为什么要限流?如何做呢?说一下原理?。 ## 什么是高可用?可用性的判断标准是啥? @@ -36,7 +38,7 @@ ### 2.使用集群,减少单点故障 -先拿常用的 Redis 举个例子!我们如何保证我们的 Redis 缓存高可用呢?答案就是使用集群,避免单点故障。当我们使用一个 Redis 实例作为缓存的时候,这个 Redis 实例挂了之后,整个缓存服务可能就挂了。使用了集群之后,即使一台 Redis 实例,不到一秒就会有另外一台 Redis 实例顶上。 +先拿常用的 Redis 举个例子!我们如何保证我们的 Redis 缓存高可用呢?答案就是使用集群,避免单点故障。当我们使用一个 Redis 实例作为缓存的时候,这个 Redis 实例挂了之后,整个缓存服务可能就挂了。使用了集群之后,即使一台 Redis 实例挂了,不到一秒就会有另外一台 Redis 实例顶上。 ### 3.限流 @@ -44,11 +46,11 @@ ### 4.超时和重试机制设置 -一旦用户请求超过某个时间的得不到响应,就抛出异常。这个是非常重要的,很多线上系统故障都是因为没有进行超时设置或者超时设置的方式不对导致的。我们在读取第三方服务的时候,尤其适合设置超时和重试机制。一般我们使用一些 RPC 框架的时候,这些框架都自带的超时重试的配置。如果不进行超时设置可能会导致请求响应速度慢,甚至导致请求堆积进而让系统无法在处理请求。重试的次数一般设为 3 次,再多次的重试没有好处,反而会加重服务器压力(部分场景使用失败重试机制会不太适合)。 +一旦用户请求超过某个时间的得不到响应,就抛出异常。这个是非常重要的,很多线上系统故障都是因为没有进行超时设置或者超时设置的方式不对导致的。我们在读取第三方服务的时候,尤其适合设置超时和重试机制。一般我们使用一些 RPC 框架的时候,这些框架都自带的超时重试的配置。如果不进行超时设置可能会导致请求响应速度慢,甚至导致请求堆积进而让系统无法再处理请求。重试的次数一般设为 3 次,再多次的重试没有好处,反而会加重服务器压力(部分场景使用失败重试机制会不太适合)。 ### 5.熔断机制 -超时和重试机制设置之外,熔断机制也是很重要的。 熔断机制说的是系统自动收集所依赖服务的资源使用情况和性能指标,当所依赖的服务恶化或者调用失败次数达到某个阈值的时候就迅速失败,让当前系统立即切换依赖其他备用服务。 比较常用的是流量控制和熔断降级框架是 Netflix 的 Hystrix 和 alibaba 的 Sentinel。 +超时和重试机制设置之外,熔断机制也是很重要的。 熔断机制说的是系统自动收集所依赖服务的资源使用情况和性能指标,当所依赖的服务恶化或者调用失败次数达到某个阈值的时候就迅速失败,让当前系统立即切换依赖其他备用服务。 比较常用的流量控制和熔断降级框架是 Netflix 的 Hystrix 和 alibaba 的 Sentinel。 ### 6.异步调用 @@ -66,7 +68,3 @@ 4. **灰度发布:** 将服务器集群分成若干部分,每天只发布一部分机器,观察运行稳定没有故障,第二天继续发布一部分机器,持续几天才把整个集群全部发布完毕,期间如果发现问题,只需要回滚已发布的一部分服务器即可 5. **定期检查/更换硬件:** 如果不是购买的云服务的话,定期还是需要对硬件进行一波检查的,对于一些需要更换或者升级的硬件,要及时更换或者升级。 6. .....(想起来再补充!也欢迎各位欢迎补充!) - -## 总结 - -![如何设计高可用系统?](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-11/如何设计高可用的系统?.png) \ No newline at end of file diff --git "a/docs/system-design/distributed-system/message-queue/Kafka\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" "b/docs/high-performance/message-queue/kafka\347\237\245\350\257\206\347\202\271&\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" similarity index 86% rename from "docs/system-design/distributed-system/message-queue/Kafka\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" rename to "docs/high-performance/message-queue/kafka\347\237\245\350\257\206\347\202\271&\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" index d62c19ec167..8cea44f2225 100644 --- "a/docs/system-design/distributed-system/message-queue/Kafka\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" +++ "b/docs/high-performance/message-queue/kafka\347\237\245\350\257\206\347\202\271&\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" @@ -1,8 +1,5 @@ ------- - - -## Kafka面试题总结 +# Kafka知识点&面试题总结 ### Kafka 是什么?主要应用场景有哪些? @@ -11,7 +8,7 @@ Kafka 是一个分布式流式处理平台。这到底是什么意思呢? 流平台具有三个关键功能: 1. **消息队列**:发布和订阅消息流,这个功能类似于消息队列,这也是 Kafka 也被归类为消息队列的原因。 -2. **容错的持久方式存储记录消息流**: Kafka 会把消息持久化到磁盘,有效避免了消息丢失的风险·。 +2. **容错的持久方式存储记录消息流**: Kafka 会把消息持久化到磁盘,有效避免了消息丢失的风险。 3. **流式处理平台:** 在消息发布的时候进行处理,Kafka 提供了一个完整的流式处理类库。 Kafka 主要有两大应用场景: @@ -21,7 +18,7 @@ Kafka 主要有两大应用场景: ### 和其他消息队列相比,Kafka的优势在哪里? -我们现在经常提到 Kafka 的时候就已经默认它是一个非常优秀的消息队列了,我们也会经常拿它给 RocketMQ、RabbitMQ 对比。我觉得 Kafka 相比其他消息队列主要的优势如下: +我们现在经常提到 Kafka 的时候就已经默认它是一个非常优秀的消息队列了,我们也会经常拿它跟 RocketMQ、RabbitMQ 对比。我觉得 Kafka 相比其他消息队列主要的优势如下: 1. **极致的性能** :基于 Scala 和 Java 语言开发,设计中大量使用了批量处理和异步的思想,最高可以每秒处理千万级别的消息。 2. **生态系统兼容性无可匹敌** :Kafka 与周边生态系统的兼容性是最好的没有之一,尤其在大数据和流计算领域。 @@ -36,13 +33,13 @@ Kafka 主要有两大应用场景: #### 队列模型:早期的消息模型 -![](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-11/队列模型23.png) +![队列模型](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-11/队列模型23.png) **使用队列(Queue)作为消息通信载体,满足生产者与消费者模式,一条消息只能被一个消费者使用,未被消费的消息在队列中保留直到被消费或超时。** 比如:我们生产者发送 100 条消息的话,两个消费者来消费一般情况下两个消费者会按照消息发送的顺序各自消费一半(也就是你一个我一个的消费。) **队列模型存在的问题:** -假如我们存在这样一种情况:我们需要将生产者产生的消息分发给多个消费者,并且每个消费者都能接收到完成的消息内容。 +假如我们存在这样一种情况:我们需要将生产者产生的消息分发给多个消费者,并且每个消费者都能接收到完整的消息内容。 这种情况,队列模型就不好解决了。很多比较杠精的人就说:我们可以为每个消费者创建一个单独的队列,让生产者发送多份。这是一种非常愚蠢的做法,浪费资源不说,还违背了使用消息队列的目的。 @@ -50,7 +47,7 @@ Kafka 主要有两大应用场景: 发布-订阅模型主要是为了解决队列模型存在的问题。 -![](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-11/广播模型21312.png) +![发布订阅模型](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/java-guide-blog/%E5%8F%91%E5%B8%83%E8%AE%A2%E9%98%85%E6%A8%A1%E5%9E%8B.png) 发布订阅模型(Pub-Sub) 使用**主题(Topic)** 作为消息通信载体,类似于**广播模式**;发布者发布一条消息,该消息通过主题传递给所有的订阅者,**在一条消息广播之后才订阅的用户则是收不到该条消息的**。 @@ -104,20 +101,25 @@ ZooKeeper 主要为 Kafka 提供元数据的管理的功能。 从图中我们可以看出,Zookeeper 主要为 Kafka 做了下面这些事情: -1. **Broker 注册** :在 Zookeeper 上会有一个专门**用来进行 Broker 服务器列表记录**的节点。每个 Broker 在启动时,都会到 Zookeeper 上进行注册,即到/brokers/ids 下创建属于自己的节点。每个 Broker 就会将自己的 IP 地址和端口等信息记录到该节点中去 +1. **Broker 注册** :在 Zookeeper 上会有一个专门**用来进行 Broker 服务器列表记录**的节点。每个 Broker 在启动时,都会到 Zookeeper 上进行注册,即到 `/brokers/ids` 下创建属于自己的节点。每个 Broker 就会将自己的 IP 地址和端口等信息记录到该节点中去 2. **Topic 注册** : 在 Kafka 中,同一个**Topic 的消息会被分成多个分区**并将其分布在多个 Broker 上,**这些分区信息及与 Broker 的对应关系**也都是由 Zookeeper 在维护。比如我创建了一个名字为 my-topic 的主题并且它有两个分区,对应到 zookeeper 中会创建这些文件夹:`/brokers/topics/my-topic/Partitions/0`、`/brokers/topics/my-topic/Partitions/1` 3. **负载均衡** :上面也说过了 Kafka 通过给特定 Topic 指定多个 Partition, 而各个 Partition 可以分布在不同的 Broker 上, 这样便能提供比较好的并发能力。 对于同一个 Topic 的不同 Partition,Kafka 会尽力将这些 Partition 分布到不同的 Broker 服务器上。当生产者产生消息后也会尽量投递到不同 Broker 的 Partition 里面。当 Consumer 消费的时候,Zookeeper 可以根据当前的 Partition 数量以及 Consumer 数量来实现动态负载均衡。 4. ...... ### Kafka 如何保证消息的消费顺序? -我们在使用消息队列的过程中经常有业务场景需要严格保证消息的消费顺序,比如我们同时发了 2 个消息,这 2 个消息对应的操作分别对应的数据库操作是:更改用户会员等级、根据会员等级计算订单价格。假如这两条消息的消费顺序不一样造成的最终结果就会截然不同。 +我们在使用消息队列的过程中经常有业务场景需要严格保证消息的消费顺序,比如我们同时发了 2 个消息,这 2 个消息对应的操作分别对应的数据库操作是: + +1. 更改用户会员等级。 +2. 根据会员等级计算订单价格。 + +假如这两条消息的消费顺序不一样造成的最终结果就会截然不同。 我们知道 Kafka 中 Partition(分区)是真正保存消息的地方,我们发送的消息都被放在了这里。而我们的 Partition(分区) 又存在于 Topic(主题) 这个概念中,并且我们可以给特定 Topic 指定多个 Partition。 ![](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-11/KafkaTopicPartionsLayout.png) -每次添加消息到 Partition(分区) 的时候都会采用尾加法,如上图所示。Kafka 只能为我们保证 Partition(分区) 中的消息有序,而不能保证 Topic(主题) 中的 Partition(分区) 的有序。 +每次添加消息到 Partition(分区) 的时候都会采用尾加法,如上图所示。 **Kafka 只能为我们保证 Partition(分区) 中的消息有序。** > 消息在被追加到 Partition(分区)的时候都会分配一个特定的偏移量(offset)。Kafka 通过偏移量(offset)来保证消息在分区内的顺序性。 @@ -138,7 +140,7 @@ Kafka 中发送 1 条消息的时候,可以指定 topic, partition, key,data 生产者(Producer) 调用`send`方法发送消息之后,消息可能因为网络问题并没有发送过去。 -所以,我们不能默认在调用`send`方法发送消息之后消息消息发送成功了。为了确定消息是发送成功,我们要判断消息发送的结果。但是要注意的是 Kafka 生产者(Producer) 使用 `send` 方法发送消息实际上是异步的操作,我们可以通过 `get()`方法获取调用结果,但是这样也让它变为了同步操作,示例代码如下: +所以,我们不能默认在调用`send`方法发送消息之后消息发送成功了。为了确定消息是发送成功,我们要判断消息发送的结果。但是要注意的是 Kafka 生产者(Producer) 使用 `send` 方法发送消息实际上是异步的操作,我们可以通过 `get()`方法获取调用结果,但是这样也让它变为了同步操作,示例代码如下: > **详细代码见我的这篇文章:[Kafka系列第三篇!10 分钟学会如何在 Spring Boot 程序中使用 Kafka 作为消息队列?](https://mp.weixin.qq.com/s?__biz=Mzg2OTA0Njk0OA==&mid=2247486269&idx=2&sn=ec00417ad641dd8c3d145d74cafa09ce&chksm=cea244f6f9d5cde0c8eb233fcc4cf82e11acd06446719a7af55230649863a3ddd95f78d111de&token=1633957262&lang=zh_CN#rd)** @@ -170,7 +172,7 @@ if (sendResult.getRecordMetadata() != null) { 当消费者拉取到了分区的某个消息之后,消费者会自动提交了 offset。自动提交的话会有一个问题,试想一下,当消费者刚拿到这个消息准备进行真正消费的时候,突然挂掉了,消息实际上并没有被消费,但是 offset 却被自动提交了。 -**解决办法也比较粗暴,我们手动关闭自动提交 offset,每次在真正消费完消息之后之后再自己手动提交 offset 。** 但是,细心的朋友一定会发现,这样会带来消息被重新消费的问题。比如你刚刚消费完消息之后,还没提交 offset,结果自己挂掉了,那么这个消息理论上就会被消费两次。 +**解决办法也比较粗暴,我们手动关闭自动提交 offset,每次在真正消费完消息之后再自己手动提交 offset 。** 但是,细心的朋友一定会发现,这样会带来消息被重新消费的问题。比如你刚刚消费完消息之后,还没提交 offset,结果自己挂掉了,那么这个消息理论上就会被消费两次。 #### Kafka 弄丢了消息 @@ -202,7 +204,17 @@ acks 的默认值即为1,代表我们的消息被leader副本接收之后就 ### Kafka 如何保证消息不重复消费 -代办... +**kafka出现消息重复消费的原因:** + +- 服务端侧已经消费的数据没有成功提交 offset(根本原因)。 +- Kafka 侧 由于服务端处理业务时间长或者网络链接等等原因让 Kafka 认为服务假死,触发了分区 rebalance。 + +**解决方案:** + +- 消费消息服务做幂等校验,比如 Redis 的set、MySQL 的主键等天然的幂等功能。这种方法最有效。 +- 将 **`enable.auto.commit`** 参数设置为 false,关闭自动提交,开发者在代码中手动提交 offset。那么这里会有个问题:**什么时候提交offset合适?** + * 处理完消息再提交:依旧有消息重复消费的风险,和自动提交一样 + * 拉取到消息即提交:会有消息丢失的风险。允许消息延时的场景,一般会采用这种方式。然后,通过定时任务在业务不繁忙(比如凌晨)的时候做数据兜底。 ### Reference diff --git a/docs/system-design/distributed-system/message-queue/message-queue.md b/docs/high-performance/message-queue/message-queue.md similarity index 97% rename from docs/system-design/distributed-system/message-queue/message-queue.md rename to docs/high-performance/message-queue/message-queue.md index 1a79514ea33..161bd5a021d 100644 --- a/docs/system-design/distributed-system/message-queue/message-queue.md +++ b/docs/high-performance/message-queue/message-queue.md @@ -1,4 +1,4 @@ -# 消息队列其实很简单 +# 消息队列知识点&面试题总结 “RabbitMQ?”“Kafka?”“RocketMQ?”...在日常学习与开发过程中,我们常常听到消息队列这个关键词。我也在我的多篇文章中提到了这个概念。可能你是熟练使用消息队列的老手,又或者你是不懂消息队列的新手,不论你了不了解消息队列,本文都将带你搞懂消息队列的一些基本理论。如果你是老手,你可能从本文学到你之前不曾注意的一些关于消息队列的重要概念,如果你是新手,相信本文将是你打开消息队列大门的一板砖。 @@ -76,13 +76,13 @@ JMS(JAVA Message Service,java 消息服务)是 java 的消息服务,JMS **① 点到点(P2P)模型** -![点到点(P2P)模型](https://user-gold-cdn.xitu.io/2018/4/21/162e7185572ca37d?w=575&h=135&f=gif&s=8530) +![队列模型](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-11/队列模型23.png) 使用**队列(Queue)**作为消息通信载体;满足**生产者与消费者模式**,一条消息只能被一个消费者使用,未被消费的消息在队列中保留直到被消费或超时。比如:我们生产者发送 100 条消息的话,两个消费者来消费一般情况下两个消费者会按照消息发送的顺序各自消费一半(也就是你一个我一个的消费。) **② 发布/订阅(Pub/Sub)模型** -![发布/订阅(Pub/Sub)模型](https://user-gold-cdn.xitu.io/2018/4/21/162e7187c268eaa5?w=402&h=164&f=gif&s=15492) +![发布订阅模型](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/java-guide-blog/%E5%8F%91%E5%B8%83%E8%AE%A2%E9%98%85%E6%A8%A1%E5%9E%8B.png) 发布订阅模型(Pub/Sub) 使用**主题(Topic)**作为消息通信载体,类似于**广播模式**;发布者发布一条消息,该消息通过主题传递给所有的订阅者,**在一条消息广播之后才订阅的用户则是收不到该条消息的**。 diff --git "a/docs/system-design/distributed-system/message-queue/RabbitMQ\345\205\245\351\227\250\347\234\213\350\277\231\344\270\200\347\257\207\345\260\261\345\244\237\344\272\206.md" b/docs/high-performance/message-queue/rabbitmq-intro.md similarity index 88% rename from "docs/system-design/distributed-system/message-queue/RabbitMQ\345\205\245\351\227\250\347\234\213\350\277\231\344\270\200\347\257\207\345\260\261\345\244\237\344\272\206.md" rename to docs/high-performance/message-queue/rabbitmq-intro.md index fb6beae75bf..d676114c8e6 100644 --- "a/docs/system-design/distributed-system/message-queue/RabbitMQ\345\205\245\351\227\250\347\234\213\350\277\231\344\270\200\347\257\207\345\260\261\345\244\237\344\272\206.md" +++ b/docs/high-performance/message-queue/rabbitmq-intro.md @@ -1,25 +1,5 @@ - - -- [一文搞懂 RabbitMQ 的重要概念以及安装](#一文搞懂-rabbitmq-的重要概念以及安装) - - [一 RabbitMQ 介绍](#一-rabbitmq-介绍) - - [1.1 RabbitMQ 简介](#11-rabbitmq-简介) - - [1.2 RabbitMQ 核心概念](#12-rabbitmq-核心概念) - - [1.2.1 Producer(生产者) 和 Consumer(消费者)](#121-producer生产者-和-consumer消费者) - - [1.2.2 Exchange(交换器)](#122-exchange交换器) - - [1.2.3 Queue(消息队列)](#123-queue消息队列) - - [1.2.4 Broker(消息中间件的服务节点)](#124-broker消息中间件的服务节点) - - [1.2.5 Exchange Types(交换器类型)](#125-exchange-types交换器类型) - - [① fanout](#-fanout) - - [② direct](#-direct) - - [③ topic](#-topic) - - [④ headers(不推荐)](#-headers不推荐) - - [二 安装 RabbitMq](#二-安装-rabbitmq) - - [2.1 安装 erlang](#21-安装-erlang) - - [2.2 安装 RabbitMQ](#22-安装-rabbitmq) - - - -# 一文搞懂 RabbitMQ 的重要概念以及安装 + +# RabbitMQ 入门总结 ## 一 RabbitMQ 介绍 @@ -32,7 +12,7 @@ RabbitMQ 是采用 Erlang 语言实现 AMQP(Advanced Message Queuing Protocol, RabbitMQ 发展到今天,被越来越多的人认可,这和它在易用性、扩展性、可靠性和高可用性等方面的卓著表现是分不开的。RabbitMQ 的具体特点可以概括为以下几点: - **可靠性:** RabbitMQ使用一些机制来保证消息的可靠性,如持久化、传输确认及发布确认等。 -- **灵活的路由:** 在消息进入队列之前,通过交换器来路由消息。对于典型的路由功能,RabbitMQ 己经提供了一些内置的交换器来实现。针对更复杂的路由功能,可以将多个交换器绑定在一起,也可以通过插件机制来实现自己的交换器。这个后面会在我们将 RabbitMQ 核心概念的时候详细介绍到。 +- **灵活的路由:** 在消息进入队列之前,通过交换器来路由消息。对于典型的路由功能,RabbitMQ 己经提供了一些内置的交换器来实现。针对更复杂的路由功能,可以将多个交换器绑定在一起,也可以通过插件机制来实现自己的交换器。这个后面会在我们讲 RabbitMQ 核心概念的时候详细介绍到。 - **扩展性:** 多个RabbitMQ节点可以组成一个集群,也可以根据实际业务情况动态地扩展集群中节点。 - **高可用性:** 队列可以在集群中的机器上设置镜像,使得在部分节点出现问题的情况下队列仍然可用。 - **支持多种协议:** RabbitMQ 除了原生支持 AMQP 协议,还支持 STOMP、MQTT 等多种消息中间件协议。 @@ -85,7 +65,7 @@ Binding(绑定) 示意图: **RabbitMQ** 中消息只能存储在 **队列** 中,这一点和 **Kafka** 这种消息中间件相反。Kafka 将消息存储在 **topic(主题)** 这个逻辑层面,而相对应的队列逻辑只是topic实际存储文件中的位移标识。 RabbitMQ 的生产者生产消息并最终投递到队列中,消费者可以从队列中获取消息并消费。 -**多个消费者可以订阅同一个队列**,这时队列中的消息会被平均分摊(Round-Robin,即轮询)给多个消费者进行处理,而不是每个消费者都收到所有的消息并处理,这样避免的消息被重复消费。 +**多个消费者可以订阅同一个队列**,这时队列中的消息会被平均分摊(Round-Robin,即轮询)给多个消费者进行处理,而不是每个消费者都收到所有的消息并处理,这样避免消息被重复消费。 **RabbitMQ** 不支持队列层面的广播消费,如果有广播消费的需求,需要在其上进行二次开发,这样会很麻烦,不建议这样做。 @@ -129,17 +109,17 @@ direct 类型常用在处理有优先级的任务,根据任务的优先级把 以上图为例: -- 路由键为 “com.rabbitmq.client” 的消息会同时路由到 Queuel 和 Queue2; +- 路由键为 “com.rabbitmq.client” 的消息会同时路由到 Queue1 和 Queue2; - 路由键为 “com.hidden.client” 的消息只会路由到 Queue2 中; - 路由键为 “com.hidden.demo” 的消息只会路由到 Queue2 中; -- 路由键为 “java.rabbitmq.demo” 的消息只会路由到Queuel中; +- 路由键为 “java.rabbitmq.demo” 的消息只会路由到 Queue1 中; - 路由键为 “java.util.concurrent” 的消息将会被丢弃或者返回给生产者(需要设置 mandatory 参数),因为它没有匹配任何路由键。 ##### ④ headers(不推荐) -headers 类型的交换器不依赖于路由键的匹配规则来路由消息,而是根据发送的消息内容中的 headers 属性进行匹配。在绑定队列和交换器时制定一组键值对,当发送消息到交换器时,RabbitMQ会获取到该消息的 headers(也是一个键值对的形式)'对比其中的键值对是否完全匹配队列和交换器绑定时指定的键值对,如果完全匹配则消息会路由到该队列,否则不会路由到该队列。headers 类型的交换器性能会很差,而且也不实用,基本上不会看到它的存在。 +headers 类型的交换器不依赖于路由键的匹配规则来路由消息,而是根据发送的消息内容中的 headers 属性进行匹配。在绑定队列和交换器时指定一组键值对,当发送消息到交换器时,RabbitMQ会获取到该消息的 headers(也是一个键值对的形式),对比其中的键值对是否完全匹配队列和交换器绑定时指定的键值对,如果完全匹配则消息会路由到该队列,否则不会路由到该队列。headers 类型的交换器性能会很差,而且也不实用,基本上不会看到它的存在。 -## 二 安装 RabbitMq +## 二 安装 RabbitMQ 通过 Docker 安装非常方便,只需要几条命令就好了,我这里是只说一下常规安装方法。 @@ -279,23 +259,23 @@ rabbitmq-plugins enable rabbitmq_management chkconfig rabbitmq-server on ``` -**4. 启动服务** +**5. 启动服务** ```shell service rabbitmq-server start ``` -**5. 查看服务状态** +**6. 查看服务状态** ```shell service rabbitmq-server status ``` -**6. 访问 RabbitMQ 控制台** +**7. 访问 RabbitMQ 控制台** 浏览器访问:http://你的ip地址:15672/ -默认用户名和密码: guest/guest;但是需要注意的是:guestuest用户只是被容许从localhost访问。官网文档描述如下: +默认用户名和密码:guest/guest; 但是需要注意的是:guest用户只是被容许从localhost访问。官网文档描述如下: ```shell “guest” user can only connect via localhost diff --git a/docs/system-design/distributed-system/message-queue/RocketMQ.md b/docs/high-performance/message-queue/rocketmq-intro.md similarity index 96% rename from docs/system-design/distributed-system/message-queue/RocketMQ.md rename to docs/high-performance/message-queue/rocketmq-intro.md index c74fab6feeb..2fbacfabec4 100644 --- a/docs/system-design/distributed-system/message-queue/RocketMQ.md +++ b/docs/high-performance/message-queue/rocketmq-intro.md @@ -1,10 +1,12 @@ +# RocketMQ入门总结 + > 文章很长,点赞再看,养成好习惯😋😋😋 > > [本文由 FrancisQ 老哥投稿!](https://mp.weixin.qq.com/s?__biz=Mzg2OTA0Njk0OA==&mid=2247485969&idx=1&sn=6bd53abde30d42a778d5a35ec104428c&chksm=cea245daf9d5cccce631f93115f0c2c4a7634e55f5bef9009fd03f5a0ffa55b745b5ef4f0530&token=294077121&lang=zh_CN#rd) ## 消息队列扫盲 -消息队列顾名思义就是存放消息的队列,队列我就不解释了,别告诉我你连队列都不知道似啥吧? +消息队列顾名思义就是存放消息的队列,队列我就不解释了,别告诉我你连队列都不知道是啥吧? 所以问题并不是消息队列是什么,而是 **消息队列为什么会出现?消息队列能用来干什么?用它来干这些事会带来什么好处?消息队列会带来副作用吗?** @@ -26,7 +28,7 @@ 我们省略中间的网络通信时间消耗,假如购票系统处理需要 150ms ,短信系统处理需要 200ms ,那么整个处理流程的时间消耗就是 150ms + 200ms = 350ms。 -当然,乍看没什么问题。可是仔细一想你就感觉有点问题,我用户购票在购票系统的时候其实就已经完成了购买,而我现在通过同步调用非要让整个请求拉长时间,而短息系统这玩意又不是很有必要,它仅仅是一个辅助功能增强用户体验感而已。我现在整个调用流程就有点 **头重脚轻** 的感觉了,购票是一个不太耗时的流程,而我现在因为同步调用,非要等待发送短信这个比较耗时的操作才返回结果。那我如果再加一个发送邮件呢? +当然,乍看没什么问题。可是仔细一想你就感觉有点问题,我用户购票在购票系统的时候其实就已经完成了购买,而我现在通过同步调用非要让整个请求拉长时间,而短信系统这玩意又不是很有必要,它仅仅是一个辅助功能增强用户体验感而已。我现在整个调用流程就有点 **头重脚轻** 的感觉了,购票是一个不太耗时的流程,而我现在因为同步调用,非要等待发送短信这个比较耗时的操作才返回结果。那我如果再加一个发送邮件呢? ![](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-11/16ef380429cf373e.jpg) @@ -44,7 +46,7 @@ ![](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-11/006APoFYly1fvd9cwjlfrj30as0b03ym.jpg) -那后来,我们工作赚钱了有钱去饭店吃饭了,我们告诉服务员来一碗牛肉面加个荷包蛋 **(传达一个消息)** ,然后我们就可以在饭桌上安心的玩手机了 **(干自己其他事情)** ,等到我们的牛肉面上了我们就可以吃了。这其中我们也就传达了一个消息,然后我们又转过头干其他事情了。这其中虽然做面的时间没有变短,但是我们只需要传达一个消息就可以看其他事情了,这是一个 **异步** 的概念。 +那后来,我们工作赚钱了有钱去饭店吃饭了,我们告诉服务员来一碗牛肉面加个荷包蛋 **(传达一个消息)** ,然后我们就可以在饭桌上安心的玩手机了 **(干自己其他事情)** ,等到我们的牛肉面上了我们就可以吃了。这其中我们也就传达了一个消息,然后我们又转过头干其他事情了。这其中虽然做面的时间没有变短,但是我们只需要传达一个消息就可以干其他事情了,这是一个 **异步** 的概念。 所以,为了解决这一个问题,聪明的程序员在中间也加了个类似于服务员的中间件——消息队列。这个时候我们就可以把模型给改造了。 @@ -174,7 +176,7 @@ ### RocketMQ中的消息模型 -`RockerMQ` 中的消息模型就是按照 **主题模型** 所实现的。你可能会好奇这个 **主题** 到底是怎么实现的呢?你上面也没有讲到呀! +`RocketMQ` 中的消息模型就是按照 **主题模型** 所实现的。你可能会好奇这个 **主题** 到底是怎么实现的呢?你上面也没有讲到呀! 其实对于主题模型的实现来说每个消息中间件的底层设计都是不一样的,就比如 `Kafka` 中的 **分区** ,`RocketMQ` 中的 **队列** ,`RabbitMQ` 中的 `Exchange` 。我们可以理解为 **主题模型/发布订阅模型** 就是一个标准,那些中间件只不过照着这个标准去实现而已。 @@ -190,7 +192,7 @@ 你可以看到图中生产者组中的生产者会向主题发送消息,而 **主题中存在多个队列**,生产者每次生产消息之后是指定主题中的某个队列发送消息的。 -每个主题中都有多个队列(这里还不涉及到 `Broker`),集群消费模式下,一个消费者集群多台机器共同消费一个 `topic` 的多个队列,**一个队列只会被一个消费者消费**。如果某个消费者挂掉,分组内其它消费者会接替挂掉的消费者继续消费。就像上图中 `Consumer1` 和 `Consumer2` 分别对应着两个队列,而 `Consuer3` 是没有队列对应的,所以一般来讲要控制 **消费者组中的消费者个数和主题中队列个数相同** 。 +每个主题中都有多个队列(分布在不同的 `Broker`中,如果是集群的话,`Broker`又分布在不同的服务器中),集群消费模式下,一个消费者集群多台机器共同消费一个 `topic` 的多个队列,**一个队列只会被一个消费者消费**。如果某个消费者挂掉,分组内其它消费者会接替挂掉的消费者继续消费。就像上图中 `Consumer1` 和 `Consumer2` 分别对应着两个队列,而 `Consumer3` 是没有队列对应的,所以一般来讲要控制 **消费者组中的消费者个数和主题中队列个数相同** 。 当然也可以消费者个数小于队列个数,只不过不太建议。如下图。 @@ -393,7 +395,7 @@ emmm,就两个字—— **幂等** 。在编程中一个*幂等* 操作的特 而在 `RocketMQ` 中采用了 `Dledger` 解决这个问题。他要求在写入消息的时候,要求**至少消息复制到半数以上的节点之后**,才给客⼾端返回写⼊成功,并且它是⽀持通过选举来动态切换主节点的。这里我就不展开说明了,读者可以自己去了解。 -> 也不是说 `Dledger` 是个完美的方案,至少在 `Dledger` 选举过程中是无法提供服务的,而且他必须要使用三个节点或以上,如果多数节点同时挂掉他也是无法保证可用性的,而且要求消息复制板书以上节点的效率和直接异步复制还是有一定的差距的。 +> 也不是说 `Dledger` 是个完美的方案,至少在 `Dledger` 选举过程中是无法提供服务的,而且他必须要使用三个节点或以上,如果多数节点同时挂掉他也是无法保证可用性的,而且要求消息复制半数以上节点的效率和直接异步复制还是有一定的差距的。 ### 存储机制 @@ -425,7 +427,7 @@ emmm,是不是有一点复杂🤣,看英文图片和英文文档的时候就 首先,在最上面的那一块就是我刚刚讲的你现在可以直接 **把 `ConsumerQueue` 理解为 `Queue`**。 -在图中最左边说明了 红色方块 代表被写入的消息,虚线方块代表等待被写入的。左边的生产者发送消息会指定 `Topic` 、`QueueId` 和具体消息内容,而在 `Broker` 中管你是哪门子消息,他直接 **全部顺序存储到了 CommitLog **。而根据生产者指定的 `Topic` 和 `QueueId` 将这条消息本身在 `CommitLog` 的偏移(offset),消息本身大小,和tag的hash值存入对应的 `ConsumeQueue` 索引文件中。而在每个队列中都保存了 `ConsumeOffset` 即每个消费者组的消费位置(我在架构那里提到了,忘了的同学可以回去看一下),而消费者拉取消息进行消费的时候只需要根据 `ConsumeOffset` 获取下一个未被消费的消息就行了。 +在图中最左边说明了 红色方块 代表被写入的消息,虚线方块代表等待被写入的。左边的生产者发送消息会指定 `Topic` 、`QueueId` 和具体消息内容,而在 `Broker` 中管你是哪门子消息,他直接 **全部顺序存储到了 CommitLog**。而根据生产者指定的 `Topic` 和 `QueueId` 将这条消息本身在 `CommitLog` 的偏移(offset),消息本身大小,和tag的hash值存入对应的 `ConsumeQueue` 索引文件中。而在每个队列中都保存了 `ConsumeOffset` 即每个消费者组的消费位置(我在架构那里提到了,忘了的同学可以回去看一下),而消费者拉取消息进行消费的时候只需要根据 `ConsumeOffset` 获取下一个未被消费的消息就行了。 上述就是我对于整个消息存储架构的大概理解(这里不涉及到一些细节讨论,比如稀疏索引等等问题),希望对你有帮助。 @@ -451,4 +453,4 @@ emmm,是不是有一点复杂🤣,看英文图片和英文文档的时候就 等等。。。 -> 如果喜欢可以点赞哟👍👍👍。 \ No newline at end of file +> 如果喜欢可以点赞哟👍👍👍。 diff --git a/docs/system-design/distributed-system/message-queue/RocketMQ-Questions.md b/docs/high-performance/message-queue/rocketmq-questions.md similarity index 76% rename from docs/system-design/distributed-system/message-queue/RocketMQ-Questions.md rename to docs/high-performance/message-queue/rocketmq-questions.md index a41a4035b7b..68957689c11 100644 --- a/docs/system-design/distributed-system/message-queue/RocketMQ-Questions.md +++ b/docs/high-performance/message-queue/rocketmq-questions.md @@ -1,25 +1,8 @@ +# RocketMQ常见问题 + 本文来自读者 [PR](https://github.com/Snailclimb/JavaGuide/pull/291)。 - - -- [1 单机版消息中心](#1-%E5%8D%95%E6%9C%BA%E7%89%88%E6%B6%88%E6%81%AF%E4%B8%AD%E5%BF%83) -- [2 分布式消息中心](#2-%E5%88%86%E5%B8%83%E5%BC%8F%E6%B6%88%E6%81%AF%E4%B8%AD%E5%BF%83) - - [2.1 问题与解决](#21-%E9%97%AE%E9%A2%98%E4%B8%8E%E8%A7%A3%E5%86%B3) - - [2.1.1 消息丢失的问题](#211-%E6%B6%88%E6%81%AF%E4%B8%A2%E5%A4%B1%E7%9A%84%E9%97%AE%E9%A2%98) - - [2.1.2 同步落盘怎么才能快](#212-%E5%90%8C%E6%AD%A5%E8%90%BD%E7%9B%98%E6%80%8E%E4%B9%88%E6%89%8D%E8%83%BD%E5%BF%AB) - - [2.1.3 消息堆积的问题](#213-%E6%B6%88%E6%81%AF%E5%A0%86%E7%A7%AF%E7%9A%84%E9%97%AE%E9%A2%98) - - [2.1.4 定时消息的实现](#214-%E5%AE%9A%E6%97%B6%E6%B6%88%E6%81%AF%E7%9A%84%E5%AE%9E%E7%8E%B0) - - [2.1.5 顺序消息的实现](#215-%E9%A1%BA%E5%BA%8F%E6%B6%88%E6%81%AF%E7%9A%84%E5%AE%9E%E7%8E%B0) - - [2.1.6 分布式消息的实现](#216-%E5%88%86%E5%B8%83%E5%BC%8F%E6%B6%88%E6%81%AF%E7%9A%84%E5%AE%9E%E7%8E%B0) - - [2.1.7 消息的 push 实现](#217-%E6%B6%88%E6%81%AF%E7%9A%84-push-%E5%AE%9E%E7%8E%B0) - - [2.1.8 消息重复发送的避免](#218-%E6%B6%88%E6%81%AF%E9%87%8D%E5%A4%8D%E5%8F%91%E9%80%81%E7%9A%84%E9%81%BF%E5%85%8D) - - [2.1.9 广播消费与集群消费](#219-%E5%B9%BF%E6%92%AD%E6%B6%88%E8%B4%B9%E4%B8%8E%E9%9B%86%E7%BE%A4%E6%B6%88%E8%B4%B9) - - [2.1.10 RocketMQ 不使用 ZooKeeper 作为注册中心的原因,以及自制的 NameServer 优缺点?](#2110-rocketmq-%E4%B8%8D%E4%BD%BF%E7%94%A8-zookeeper-%E4%BD%9C%E4%B8%BA%E6%B3%A8%E5%86%8C%E4%B8%AD%E5%BF%83%E7%9A%84%E5%8E%9F%E5%9B%A0%E4%BB%A5%E5%8F%8A%E8%87%AA%E5%88%B6%E7%9A%84-nameserver-%E4%BC%98%E7%BC%BA%E7%82%B9) - - [2.1.11 其它](#2111-%E5%85%B6%E5%AE%83) -- [3 参考](#3-%E5%8F%82%E8%80%83) - - - -# 1 单机版消息中心 + +## 1 单机版消息中心 一个消息中心,最基本的需要支持多生产者、多消费者,例如下: @@ -127,40 +110,40 @@ class Broker { 4. 没有使用多个队列(即多个 LinkedBlockingQueue),RocketMQ 的顺序消息是通过生产者和消费者同时使用同一个 MessageQueue 来实现,但是如果我们只有一个 MessageQueue,那我们天然就支持顺序消息 5. 没有使用 MappedByteBuffer 来实现文件映射从而使消息数据落盘非常的快(实际 RocketMQ 使用的是 FileChannel+DirectBuffer) -# 2 分布式消息中心 +## 2 分布式消息中心 -## 2.1 问题与解决 +### 2.1 问题与解决 -### 2.1.1 消息丢失的问题 +#### 2.1.1 消息丢失的问题 1. 当你系统需要保证百分百消息不丢失,你可以使用生产者每发送一个消息,Broker 同步返回一个消息发送成功的反馈消息 2. 即每发送一个消息,同步落盘后才返回生产者消息发送成功,这样只要生产者得到了消息发送生成的返回,事后除了硬盘损坏,都可以保证不会消息丢失 3. 但是这同时引入了一个问题,同步落盘怎么才能快? -### 2.1.2 同步落盘怎么才能快 +#### 2.1.2 同步落盘怎么才能快 1. 使用 FileChannel + DirectBuffer 池,使用堆外内存,加快内存拷贝 2. 使用数据和索引分离,当消息需要写入时,使用 commitlog 文件顺序写,当需要定位某个消息时,查询index 文件来定位,从而减少文件IO随机读写的性能损耗 -### 2.1.3 消息堆积的问题 +#### 2.1.3 消息堆积的问题 1. 后台定时任务每隔72小时,删除旧的没有使用过的消息信息 2. 根据不同的业务实现不同的丢弃任务,具体参考线程池的 AbortPolicy,例如FIFO/LRU等(RocketMQ没有此策略) 3. 消息定时转移,或者对某些重要的 TAG 型(支付型)消息真正落库 -### 2.1.4 定时消息的实现 +#### 2.1.4 定时消息的实现 1. 实际 RocketMQ 没有实现任意精度的定时消息,它只支持某些特定的时间精度的定时消息 2. 实现定时消息的原理是:创建特定时间精度的 MessageQueue,例如生产者需要定时1s之后被消费者消费,你只需要将此消息发送到特定的 Topic,例如:MessageQueue-1 表示这个 MessageQueue 里面的消息都会延迟一秒被消费,然后 Broker 会在 1s 后发送到消费者消费此消息,使用 newSingleThreadScheduledExecutor 实现 -### 2.1.5 顺序消息的实现 +#### 2.1.5 顺序消息的实现 1. 与定时消息同原理,生产者生产消息时指定特定的 MessageQueue ,消费者消费消息时,消费特定的 MessageQueue,其实单机版的消息中心在一个 MessageQueue 就天然支持了顺序消息 2. 注意:同一个 MessageQueue 保证里面的消息是顺序消费的前提是:消费者是串行的消费该 MessageQueue,因为就算 MessageQueue 是顺序的,但是当并行消费时,还是会有顺序问题,但是串行消费也同时引入了两个问题: >1. 引入锁来实现串行 >2. 前一个消费阻塞时后面都会被阻塞 -### 2.1.6 分布式消息的实现 +#### 2.1.6 分布式消息的实现 1. 需要前置知识:2PC 2. RocketMQ4.3 起支持,原理为2PC,即两阶段提交,prepared->commit/rollback @@ -168,29 +151,31 @@ class Broker { >注意,就算是事务消息最后回滚了也不会物理删除,只会逻辑删除该消息 -### 2.1.7 消息的 push 实现 +#### 2.1.7 消息的 push 实现 1. 注意,RocketMQ 已经说了自己会有低延迟问题,其中就包括这个消息的 push 延迟问题 2. 因为这并不是真正的将消息主动的推送到消费者,而是 Broker 定时任务每5s将消息推送到消费者 +3. pull模式需要我们手动调用consumer拉消息,而push模式则只需要我们提供一个listener即可实现对消息的监听,而实际上,RocketMQ的push模式是基于pull模式实现的,它没有实现真正的push。 +4. push方式里,consumer把轮询过程封装了,并注册MessageListener监听器,取到消息后,唤醒MessageListener的consumeMessage()来消费,对用户而言,感觉消息是被推送过来的。 -### 2.1.8 消息重复发送的避免 +#### 2.1.8 消息重复发送的避免 1. RocketMQ 会出现消息重复发送的问题,因为在网络延迟的情况下,这种问题不可避免的发生,如果非要实现消息不可重复发送,那基本太难,因为网络环境无法预知,还会使程序复杂度加大,因此默认允许消息重复发送 2. RocketMQ 让使用者在消费者端去解决该问题,即需要消费者端在消费消息时支持幂等性的去消费消息 -3. 最简单的解决方案是每条消费记录有个消费状态字段,根据这个消费状态字段来是否消费或者使用一个集中式的表,来存储所有消息的消费状态,从而避免重复消费 +3. 最简单的解决方案是每条消费记录有个消费状态字段,根据这个消费状态字段来判断是否消费或者使用一个集中式的表,来存储所有消息的消费状态,从而避免重复消费 4. 具体实现可以查询关于消息幂等消费的解决方案 -### 2.1.9 广播消费与集群消费 +#### 2.1.9 广播消费与集群消费 1. 消息消费区别:广播消费,订阅该 Topic 的消息者们都会消费**每个**消息。集群消费,订阅该 Topic 的消息者们只会有一个去消费**某个**消息 2. 消息落盘区别:具体表现在消息消费进度的保存上。广播消费,由于每个消费者都独立的去消费每个消息,因此每个消费者各自保存自己的消息消费进度。而集群消费下,订阅了某个 Topic,而旗下又有多个 MessageQueue,每个消费者都可能会去消费不同的 MessageQueue,因此总体的消费进度保存在 Broker 上集中的管理 -### 2.1.10 RocketMQ 不使用 ZooKeeper 作为注册中心的原因,以及自制的 NameServer 优缺点? +#### 2.1.10 RocketMQ 不使用 ZooKeeper 作为注册中心的原因,以及自制的 NameServer 优缺点? 1. ZooKeeper 作为支持顺序一致性的中间件,在某些情况下,它为了满足一致性,会丢失一定时间内的可用性,RocketMQ 需要注册中心只是为了发现组件地址,在某些情况下,RocketMQ 的注册中心可以出现数据不一致性,这同时也是 NameServer 的缺点,因为 NameServer 集群间互不通信,它们之间的注册信息可能会不一致 -2. 另外,当有新的服务器加入时,NameServer 并不会立马通知到 Produer,而是由 Produer 定时去请求 NameServer 获取最新的 Broker/Consumer 信息(这种情况是通过 Producer 发送消息时,负载均衡解决) +2. 另外,当有新的服务器加入时,NameServer 并不会立马通知到 Producer,而是由 Producer 定时去请求 NameServer 获取最新的 Broker/Consumer 信息(这种情况是通过 Producer 发送消息时,负载均衡解决) -### 2.1.11 其它 +#### 2.1.11 其它 ![][1] @@ -199,13 +184,13 @@ class Broker { 2. 消息重试负载均衡策略(具体参考 Dubbo 负载均衡策略) 3. 消息过滤器(Producer 发送消息到 Broker,Broker 存储消息信息,Consumer 消费时请求 Broker 端从磁盘文件查询消息文件时,在 Broker 端就使用过滤服务器进行过滤) 4. Broker 同步双写和异步双写中 Master 和 Slave 的交互 -5. Broker 在 4.5.0 版本更新中引入了基于 Raft 协议的多副本选举,之前这是商业版才有的特性 [ISSUE-1046][2] +5. Broker 在 4.5.0 版本更新中引入了基于 Raft 协议的多副本选举,之前这是商业版才有的特性 [ISSUE-1046][2] -# 3 参考 +## 3 参考 1. 《RocketMQ技术内幕》:https://blog.csdn.net/prestigeding/article/details/85233529 2. 关于 RocketMQ 对 MappedByteBuffer 的一点优化:https://lishoubo.github.io/2017/09/27/MappedByteBuffer%E7%9A%84%E4%B8%80%E7%82%B9%E4%BC%98%E5%8C%96/ -3. 阿里中间件团队博客-十分钟入门RocketMQ:http://jm.taobao.org/2017/01/12/rocketmq-quick-start-in-10-minutes/ +3. 十分钟入门RocketMQ:https://developer.aliyun.com/article/66101 4. 分布式事务的种类以及 RocketMQ 支持的分布式消息:https://www.infoq.cn/article/2018/08/rocketmq-4.3-release 5. 滴滴出行基于RocketMQ构建企业级消息队列服务的实践:https://yq.aliyun.com/articles/664608 6. 基于《RocketMQ技术内幕》源码注释:https://github.com/LiWenGu/awesome-rocketmq diff --git "a/docs/system-design/\350\257\273\345\206\231\345\210\206\347\246\273&\345\210\206\345\272\223\345\210\206\350\241\250.md" "b/docs/high-performance/\350\257\273\345\206\231\345\210\206\347\246\273&\345\210\206\345\272\223\345\210\206\350\241\250.md" similarity index 99% rename from "docs/system-design/\350\257\273\345\206\231\345\210\206\347\246\273&\345\210\206\345\272\223\345\210\206\350\241\250.md" rename to "docs/high-performance/\350\257\273\345\206\231\345\210\206\347\246\273&\345\210\206\345\272\223\345\210\206\350\241\250.md" index 9154dbb86d5..4937d9fd7f3 100644 --- "a/docs/system-design/\350\257\273\345\206\231\345\210\206\347\246\273&\345\210\206\345\272\223\345\210\206\350\241\250.md" +++ "b/docs/high-performance/\350\257\273\345\206\231\345\210\206\347\246\273&\345\210\206\345\272\223\345\210\206\350\241\250.md" @@ -1,3 +1,5 @@ +# 读写分离&分库分表 + 大家好呀!今天和小伙伴们聊聊读写分离以及分库分表。 相信很多小伙伴们对于这两个概念已经比较熟悉了,这篇文章全程都是大白话的形式,希望能够给你带来不一样的感受。 @@ -8,8 +10,6 @@ _个人能力有限。如果文章有任何需要补充/完善/修改的地方,欢迎在评论区指出,共同进步!_ -# 读写分离&分库分表 - ## 读写分离 ### 何为读写分离? @@ -54,7 +54,7 @@ hintManager.setMasterRouteOnly(); 不论是使用哪一种读写分离具体的实现方案,想要实现读写分离一般包含如下几步: -1. 部署多台数据库,选择一种的一台作为主数据库,其他的一台或者多台作为从数据库。 +1. 部署多台数据库,选择其中的一台作为主数据库,其他的一台或者多台作为从数据库。 2. 保证主数据库和从数据库之间的数据是实时同步的,这个过程也就是我们常说的**主从复制**。 3. 系统将写请求交给主数据库处理,读请求交给从数据库处理。 @@ -187,4 +187,4 @@ ShardingSphere 绝对可以说是当前分库分表的首选!ShardingSphere - 在迁移过程,双写只会让被更新操作过的老库中的数据同步到新库,我们还需要自己写脚本将老库中的数据和新库的数据做比对。如果新库中没有,那咱们就把数据插入到新库。如果新库有,旧库没有,就把新库对应的数据删除(冗余数据清理)。 - 重复上一步的操作,直到老库和新库的数据一致为止。 -想要在项目中实施双写还是比较麻烦的,很容易会出现问题。我们可以借助上面提到的数据库同步工具 Canal 做增量数据迁移(还是依赖 binlog,开发和维护成本较低)。 \ No newline at end of file +想要在项目中实施双写还是比较麻烦的,很容易会出现问题。我们可以借助上面提到的数据库同步工具 Canal 做增量数据迁移(还是依赖 binlog,开发和维护成本较低)。 diff --git "a/docs/high-performance/\350\264\237\350\275\275\345\235\207\350\241\241.md" "b/docs/high-performance/\350\264\237\350\275\275\345\235\207\350\241\241.md" new file mode 100644 index 00000000000..a9d98b2cea5 --- /dev/null +++ "b/docs/high-performance/\350\264\237\350\275\275\345\235\207\350\241\241.md" @@ -0,0 +1,13 @@ +# 负载均衡 + +负载均衡系统通常用于将任务比如用户请求处理分配到多个服务器处理以提高网站、应用或者数据库的性能和可靠性。 + +常见的负载均衡系统包括 3 种: + +1. **DNS 负载均衡** :一般用来实现地理级别的均衡。 +2. **硬件负载均衡** : 通过单独的硬件设备比如 F5 来实现负载均衡功能(硬件的价格一般很贵)。 +3. **软件负载均衡** :通过负载均衡软件比如 Nginx 来实现负载均衡功能。 + +## 推荐阅读 + +- [《凤凰架构》-负载均衡](http://icyfenix.cn/architect-perspective/general-architecture/diversion-system/load-balancing.html) diff --git a/docs/idea-tutorial/idea-plugins/camel-case.md b/docs/idea-tutorial/idea-plugins/camel-case.md new file mode 100644 index 00000000000..5456378f4b2 --- /dev/null +++ b/docs/idea-tutorial/idea-plugins/camel-case.md @@ -0,0 +1,27 @@ +--- +title: Camel Case:命名之间快速切换 +category: IDEA指南 +tag: + - IDEA + - IDEA插件 +--- + +非常有用!这个插件可以实现包含6种常见命名格式之间的切换。并且,你还可以对转换格式进行相关配置(转换格式),如下图所示: + +![img](./pictures/camel-case/camel-case1.png) + +有了这个插件之后,你只需要使用快捷键 `shift+option+u(mac)` / `shift+alt+u` 对准你要修改的变量或者方法名字,就能实现在多种格式之间切换了,如下图所示: + +![](./pictures/camel-case/camel-case2.gif) + +如果你突然忘记快捷键的话,可以直接在IDEA的菜单栏的 Edit 部分找到。 + +![](./pictures/camel-case/camel-case3.png) + +使用这个插件对开发效率提升高吗?拿我之前项目组的情况举个例子: + +我之前有一个项目组的测试名字是驼峰这种形式: `ShouldReturnTicketWhenRobotSaveBagGiven1LockersWith2FreeSpace` 。但是,使用驼峰形式命名测试方法的名字不太明显,一般建议用下划线_的形式: `should_return_ticket_when_robot_save_bag_given_1_lockers_with_2_free_space` + +如果我们不用这个插件,而是手动去一个一个改的话,工作量想必会很大,而且正确率也会因为手工的原因降低。 + +> diff --git a/docs/idea-tutorial/idea-plugins/code-glance.md b/docs/idea-tutorial/idea-plugins/code-glance.md new file mode 100644 index 00000000000..9345ab427bb --- /dev/null +++ b/docs/idea-tutorial/idea-plugins/code-glance.md @@ -0,0 +1,11 @@ +--- +title: CodeGlance:代码微型地图 +category: IDEA指南 +tag: + - IDEA + - IDEA插件 +--- + +CodeGlance提供一个代码的微型地图,当你的类比较多的时候可以帮忙你快速定位到要去的位置。这个插件在我们日常做普通开发的时候用处不大,不过,在你阅读源码的时候还是很有用的,如下图所示: + +![](./pictures/code-glance.png) \ No newline at end of file diff --git a/docs/idea-tutorial/idea-plugins/code-statistic.md b/docs/idea-tutorial/idea-plugins/code-statistic.md new file mode 100644 index 00000000000..1d60c81bad6 --- /dev/null +++ b/docs/idea-tutorial/idea-plugins/code-statistic.md @@ -0,0 +1,39 @@ +--- +title: Statistic:项目代码统计 +category: IDEA指南 +tag: + - IDEA + - IDEA插件 +--- + +编程是一个很奇妙的事情,大部分的我们把大部分时间实际都花在了复制粘贴,而后修改代码上面。 + +很多时候,我们并不关注代码质量,只要功能能实现,我才不管一个类的代码有多长、一个方法的代码有多长。 + +因此,我们经常会碰到让自己想要骂街的项目,不过,说真的,你自己写的代码也有极大可能被后者 DISS。 + +为了快速分析项目情况,判断这个项目是不是一个“垃圾”项目,有一个方法挺简单的。 + +那就是**对代码的总行数、单个文件的代码行数、注释行数等信息进行统计。** + +**怎么统计呢?** + +首先想到的是 Excel 。不过,显然太麻烦了。 + +**有没有专门用于代码统计的工具呢?** + +基于Perl语言开发的cloc(count lines of code)或许可以满足你的要求。 + +**有没有什么更简单的办法呢?** + +如果你使用的是 IDEA 进行开发的话,推荐你可以使用一下 **Statistic** 这个插件。 + +有了这个插件之后你可以非常直观地看到你的项目中所有类型的文件的信息比如数量、大小等等,可以帮助你更好地了解你们的项目。 + +![](./pictures/Statistic1.png) + +你还可以使用它看所有类的总行数、有效代码行数、注释行数、以及有效代码比重等等这些东西。 + +![](./pictures/Statistic2.png) + +如果,你担心插件过多影响IDEA速度的话,可以只在有代码统计需求的时候开启这个插件,其他时间禁用它就完事了! \ No newline at end of file diff --git a/docs/idea-tutorial/idea-plugins/git-commit-template.md b/docs/idea-tutorial/idea-plugins/git-commit-template.md new file mode 100644 index 00000000000..c75dae11c79 --- /dev/null +++ b/docs/idea-tutorial/idea-plugins/git-commit-template.md @@ -0,0 +1,19 @@ +--- +title: Git Commit Template:提交代码格式规范 +category: IDEA指南 +tag: + - IDEA + - IDEA插件 +--- + +没有安装这个插件之前,我们使用IDEA提供的Commit功能提交代码是下面这样的: + +![](./pictures/git-commit-template/Git-Commit-Template1.png) + +使用了这个插件之后是下面这样的,提供了一个commit信息模板的输入框: + +![](./pictures/git-commit-template/Git-Commit-Template2.png) + +完成之后的效果是这样的: + +![](./pictures/git-commit-template/Git-Commit-Template3.png) \ No newline at end of file diff --git a/docs/idea-tutorial/idea-plugins/gson-format.md b/docs/idea-tutorial/idea-plugins/gson-format.md new file mode 100644 index 00000000000..56750e1cb05 --- /dev/null +++ b/docs/idea-tutorial/idea-plugins/gson-format.md @@ -0,0 +1,32 @@ +--- +title: GsonFormat:JSON转对象 +category: IDEA指南 +tag: + - IDEA + - IDEA插件 +--- + +GsonFormat 这个插件可以根据Gson库使用的要求,将JSONObject格式的String 解析成实体类。 + +> 说明:2021.x 版本以上的 IDEA 可以使用:GsonFormatPlus + +这个插件使用起来非常简单,我们新建一个类,然后在类中使用快捷键 `option + s`(Mac)或`alt + s` (win)调出操作窗口(**必须在类中使用快捷键才有效**),如下图所示。 + +![](./pictures/GsonFormat2.gif) + +这个插件是一个国人几年前写的,不过已经很久没有更新了,可能会因为IDEA的版本问题有一些小Bug。而且,这个插件无法将JSON转换为Kotlin(这个其实无关痛痒,IDEA自带的就有Java转Kotlin的功能)。 + +![](./pictures/GsonFormat1.png) + +另外一个与之相似的插件是 **:RoboPOJOGenerator** ,这个插件的更新频率比较快。 + +`File-> new -> Generate POJO from JSON` + +![](./pictures/RoboPOJOGenerator1.png) + +然后将JSON格式的数据粘贴进去之后,配置相关属性之后选择“*Generate*” + +![](./pictures/RoboPOJOGenerator2.png) + + + diff --git a/docs/idea-tutorial/idea-plugins/idea-features-trainer.md b/docs/idea-tutorial/idea-plugins/idea-features-trainer.md new file mode 100644 index 00000000000..a5cb4960c4d --- /dev/null +++ b/docs/idea-tutorial/idea-plugins/idea-features-trainer.md @@ -0,0 +1,17 @@ +--- +title: IDE Features Trainer:IDEA 交互式教程 +category: IDEA指南 +tag: + - IDEA + - IDEA插件 +--- + +**有了这个插件之后,你可以在 IDE 中以交互方式学习IDEA最常用的快捷方式和最基本功能。** 非常非常非常方便!强烈建议大家安装一个,尤其是刚开始使用IDEA的朋友。 + +当我们安装了这个插件之后,你会发现我们的IDEA 编辑器的右边多了一个“**Learn**”的选项,我们点击这个选项就可以看到如下界面。 + +![](./pictures/IDE-Features-Trainer1.png?lastModify=1633856821) + +我们选择“Editor Basics”进行,然后就可以看到如下界面,这样你就可以按照指示来练习了!非常不错! + +![](./pictures/IDE-Features-Trainer2.png?lastModify=1633856821) \ No newline at end of file diff --git a/docs/idea-tutorial/idea-plugins/idea-themes.md b/docs/idea-tutorial/idea-plugins/idea-themes.md new file mode 100644 index 00000000000..ca38f19f51f --- /dev/null +++ b/docs/idea-tutorial/idea-plugins/idea-themes.md @@ -0,0 +1,99 @@ +--- +title: IDEA主题推荐 +category: IDEA指南 +tag: + - IDEA + - IDEA插件 +--- + +经常有小伙伴问我:“Guide哥,你的IDEA 主题怎么这么好看,能推荐一下不?”。就实在有点不耐烦了,才索性写了这篇文章。 + +在这篇文章中,我精选了几个比较是和 Java 编码的 IDEA 主题供小伙伴们选择。另外,我自己用的是 One Dark theme 这款。 + +**注意:以下主题按照使用人数降序排序。** + +## [Material Theme UI](https://plugins.jetbrains.com/plugin/8006-material-theme-ui) + +**推荐指数** :⭐⭐⭐⭐ + +这是 IDEA 中使用人数最多的一款主题。 + +当你安装完这个插件之后,你会发现这个主题本身又提供了多种相关的主题供你选择。 + +![](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images-3@main/11-20/image-20201119182935201.png) + + **Material Deep Ocean** 这款的效果图如下。默认的字体是真的小,小伙伴们需要自行调整一下。 + +![](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images-3@main/11-20/image-20201119183044068.png) + +## [One Dark theme](https://plugins.jetbrains.com/plugin/11938-one-dark-theme) + +**推荐指数** :⭐⭐⭐⭐⭐ + +我比较喜欢的一款(*黄色比较多?*)。 没有花里花哨,简单大气,看起来比较舒服。颜色搭配也很棒,适合编码! + +这款主题的效果图如下。 + +![](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images-3@main/11-20-11/image-20201119180300975.png) + +## [Gradianto](https://plugins.jetbrains.com/plugin/12334-gradianto) + +**推荐指数** :⭐⭐⭐⭐⭐ + +Gradianto这个主题的目标是在保持页面色彩比较层次分明的情况下,让我们因为代码而疲惫的双眼更加轻松。 + +Gradianto附带了自然界的渐变色,看着挺舒服的。另外,这个主题本身也提供了多种相关的主题供你选择。 + +![](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images-3@main/11-20/image-20201119183825753.png) + +**Gradianto Nature Green** 的效果图如下。 + +![](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images-3@main/11-20/image-20201119183920889.png) + +## [Dark Purple Theme](https://plugins.jetbrains.com/plugin/12100-dark-purple-theme) + +**推荐指数** :⭐⭐⭐⭐⭐ + +这是一款紫色色调的深色主题,喜欢紫色的小伙伴不要错过。 + +这个主题的效果图如下。个人觉得整体颜色搭配的是比较不错的,适合编码! + +![](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images-3@main/11-20-11/image-20201119184654132.png) + +## [Hiberbee Theme](https://plugins.jetbrains.com/plugin/12118-hiberbee-theme) + +**推荐指数** :⭐⭐⭐⭐⭐ + +一款受到了 Monokai Pro 和 MacOS Mojave启发的主题,是一款色彩层次分明的深色主题。 + +这个主题的效果图如下。看着也是非常赞!适合编码! + +![](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images-3@main/11-20-11/image-20201119191441248.png) + +上面推荐的都是偏暗色系的主题,这里我再推荐两款浅色系的主题。 + +## [Gray Theme](https://plugins.jetbrains.com/plugin/12103-gray-theme) + +**推荐指数** :⭐⭐⭐ + +这是一款对比度比较低的一款浅色主题,不太适合代码阅读,毕竟这款主题是专门为在IntelliJ IDE中使用Markdown而设计的。 + +这个主题的效果图如下。 + +![](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images-3@main/11-20-11/image-20201119194512164.png) + +## [Roboticket Light Theme](https://plugins.jetbrains.com/plugin/12191-roboticket-light-theme) + +**推荐指数** :⭐⭐⭐ + +这是一款对比度比较低的浅色主题,不太适合代码阅读。 + +这个主题的效果图如下。 + +![](https://img-blog.csdnimg.cn/img_convert/194581c7b72d49b512b12814340f00c8.png) + +## 后记 + +我个人还是比较偏爱深色系的主题。 + +小伙伴们比较喜欢哪款主题呢?可以在评论区简单聊聊不?如果你还有其他比较喜欢的主题也可以在评论区说出来供大家参考哦! \ No newline at end of file diff --git a/docs/idea-tutorial/idea-plugins/improve-code.md b/docs/idea-tutorial/idea-plugins/improve-code.md new file mode 100644 index 00000000000..91b31b4e232 --- /dev/null +++ b/docs/idea-tutorial/idea-plugins/improve-code.md @@ -0,0 +1,153 @@ +--- +title: IDEA 代码优化插件推荐 +category: IDEA指南 +tag: + - IDEA + - IDEA插件 + - 代码优化 +--- + +## Lombok:帮你简化代码 + +之前没有推荐这个插件的原因是觉得已经是人手必备的了。如果你要使用 Lombok 的话,不光是要安装这个插件,你的项目也要引入相关的依赖。 + +```xml + + org.projectlombok + lombok + true + +``` + +使用 Lombok 能够帮助我们少写很多代码比如 Getter/Setter、Constructor等等。 + +关于Lombok的使用,可以查看这篇文章:[《十分钟搞懂Java效率工具Lombok使用与原理》](https://mp.weixin.qq.com/s?__biz=Mzg2OTA0Njk0OA==&mid=2247485385&idx=2&sn=a7c3fb4485ffd8c019e5541e9b1580cd&chksm=cea24802f9d5c1144eee0da52cfc0cc5e8ee3590990de3bb642df4d4b2a8cd07f12dd54947b9&token=1667678311&lang=zh_CN#rd)。 + + +## Codota:代码智能提示 + +我一直在用的一个插件,可以说非常好用了(*我身边的很多大佬平时写代码也会用这个插件*)。 + +Codota 这个插件用于智能代码补全,它基于数百万Java程序,能够根据程序上下文提示补全代码。相比于IDEA自带的智能提示来说,Codota 的提示更加全面一些。 + +如果你觉得 IDEA 插件安装的太多比较卡顿的话,不用担心!Codota 插件还有一个对应的在线网站([https://www.codota.com/code](https://www.codota.com/code)),在这个网站上你可以根据代码关键字搜索相关代码示例,非常不错! + +我在工作中经常会用到,说实话确实给我带来了很大便利,比如我们搜索 `Files.readAllLines`相关的代码,搜索出来的结果如下图所示: + +![](./pictures/Codota3.png) + +另外,Codota 插件的基础功能都是免费的。你的代码也不会被泄露,这点你不用担心。 + +简单来看看 Codota 插件的骚操作吧! + +### 代码智能补全 + +我们使用`HttpUrlConnection ` 建立一个网络连接是真的样的: + +![](./pictures/Codota1.gif) + +我们创建线程池现在变成下面这样: + +![](./pictures/Codota4.gif) + +上面只是为了演示这个插件的强大,实际上创建线程池不推荐使用这种方式, 推荐使用 `ThreadPoolExecutor` 构造函数创建线程池。我下面要介绍的一个阿里巴巴的插件-**Alibaba Java Code Guidelines** 就检测出来了这个问题,所以,`Executors`下面用波浪线标记了出来。 + +### 代码智能搜索 + +除了,在写代码的时候智能提示之外。你还可以直接选中代码然后搜索相关代码示例。 + +![](./pictures/Codota2.png) + +## Alibaba Java Code Guidelines:阿里巴巴 Java 代码规范 + +阿里巴巴 Java 代码规范,对应的Github地址为:[https://github.com/alibaba/p3c](https://github.com/alibaba/p3c ) 。非常推荐安装! + +安装完成之后建议将与语言替换成中文,提示更加友好一点。 + +![](./pictures/p3c/Alibaba-Java-Code-Guidelines2.png) + +根据官方描述: + +> 目前这个插件实现了开发手册中的的53条规则,大部分基于PMD实现,其中有4条规则基于IDEA实现,并且基于IDEA [Inspection](https://www.jetbrains.com/help/idea/code-inspection.html)实现了实时检测功能。部分规则实现了Quick Fix功能,对于可以提供Quick Fix但没有提供的,我们会尽快实现,也欢迎有兴趣的同学加入进来一起努力。 目前插件检测有两种模式:实时检测、手动触发。 + +上述提到的开发手册也就是在Java开发领域赫赫有名的《阿里巴巴Java开发手册》。 + +### 手动配置检测规则 + +你还可以手动配置相关 inspection规则: + +![](./pictures/p3c/Alibaba-Java-Code-Guidelines3.png) + +### 使用效果 + +这个插件会实时检测出我们的代码不匹配它的规则的地方,并且会给出修改建议。比如我们按照下面的方式去创建线程池的话,这个插件就会帮我们检测出来,如下图所示。 + +![](./pictures/p3c/Alibaba-Java-Code-Guidelines1.png) + +这个可以对应上 《阿里巴巴Java开发手册》 这本书关于创建线程池的方式说明。 + +![](./pictures/p3c/阿里巴巴开发手册-线程池创建.png) + +## CheckStyle: Java代码格式规范 + +### 为何需要CheckStyle插件? + +**CheckStyle 几乎是 Java 项目开发必备的一个插件了,它会帮助我们检查 Java 代码的格式是否有问题比如变量命名格式是否有问题、某一行代码的长度是否过长等等。** + +在项目上,**通过项目开发人员自我约束来规范代码格式必然是不靠谱的!** 因此,我们非常需要这样一款工具来帮助我们规范代码格式。 + +如果你看过我写的轮子的话,可以发现我为每一个项目都集成了 CheckStyle,并且设置了 **Git Commit 钩子**,保证在提交代码之前代码格式没有问题。 + +> **Guide哥造的轮子**(*代码简洁,结构清晰,欢迎学习,欢迎一起完善*): +> +> 1. [guide-rpc-framework](https://github.com/Snailclimb/guide-rpc-framework) :A custom RPC framework implemented by Netty+Kyro+Zookeeper.(一款基于 Netty+Kyro+Zookeeper 实现的自定义 RPC 框架-附详细实现过程和相关教程) +> 2. [jsoncat](https://github.com/Snailclimb/jsoncat) :仿 Spring Boot 但不同于 Spring Boot 的一个轻量级的 HTTP 框架 +> +> **Git 钩子**: Git 能在特定的重要动作比如commit、push发生时触发自定义脚本。 钩子都被存储在 Git 目录下的 `hooks` 子目录中。 也即绝大部分项目中的 `.git/hooks` 。 + +### 如何在Maven/Gradle项目中集成 Checksytle? + +一般情况下,我们都是将其集成在项目中,并设置相应的 Git 钩子。网上有相应的介绍文章,这里就不多提了。 + +如果你觉得网上的文章不直观的话,可以参考我上面提到了两个轮子: + +1. [guide-rpc-framework](https://github.com/Snailclimb/guide-rpc-framework) :Maven项目集成 Checksytle。 +2. [jsoncat](https://github.com/Snailclimb/jsoncat) :Gradle项目集成 Checksytle。 + +如果你在项目中集成了 Checksytle 的话,每次检测会生成一个 HTML格式的文件告诉你哪里的代码格式不对,这样看着非常不直观。通过 Checksytle插件的话可以非常直观的将项目中存在格式问题的地方显示出来。 + +![](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images/IDEA%E6%8F%92%E4%BB%B6/image-20201013135044410.png) + +如果你只是自己在本地使用,并不想在项目中集成 Checksytle 的话也可以,只需要下载一个 Checksytle插件就足够了。 + +### 如何安装? + +我们直接在 IDEA 的插件市场即可找到这个插件。我这里已经安装好了。 + +![](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images/IDEA%E6%8F%92%E4%BB%B6/image-20201013103610557.png) + +安装插件之后重启 IDEA,你会发现就可以在底部菜单栏找到 CheckStyle 了。 + +![](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images/IDEA%E6%8F%92%E4%BB%B6/image-20201013134644991.png) + +### 如何自定义检测规则? + +如果你需要自定义代码格式检测规则的话,可以按照如下方式进行配置(你可以导入用于自定义检测规则的`CheckStyle.xml`文件)。 + +![](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images/IDEA%E6%8F%92%E4%BB%B6/setting-check-style.png) + +### 使用效果 + +配置完成之后,按照如下方式使用这个插件! + +![run-check-style](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images/IDEA%E6%8F%92%E4%BB%B6/run-check-style.png) + +可以非常清晰的看到:CheckStyle 插件已经根据我们自定义的规则将项目中的代码存在格式问题的地方都检测了出来。 + +## SonarLint:帮你优化代码 + +SonarLint 帮助你发现代码的错误和漏洞,就像是代码拼写检查器一样,SonarLint 可以实时显示出代码的问题,并提供清晰的修复指导,以便你提交代码之前就可以解决它们。 + +![](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images-2@main/%E7%B3%BB%E7%BB%9F%E8%AE%BE%E8%AE%A1/image-20201019222817359.png) + +并且,很多项目都集成了 SonarQube,SonarLint 可以很方便地与 SonarQube 集成。 \ No newline at end of file diff --git a/docs/idea-tutorial/idea-plugins/interface-beautification.md b/docs/idea-tutorial/idea-plugins/interface-beautification.md new file mode 100644 index 00000000000..3f3f62fb679 --- /dev/null +++ b/docs/idea-tutorial/idea-plugins/interface-beautification.md @@ -0,0 +1,67 @@ +--- +title: IDEA 界面美化插件推荐 +category: IDEA指南 +tag: + - IDEA + - IDEA插件 + - 代码优化 +--- + + +## Background Image Plus:背景图片 + +我这里推荐使用国人 Jack Chu 基于 Background Image Plus 开发的最新版本,适用于 2021.x 版本的 IDEA。 + +前面几个下载量比较高的,目前都还未支持 2021.x 版本的 IDEA。 + +![Background Image Plus](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/image-20211010174138279.png) + +通过这个插件,你可以将 IDEA 背景设置为指定的图片,支持随机背景。 + +效果图如下: + +![Background Image Plus 设置背景效果图](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/image-20211010173730828.png) + +如果你想要设置随机背景的话,可以通过 IDEA 设置页 **Settings** -> **Appearance & Behaviour** -> **Background Image Plus** 自定义设置项,随机显示目录下的图片为背景图。 + +## Power Mode II : 代码特效 + +使用了这个插件之后,写代码会自带特效,适用于 2021.x 版本的 IDEA。 2021.x 版本之前,可以使用 **activate-power-mode** 。 + +![Power Mode II 效果图](./pictures/power-mode/Power-Mode-II.gif) + +你可以通过 IDEA 设置页 **Settings** -> **Appearance & Behaviour** -> **Power Mode II** 自定义设置项。 + +![Power Mode II](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/image-20211010175304108.png) + +## Nyan Progress Bar : 进度条美化 + +可以让你拥有更加漂亮的进度条。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/image-20211010175434133.png) + +## Grep Console:控制台输出处理 + +可以说是必备的一个 IDEA 插件,非常实用! + +这个插件主要的功能有两个: + +**1. 自定义设置控制台输出颜色** + +我们可以在设置中进行相关的配置: + +![](./pictures/grep-console/grep-console2.png) + +配置完成之后的 log warn 的效果对比图如下: + +![](./pictures/grep-console/grep-console3.png) + +**2. 过滤控制台输出** + +![](./pictures/grep-console/grep-console.gif) + +## Rainbow Brackets : 彩虹括号 + +使用各种鲜明的颜色来展示你的括号,效果图如下。可以看出代码层级变得更加清晰了,可以说非常实用友好了! + +![](./pictures/rainbow-brackets.png) \ No newline at end of file diff --git a/docs/idea-tutorial/idea-plugins/jclasslib.md b/docs/idea-tutorial/idea-plugins/jclasslib.md new file mode 100644 index 00000000000..c5f29d2b657 --- /dev/null +++ b/docs/idea-tutorial/idea-plugins/jclasslib.md @@ -0,0 +1,93 @@ +--- +title: jclasslib :一款IDEA字节码查看神器 +category: IDEA指南 +tag: + - IDEA + - IDEA插件 + - 字节码 +--- + +由于后面要分享的一篇文章中用到了这篇文章要推荐的一个插件,所以这里分享一下。非常实用!你会爱上它的! + +![](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images/%E8%AE%A1%E7%AE%97%E6%9C%BA%E4%B8%93%E4%B8%9A%E5%AD%A6%E4%B9%A0%E6%8C%87%E5%8D%97/image-20201013084919965.png) + +**开始推荐 IDEA 字节码查看神器之前,先来回顾一下 Java 字节码是啥。** + +## 何为 Java 字节码? + +Java 虚拟机(JVM)是运行 Java 字节码的虚拟机。JVM 有针对不同系统的特定实现(Windows,Linux,macOS),目的是使用相同的字节码,它们都会给出相同的结果。 + +**什么是字节码?采用字节码的好处是什么?** + +> 在 Java 中,JVM 可以理解的代码就叫做`字节码`(即扩展名为 `.class` 的文件),它不面向任何特定的处理器,只面向虚拟机。Java 语言通过字节码的方式,在一定程度上解决了传统解释型语言执行效率低的问题,同时又保留了解释型语言可移植的特点。所以 Java 程序运行时比较高效,而且,由于字节码并不针对一种特定的机器,因此,Java 程序无须重新编译便可在多种不同操作系统的计算机上运行。 + +**Java 程序从源代码到运行一般有下面 3 步:** + +![Java程序运行过程](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/Java%20%E7%A8%8B%E5%BA%8F%E8%BF%90%E8%A1%8C%E8%BF%87%E7%A8%8B.png) + +## 为什么要查看 Java 字节码? + +我们在平时学习的时候,经常需要查看某个 java 类的字节码文件。查看字节码文件更容易让我们搞懂 java 代码背后的原理比如搞懂 java 中的各种语法糖的本质。 + +## 如何查看 Java 字节码? + +如果我们通过命令行来查看某个 class 的字节码文件的话,可以直接通过 `javap` 命令,不过这种方式太原始了,效率十分低,并且看起来不直观。 + +下面介绍两种使用 IDEA 查看类对应字节码文件的方式(_`javap`这种方式就不提了_)。 + +我们以这段代码作为案例: + +```java +public class Main { + public static void main(String[] args) { + Integer i = null; + Boolean flag = false; + System.out.println(flag ? 0 : i); + } +} +``` + +上面这段代码由于使用三目运算符不当导致诡异了 NPE 异常。为了搞清楚事情的原因,我们来看其对应的字节码。 + +### 使用 IDEA 自带功能 + +我们点击 `View -> Show Bytecode` 即可通过 IDEA 查看某个类对应的字节码文件。 + +> 需要注意的是:**查看某个类对应的字节码文件之前确保它已经被编译过。** + +![使用IDEA自带功能查看Java字节码](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images/IDEA%E6%8F%92%E4%BB%B6/image-20201012143530226.png) + +稍等几秒钟之后,你就可以直观到看到对应的类的字节码内容了。 + +![](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images/2020-10/image-20201012145127465.png) + +从字节码中可以看出,我圈出来的位置发生了 **拆箱操作** 。 + +> - **装箱**:将基本类型用它们对应的引用类型包装起来; +> - **拆箱**:将包装类型转换为基本数据类型; + +详细解释下就是:`flag ? 0 : i` 这行代码中,0 是基本数据类型 int,返回数据的时候 i 会被强制拆箱成 int 类型,由于 i 的值是 null,因此就抛出了 NPE 异常。 + +```java +Integer i = null; +Boolean flag = false; +System.out.println(flag ? 0 : i); +``` + +如果,我们把代码中 `flag` 变量的值修改为 true 的话,就不会存在 NPE 问题了,因为会直接返回 0,不会进行拆箱操作。 + +### 使用 IDEA 插件 jclasslib(推荐) + +相比于 IDEA 自带的查看类字节的功能,我更推荐 `jclasslib` 这个插件,非常棒! + +**使用 `jclasslib` 不光可以直观地查看某个类对应的字节码文件,还可以查看类的基本信息、常量池、接口、属性、函数等信息。** + +![](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images/2020-10/image-20201012145646086.png) + +我们直接在 IDEA 的插件市场即可找到这个插件。我这里已经安装好了。 + +![](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images/2020-10-12/image-20201012145900911.png) + +安装完成之后,重启 IDEA。点击`View -> Show Bytecode With jclasslib` 即可通过`jclasslib` 查看某个类对应的字节码文件。 + +![使用IDEA插件jclasslib查看类的字节码](https://cdn.jsdelivr.net/gh/javaguide-tech/blog-images/%E8%AE%A1%E7%AE%97%E6%9C%BA%E4%B8%93%E4%B8%9A%E5%AD%A6%E4%B9%A0%E6%8C%87%E5%8D%97/image-20201012150252106.png) \ No newline at end of file diff --git a/docs/idea-tutorial/idea-plugins/maven-helper.md b/docs/idea-tutorial/idea-plugins/maven-helper.md new file mode 100644 index 00000000000..d2b064a9934 --- /dev/null +++ b/docs/idea-tutorial/idea-plugins/maven-helper.md @@ -0,0 +1,19 @@ +--- +title: Maven Helper:解决 Maven 依赖冲突问题 +category: IDEA指南 +tag: + - IDEA + - IDEA插件 + - Maven +--- + + +**Maven Helper** 主要用来分析 Maven 项目的相关依赖,可以帮助我们解决 Maven 依赖冲突问题。 + +![](./pictures/maver-helper.png) + +**何为依赖冲突?** + +说白了就是你的项目使用的 2 个 jar 包引用了同一个依赖 h,并且 h 的版本还不一样,这个时候你的项目就存在两个不同版本的 h。这时 Maven 会依据依赖路径最短优先原则,来决定使用哪个版本的 Jar 包,而另一个无用的 Jar 包则未被使用,这就是所谓的依赖冲突。 + +大部分情况下,依赖冲突可能并不会对系统造成什么异常,因为 Maven 始终选择了一个 Jar 包来使用。但是,不排除在某些特定条件下,会出现类似找不到类的异常,所以,只要存在依赖冲突,在我看来,最好还是解决掉,不要给系统留下隐患。 diff --git a/docs/idea-tutorial/idea-plugins/others.md b/docs/idea-tutorial/idea-plugins/others.md new file mode 100644 index 00000000000..da505ff8dfe --- /dev/null +++ b/docs/idea-tutorial/idea-plugins/others.md @@ -0,0 +1,21 @@ +--- +title: 其他 +category: IDEA指南 +tag: + - IDEA + - IDEA插件 +--- + + +1. **leetcode editor** :提供在线 Leetcode 刷题功能,比较方便我们刷题,不过我试用之后发现有一些小 bug,个人感觉还是直接在网站找题目刷来的痛快一些。 +2. **​A Search with Github** :直接通过 Github搜索相关代码。 +3. **stackoverflow** : 选中相关内容后单击右键即可快速跳转到 stackoverflow 。 +4. **CodeStream** :让code review变得更加容易。 +5. **Code screenshots** :代码片段保存为图片。 +6. **GitToolBox** :Git工具箱 +7. **OK,​ Gradle!** :搜索Java库用于Gradle项目 +8. **Java Stream Debugger** : Java8 Stream调试器 +9. **EasyCode** : Easycode 可以直接对数据的表生成entity、controller、service、dao、mapper无需任何编码,简单而强大。更多内容可以查看这篇文章:[《懒人 IDEA 插件插件:EasyCode 一键帮你生成所需代码~》](https://mp.weixin.qq.com/s?__biz=Mzg2OTA0Njk0OA==&mid=2247486205&idx=1&sn=0ff2f87f0d82a1bd9c0c44328ef69435&chksm=cea24536f9d5cc20c6cc7669f0d4167d747fe8b8c05a64546c0162d694aa96044a2862e24b57&token=1862674725&lang=zh_CN#rd) +10. **JFormDesigner** :Swing GUI 在线编辑器。 +11. **VisualVM Launcher** : Java性能分析神器。 +12. ...... diff --git a/docs/idea-tutorial/idea-plugins/pictures/Codota1.gif b/docs/idea-tutorial/idea-plugins/pictures/Codota1.gif new file mode 100644 index 00000000000..7b2947fe3a0 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/Codota1.gif differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/Codota2.png b/docs/idea-tutorial/idea-plugins/pictures/Codota2.png new file mode 100644 index 00000000000..0fe37e36047 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/Codota2.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/Codota3.png b/docs/idea-tutorial/idea-plugins/pictures/Codota3.png new file mode 100644 index 00000000000..44d1093e492 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/Codota3.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/Codota4.gif b/docs/idea-tutorial/idea-plugins/pictures/Codota4.gif new file mode 100644 index 00000000000..1322b60f5e0 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/Codota4.gif differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/GsonFormat1.png b/docs/idea-tutorial/idea-plugins/pictures/GsonFormat1.png new file mode 100644 index 00000000000..c8e678acb68 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/GsonFormat1.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/GsonFormat2.gif b/docs/idea-tutorial/idea-plugins/pictures/GsonFormat2.gif new file mode 100644 index 00000000000..7c371162d9e Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/GsonFormat2.gif differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/IDE-Features-Trainer1.png b/docs/idea-tutorial/idea-plugins/pictures/IDE-Features-Trainer1.png new file mode 100644 index 00000000000..27f888a9499 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/IDE-Features-Trainer1.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/IDE-Features-Trainer2.png b/docs/idea-tutorial/idea-plugins/pictures/IDE-Features-Trainer2.png new file mode 100644 index 00000000000..6d59082c281 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/IDE-Features-Trainer2.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/JavaStreamDebugger.gif b/docs/idea-tutorial/idea-plugins/pictures/JavaStreamDebugger.gif new file mode 100644 index 00000000000..6e910e72ed5 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/JavaStreamDebugger.gif differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/Presentation-Assistant.gif b/docs/idea-tutorial/idea-plugins/pictures/Presentation-Assistant.gif new file mode 100644 index 00000000000..335523ea5f9 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/Presentation-Assistant.gif differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/RestfulToolkit1.png b/docs/idea-tutorial/idea-plugins/pictures/RestfulToolkit1.png new file mode 100644 index 00000000000..5a69bc0595a Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/RestfulToolkit1.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/RestfulToolkit2.png b/docs/idea-tutorial/idea-plugins/pictures/RestfulToolkit2.png new file mode 100644 index 00000000000..6c8aefd7638 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/RestfulToolkit2.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/RestfulToolkit3.png b/docs/idea-tutorial/idea-plugins/pictures/RestfulToolkit3.png new file mode 100644 index 00000000000..b6cf628e76a Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/RestfulToolkit3.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/RestfulToolkit4.png b/docs/idea-tutorial/idea-plugins/pictures/RestfulToolkit4.png new file mode 100644 index 00000000000..be15f46bdd2 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/RestfulToolkit4.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/RoboPOJOGenerator1.png b/docs/idea-tutorial/idea-plugins/pictures/RoboPOJOGenerator1.png new file mode 100644 index 00000000000..c2d7704766b Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/RoboPOJOGenerator1.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/RoboPOJOGenerator2.png b/docs/idea-tutorial/idea-plugins/pictures/RoboPOJOGenerator2.png new file mode 100644 index 00000000000..4334b3db390 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/RoboPOJOGenerator2.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/Statistic1.png b/docs/idea-tutorial/idea-plugins/pictures/Statistic1.png new file mode 100644 index 00000000000..47521ee25dd Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/Statistic1.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/Statistic2.png b/docs/idea-tutorial/idea-plugins/pictures/Statistic2.png new file mode 100644 index 00000000000..f815aa1c722 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/Statistic2.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/camel-case/camel-case1.png b/docs/idea-tutorial/idea-plugins/pictures/camel-case/camel-case1.png new file mode 100644 index 00000000000..7fbbbba97e5 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/camel-case/camel-case1.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/camel-case/camel-case2.gif b/docs/idea-tutorial/idea-plugins/pictures/camel-case/camel-case2.gif new file mode 100644 index 00000000000..9565231e9d7 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/camel-case/camel-case2.gif differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/camel-case/camel-case3.png b/docs/idea-tutorial/idea-plugins/pictures/camel-case/camel-case3.png new file mode 100644 index 00000000000..d4b2fd27ab3 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/camel-case/camel-case3.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/check-style.png b/docs/idea-tutorial/idea-plugins/pictures/check-style.png new file mode 100644 index 00000000000..e0c17b64096 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/check-style.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/code-glance.png b/docs/idea-tutorial/idea-plugins/pictures/code-glance.png new file mode 100644 index 00000000000..afdf1a1bca0 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/code-glance.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/git-commit-template/Git-Commit-Template1.png b/docs/idea-tutorial/idea-plugins/pictures/git-commit-template/Git-Commit-Template1.png new file mode 100644 index 00000000000..26da6cd1b06 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/git-commit-template/Git-Commit-Template1.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/git-commit-template/Git-Commit-Template2.png b/docs/idea-tutorial/idea-plugins/pictures/git-commit-template/Git-Commit-Template2.png new file mode 100644 index 00000000000..c0e436432a5 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/git-commit-template/Git-Commit-Template2.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/git-commit-template/Git-Commit-Template3.png b/docs/idea-tutorial/idea-plugins/pictures/git-commit-template/Git-Commit-Template3.png new file mode 100644 index 00000000000..17f81a23469 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/git-commit-template/Git-Commit-Template3.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/grep-console/grep-console.gif b/docs/idea-tutorial/idea-plugins/pictures/grep-console/grep-console.gif new file mode 100644 index 00000000000..293c134207f Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/grep-console/grep-console.gif differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/grep-console/grep-console2.png b/docs/idea-tutorial/idea-plugins/pictures/grep-console/grep-console2.png new file mode 100644 index 00000000000..aa338d615ee Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/grep-console/grep-console2.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/grep-console/grep-console3.png b/docs/idea-tutorial/idea-plugins/pictures/grep-console/grep-console3.png new file mode 100644 index 00000000000..411128ed121 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/grep-console/grep-console3.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/maver-helper.png b/docs/idea-tutorial/idea-plugins/pictures/maver-helper.png new file mode 100644 index 00000000000..35a3f6e083f Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/maver-helper.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/p3c/Alibaba-Java-Code-Guidelines1.png b/docs/idea-tutorial/idea-plugins/pictures/p3c/Alibaba-Java-Code-Guidelines1.png new file mode 100644 index 00000000000..67c3571d836 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/p3c/Alibaba-Java-Code-Guidelines1.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/p3c/Alibaba-Java-Code-Guidelines2.png b/docs/idea-tutorial/idea-plugins/pictures/p3c/Alibaba-Java-Code-Guidelines2.png new file mode 100644 index 00000000000..e4b1dc8c9a8 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/p3c/Alibaba-Java-Code-Guidelines2.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/p3c/Alibaba-Java-Code-Guidelines3.png b/docs/idea-tutorial/idea-plugins/pictures/p3c/Alibaba-Java-Code-Guidelines3.png new file mode 100644 index 00000000000..5213aff02ca Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/p3c/Alibaba-Java-Code-Guidelines3.png differ diff --git "a/docs/idea-tutorial/idea-plugins/pictures/p3c/\351\230\277\351\207\214\345\267\264\345\267\264\345\274\200\345\217\221\346\211\213\345\206\214-\347\272\277\347\250\213\346\261\240\345\210\233\345\273\272.png" "b/docs/idea-tutorial/idea-plugins/pictures/p3c/\351\230\277\351\207\214\345\267\264\345\267\264\345\274\200\345\217\221\346\211\213\345\206\214-\347\272\277\347\250\213\346\261\240\345\210\233\345\273\272.png" new file mode 100644 index 00000000000..4d18c60b055 Binary files /dev/null and "b/docs/idea-tutorial/idea-plugins/pictures/p3c/\351\230\277\351\207\214\345\267\264\345\267\264\345\274\200\345\217\221\346\211\213\345\206\214-\347\272\277\347\250\213\346\261\240\345\210\233\345\273\272.png" differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/power-mode/Power-Mode-II.gif b/docs/idea-tutorial/idea-plugins/pictures/power-mode/Power-Mode-II.gif new file mode 100644 index 00000000000..026c32e947e Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/power-mode/Power-Mode-II.gif differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/rainbow-brackets.png b/docs/idea-tutorial/idea-plugins/pictures/rainbow-brackets.png new file mode 100644 index 00000000000..6529899a3ed Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/rainbow-brackets.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/save-actions/save-actions.png b/docs/idea-tutorial/idea-plugins/pictures/save-actions/save-actions.png new file mode 100644 index 00000000000..cf765cb6d0e Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/save-actions/save-actions.png differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/save-actions/save-actions2.gif b/docs/idea-tutorial/idea-plugins/pictures/save-actions/save-actions2.gif new file mode 100644 index 00000000000..93ae62cf6c2 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/save-actions/save-actions2.gif differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/translation/translation1.jpg b/docs/idea-tutorial/idea-plugins/pictures/translation/translation1.jpg new file mode 100644 index 00000000000..7b512c115b1 Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/translation/translation1.jpg differ diff --git a/docs/idea-tutorial/idea-plugins/pictures/translation/translation2.png b/docs/idea-tutorial/idea-plugins/pictures/translation/translation2.png new file mode 100644 index 00000000000..c92664718dd Binary files /dev/null and b/docs/idea-tutorial/idea-plugins/pictures/translation/translation2.png differ diff --git a/docs/idea-tutorial/idea-plugins/rest-devlop.md b/docs/idea-tutorial/idea-plugins/rest-devlop.md new file mode 100644 index 00000000000..329552b33b2 --- /dev/null +++ b/docs/idea-tutorial/idea-plugins/rest-devlop.md @@ -0,0 +1,96 @@ +--- +title: RestfulToolkit:RESTful Web 服务辅助开发工具 +category: IDEA指南 +tag: + - IDEA + - IDEA插件 +--- + + +开始推荐这个 IDEA 插件之前,我觉得有必要花一小会时间简单聊聊 **REST** 这个我们经常打交道的概念。 + +## REST 相关概念解读 + +### 何为 REST? + +REST 即 **REpresentational State Transfer** 的缩写。这个词组的翻译过来就是"**表现层状态转化**"。 + +这样理解起来甚是晦涩,实际上 REST 的全称是 **Resource Representational State Transfer** ,直白地翻译过来就是 **“资源”在网络传输中以某种“表现形式”进行“状态转移”** 。 + +**有没有感觉很难理解?** + +没关系,看了我对 REST 涉及到的一些概念的解读之后你没准就能理解了! + +- **资源(Resource)** :我们可以把真实的对象数据称为资源。一个资源既可以是一个集合,也可以是单个个体。比如我们的班级 classes 是代表一个集合形式的资源,而特定的 class 代表单个个体资源。每一种资源都有特定的 URI(统一资源定位符)与之对应,如果我们需要获取这个资源,访问这个 URI 就可以了,比如获取特定的班级:`/class/12`。另外,资源也可以包含子资源,比如 `/classes/classId/teachers`:列出某个指定班级的所有老师的信息 +- **表现形式(Representational)**:"资源"是一种信息实体,它可以有多种外在表现形式。我们把"资源"具体呈现出来的形式比如 json,xml,image,txt 等等叫做它的"表现层/表现形式"。 +- **状态转移(State Transfer)** :大家第一眼看到这个词语一定会很懵逼?内心 BB:这尼玛是啥啊? **大白话来说 REST 中的状态转移更多地描述的服务器端资源的状态,比如你通过增删改查(通过 HTTP 动词实现)引起资源状态的改变。** (HTTP 协议是一个无状态的,所有的资源状态都保存在服务器端) + +### 何为 RESTful 架构? + +满足 REST 风格的架构设计就可以称为 RESTful 架构: + +1. 每一个 URI 代表一种资源; +2. 客户端和服务器之间,传递这种资源的某种表现形式比如 json,xml,image,txt 等等; +3. 客户端通过特定的 HTTP 动词,对服务器端资源进行操作,实现"表现层状态转化"。 + +### 何为 RESTful Web 服务? + +基于 REST 架构的 Web 服务就被称为 RESTful Web 服务。 + +## RESTful Web 服务辅助开发工具 + +### 安装 + +这个插件的名字叫做 “**RestfulToolkit**” 。我们直接在 IDEA 的插件市场即可找到这个插件。如下图所示。 + +> 如果你因为网络问题没办法使用 IDEA 自带的插件市场的话,也可以通过[IDEA 插件市场的官网](https://plugins.jetbrains.com/idea)手动下载安装。 + +![](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/41a9bfa18920403ba4db83e324f8621e~tplv-k3u1fbpfcp-zoom-1.image) + +### 简单使用 + +#### URL 跳转到对应方法 + +根据 URL 直接跳转到对应的方法定义 (Windows: `ctrl+\` or `ctrl+alt+n` Mac:`command+\` or `command+alt+n` )并且提供了一个服务的树形可视化显示窗口。 如下图所示。 + +![](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/c26ea05ad472488fbf9eb21627964bee~tplv-k3u1fbpfcp-zoom-1.image) + +#### 作为 HTTP 请求工具 + +这个插件还可以作为一个简单的 http 请求工具来使用。如下图所示。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/javaguide/RestfulToolkit2.png) + +#### 复制生成 URL、复制方法参数... + +这个插件还提供了生成 URL、查询参数、请求体(RequestBody)等功能。 + +举个例子。我们选中 `Controller` 中的某个请求对应的方法右击,你会发现多了几个可选项。当你选择`Generate & Copy Full URL`的话,就可以把整个请求的路径直接复制下来。eg:`http://localhost:9333/api/users?pageNum=1&pageSize=1` 。 + +![](pictures/RestfulToolkit3.png) + +#### 将 Java 类转换为对应的 JSON 格式 + +这个插件还为 Java 类上添加了 **Convert to JSON** 功能 。 + +我们选中的某个类对应的方法然后右击,你会发现多了几个可选项。 + +![](pictures/RestfulToolkit4.png) + +当我们选择`Convert to JSON`的话,你会得到如下 json 类型的数据: + +```json +{ + "username": "demoData", + "password": "demoData", + "rememberMe": true +} +``` + +## 后记 + +RESTFulToolkit 原作者不更新了,IDEA.201 及以上版本不再适配。 + +因此,国内就有一个大佬参考 RESTFulToolkit 开发了一款类似的插件——RestfulTool(功能较少一些,不过够用了)。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/javaguide/image-20210830112030237.png) \ No newline at end of file diff --git a/docs/idea-tutorial/idea-plugins/save-actions.md b/docs/idea-tutorial/idea-plugins/save-actions.md new file mode 100644 index 00000000000..fc149ad301b --- /dev/null +++ b/docs/idea-tutorial/idea-plugins/save-actions.md @@ -0,0 +1,23 @@ +--- +title: Save Actions:优化文件保存 +category: IDEA指南 +tag: + - IDEA + - IDEA插件 +--- + + +真必备插件!可以帮助我们在保存文件的时候: + +1. 优化导入; +2. 格式化代码; +3. 执行一些quick fix +4. ...... + +这个插件是支持可配置的,我的配置如下: + +![](./pictures/save-actions/save-actions.png) + +实际使用效果如下: + +![](./pictures/save-actions/save-actions2.gif) \ No newline at end of file diff --git a/docs/idea-tutorial/idea-plugins/sequence-diagram.md b/docs/idea-tutorial/idea-plugins/sequence-diagram.md new file mode 100644 index 00000000000..050d6161163 --- /dev/null +++ b/docs/idea-tutorial/idea-plugins/sequence-diagram.md @@ -0,0 +1,91 @@ +--- +title: SequenceDiagram:一键可以生成时序图 +category: IDEA指南 +tag: + - IDEA + - IDEA插件 +--- + + + +在平时的学习/工作中,我们会经常面临如下场景: + +1. 阅读别人的代码 +2. 阅读框架源码 +3. 阅读自己很久之前写的代码。 + +千万不要觉得工作就是单纯写代码,实际工作中,你会发现你的大部分时间实际都花在了阅读和理解已有代码上。 + +为了能够更快更清晰地搞清对象之间的调用关系,我经常需要用到序列图。手动画序列图还是很麻烦费时间的,不过 IDEA 提供了一个叫做**SequenceDiagram** 的插件帮助我们解决这个问题。通过 SequenceDiagram 这个插件,我们一键可以生成时序图。 + +## 何为序列图? + +网上对于序列图的定义有很多,我觉得都不太好理解,太抽象了。最神奇的是,大部分文章对于序列图的定义竟然都是一模一样,看来大家是充分发挥了写代码的“精髓”啊! + +我还是简单说一说我的理解吧!不过,说实话,我自己对于 Sequence Diagram 也不是很明朗。下面的描述如有问题和需要完善的地方,还请指出。 + +> **序列图**(Sequence Diagram),亦称为**循序图**,是一种[UML](https://zh.m.wikipedia.org/wiki/UML)行为图。表示系统执行某个方法/操作(如登录操作)时,对象之间的顺序调用关系。 +> +> 这个顺序调用关系可以这样理解:你需要执行系统中某个对象 a 提供的方法/操作 login(登录),但是这个对象又依赖了对象 b 提供的方法 getUser(获取用户)。因此,这里就有了 a -> b 调用关系之说。 + +再举两个例子来说一下! + +下图是微信支付的业务流程时序图。这个图描述了微信支付相关角色(顾客,商家...)在微信支付场景下,基础支付和支付的的顺序调用关系。 + +![](https://img-blog.csdnimg.cn/img_convert/3a48c8d17aea2064ff11b6d3fd1fb2cb.png) + +下图是我写的一个 HTTP 框架中的执行某个方法的序列图。这个图描述了我们在调用 `InterceptorFactory`类的 `loadInterceptors()` 方法的时候,所涉及到的类之间的调用关系。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM0MzM3Mjcy,size_16,color_FFFFFF,t_70.png) + +另外,国内一般更喜欢称呼序列图为"时序图"。 + +- 如果你按照纯翻译的角度来说, sequence 这个单词并无"时间"的意思,只有序列,顺序等意思,因此也有人说“时序图”的说法是不准确的。 +- 如果从定义角度来说,时序图这个描述是没问题的。因为 Sequence Diagram 中每条消息的触发时机确实是按照时间顺序执行的。 + +我觉得称呼 Sequence Diagram 为时序图或者序列图都是没问题的,不用太纠结。 + +## 哪些场景下需要查看类的时序图? + +我们在很多场景下都需要时序图,比如说: + +1. **阅读源码** :阅读源码的时候,你可能需要查看调用目标方法涉及的相关类的调用关系。特别是在代码的调用层级比较多的时候,对于我们理解源码非常有用。(_题外话:实际工作中,大部分时间实际我们都花在了阅读理解已有代码上。_) +2. **技术文档编写** :我们在写项目介绍文档的时候,为了让别人更容易理解你的代码,你需要根据核心方法为相关的类生成时序图来展示他们之间的调用关系。 +3. **梳理业务流程** :当我们的系统业务流程比较复杂的时候,我们可以通过序列图将系统中涉及的重要的角色和对象的之间关系可视化出来。 +4. ...... + +## 如何使用 IDEA 根据类中方法生成时序图? + +**通过 SequenceDiagram 这个插件,我们一键可以生成时序图。** + +并且,你还可以: + +1. 点击时序图中的类/方法即可跳转到对应的地方。 +2. 从时序图中删除对应的类或者方法。 +3. 将生成的时序图导出为 PNG 图片格式。 + +### 安装 + +我们直接在 IDEA 的插件市场即可找到这个插件。我这里已经安装好了。 + +> 如果你因为网络问题没办法使用 IDEA 自带的插件市场的话,也可以通过[IDEA 插件市场的官网](https://plugins.jetbrains.com/idea)手动下载安装。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/20201021165654262.png) + +### 简单使用 + +1. 选中方法名(注意不要选类名),然后点击鼠标右键,选择 **Sequence Diagram** 选项即可! + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/20201021170110697-20211010211819042.png) + +2. 配置生成的序列图的一些基本的参数比如调用深度之后,我们点击 ok 即可! + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/c5040f1105c762ddf8689892913bc02d-20211010211823985.png) + +你还可以通过生成的时序图来定位到相关的代码,这对于我们阅读源码的时候尤其有帮助! + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/20201021171623809-20211010211828759.png) + +时序图生成完成之后,你还可以选择将其导出为图片。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/20201021170228723-20211010211832965.png) \ No newline at end of file diff --git a/docs/idea-tutorial/idea-plugins/shortcut-key.md b/docs/idea-tutorial/idea-plugins/shortcut-key.md new file mode 100644 index 00000000000..c7e585290e7 --- /dev/null +++ b/docs/idea-tutorial/idea-plugins/shortcut-key.md @@ -0,0 +1,56 @@ +--- +title: IDEA 快捷键相关插件 +category: IDEA指南 +tag: + - IDEA + - IDEA插件 +--- + + +相信我!下面这两个一定是IDEA必备的插件。 + +## Key Promoter X:快捷键提示 + +这个插件的功能主要是**在你本可以使用快捷键操作的地方提醒你用快捷键操作。** + +举个例子。我直接点击tab栏下的菜单打开 Version Control(版本控制) 的话,这个插件就会提示你可以用快捷键 `command+9`或者`shift+command+9`打开。如下图所示。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/source-code/dubbo/Key-Promoter-X1.png) + +除了这个很棒的功能之外,这个插件还有一个功能我觉得非常棒。 + +它可以展示出哪些快捷键你忘记使用的次数最多!这样的话,你可以给予你忘记次数最多的那些快捷键更多的关注。 + +我忘记最多的快捷键是debug的时候经常使用的 F8(Step Over)。如下图所示。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/source-code/dubbo/Key-Promoter-X2.png) + +关于快捷键,很多人不愿意去记,觉得单纯靠鼠标就完全够了。 + +让我来说的话!我觉得如果你偶尔使用一两次 IDEA 的话,你完全没有必要纠结快捷键。 + +但是,如果 IDEA 是你开发的主力,你经常需要使用的话,相信我,掌握常用的一些快捷键真的很重要! + +不说多的,**熟练掌握IDEA的一些最常见的快捷键,你的工作效率至少提升 30 %。** + +**除了工作效率的提升之外,使用快捷键会让我们显得更加专业。** + +你在使用快捷键进行操作的时候,是很帅,很酷啊!但是,当你用 IDEA 给别人演示一些操作的时候,你使用了快捷键的话,别人可能根本不知道你进行了什么快捷键操作。 + +**怎么解决这个问题呢?** + +很简单!这个时候就轮到 **Presentation Assistant** 这个插件上场了! + +## Presentation Assistant:快捷键展示 + +安装这个插件之后,你使用的快捷键操作都会被可视化地展示出来,非常适合自己在录制视频或者给别人展示代码的时候使用。 + +举个例子。我使用快捷键 `command+9`打开 Version Control ,使用了这个插件之后的效果如下图所示。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/source-code/dubbo/Presentation-Assistant.gif) + +从上图可以很清晰地看到,IDEA 的底部中间的位置将我刚刚所使用的快捷键给展示了出来。 + +并且,**这个插件会展示出 Mac 和 Win/Linux 两种不同的版本的快捷键。** + +因此,不论你的操作系统是 Mac 还是 Win/Linux ,这款插件都能满足你的需求。 \ No newline at end of file diff --git a/docs/idea-tutorial/idea-plugins/translation.md b/docs/idea-tutorial/idea-plugins/translation.md new file mode 100644 index 00000000000..7de2619a3b5 --- /dev/null +++ b/docs/idea-tutorial/idea-plugins/translation.md @@ -0,0 +1,28 @@ +--- +title: Translation:翻译 +category: IDEA指南 +tag: + - IDEA + - IDEA插件 +--- + + +有了这个插件之后,你再也不用在编码的时候打开浏览器查找某个单词怎么拼写、某句英文注释什么意思了。 + +并且,这个插件支持多种翻译源: + +1. Google 翻译 +2. Youdao 翻译 +3. Baidu 翻译 + +除了翻译功能之外还提供了语音朗读、单词本等实用功能。这个插件的Github地址是:[https://github.com/YiiGuxing/TranslationPlugin](https://github.com/YiiGuxing/TranslationPlugin) (貌似是国人开发的,很赞)。 + +**使用方法很简单!选中你要翻译的单词或者句子,使用快捷键 `command+ctrl+u(mac)` / `shift+ctrl+y(win/linux)`** (如果你忘记了快捷的话,鼠标右键操作即可!) + +![](./pictures/translation/translation1.jpg) + +**如果需要快速打开翻译框,使用快捷键`command+ctrl+i(mac)`/`ctrl + shift + o(win/linux)`** + +![](./pictures/translation/translation2.png) + +如果你需要将某个重要的单词添加到生词本的话,只需要点击单词旁边的收藏按钮即可! \ No newline at end of file diff --git a/docs/idea-tutorial/idea-tips/idea-plug-in-development-intro.md b/docs/idea-tutorial/idea-tips/idea-plug-in-development-intro.md new file mode 100644 index 00000000000..8f8822c5946 --- /dev/null +++ b/docs/idea-tutorial/idea-tips/idea-plug-in-development-intro.md @@ -0,0 +1,213 @@ +# IDEA 插件开发入门 + +我这个人没事就喜欢推荐一些好用的 [IDEA 插件](https://mp.weixin.qq.com/mp/appmsgalbum?action=getalbum&album_id=1319419426898329600&__biz=Mzg2OTA0Njk0OA==#wechat_redirect)给大家。这些插件极大程度上提高了我们的生产效率以及编码舒适度。 + +**不知道大家有没有想过自己开发一款 IDEA 插件呢?** + +我自己想过,但是没去尝试过。刚好有一位读者想让我写一篇入门 IDEA 开发的文章,所以,我在周末就花了一会时间简单了解一下。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/2020-11/image-20201118071711216.png) + +不过,**这篇文章只是简单带各位小伙伴入门一下 IDEA 插件开发**,个人精力有限,暂时不会深入探讨太多。如果你已经有 IDEA 插件开发的相关经验的话,这篇文章就可以不用看了,因为会浪费你 3 分钟的时间。 + +好的废话不多说!咱们直接开始! + +## 01 新建一个基于 Gradle 的插件项目 + +这里我们基于 Gradle 进行插件开发,这也是 IntelliJ 官方的推荐的插件开发解决方案。 + +**第一步,选择 Gradle 项目类型并勾选上相应的依赖。** + +![选择 Gradle 项目类型并勾选上相应的依赖](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/2020-11/1.png) + +**第二步,填写项目相关的属性比如 GroupId、ArtifactId。** + +![填写项目相关的属性](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/2020-11/2.png) + +**第三步,静静等待项目下载相关依赖。** + +第一次创建 IDEA 插件项目的话,这一步会比较慢。因为要下载 IDEA 插件开发所需的 SDK 。 + +## 02 插件项目结构概览 + +新建完成的项目结构如下图所示。 + +![插件项目结构概览](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/2020-11/%E6%8F%92%E4%BB%B6%E9%A1%B9%E7%9B%AE%E7%BB%93%E6%9E%84%E6%A6%82%E8%A7%88.png) + +这里需要额外注意的是下面这两个配置文件。 + +**`plugin.xml` :插件的核心配置文件。通过它可以配置插件名称、插件介绍、插件作者信息、Action 等信息。** + +```xml + + github.javaguide.my-first-idea-plugin + + Beauty + + JavaGuide + + + 这尼玛是什么垃圾插件!!! + ]]> + + + com.intellij.modules.platform + + + + + + + + + +``` + +**`build.gradle` :项目依赖配置文件。通过它可以配置项目第三方依赖、插件版本、插件版本更新记录等信息。** + +```groovy +plugins { + id 'java' + id 'org.jetbrains.intellij' version '0.6.3' +} + +group 'github.javaguide' +// 当前插件版本 +version '1.0-SNAPSHOT' + +repositories { + mavenCentral() +} + +// 项目依赖 +dependencies { + testCompile group: 'junit', name: 'junit', version: '4.12' +} + +// See https://github.com/JetBrains/gradle-intellij-plugin/ +// 当前开发该插件的 IDEA 版本 +intellij { + version '2020.1.2' +} +patchPluginXml { + // 版本更新记录 + changeNotes """ + Add change notes here.
+ most HTML tags may be used""" +} +``` + +没有开发过 IDEA 插件的小伙伴直接看这两个配置文件内容可能会有点蒙。所以,我专门找了一个 IDEA 插件市场提供的现成插件来说明一下。小伙伴们对照下面这张图来看下面的配置文件内容就非常非常清晰了。 + +![插件信息](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/2020-11/iShot2020-11-13%2016.15.53.png) + +这就非常贴心了!如果这都不能让你点赞,我要这文章有何用! + +![](http://wx1.sinaimg.cn/large/006BkP2Hly1fsxxff7zd9g304g0480td.gif) + +## 03 手动创建 Action + +我们可以把 Action 看作是 IDEA 提高的事件响应处理器,通过 Action 我们可以自定义一些事件处理逻辑/动作。比如说你点击某个菜单的时候,我们进行一个展示对话框的操作。 + +**第一步,右键`java`目录并选择 new 一个 Action** + +![]() + +**第二步,配置 Action 相关信息比如展示名称。** + +![配置动作属性 (1)]() + +创建完成之后,我们的 `plugin.xml` 的 ``节点下会自动生成我们刚刚创建的 Action 信息: + +```xml + + + + + + +``` + +并且 `java` 目录下为生成一个叫做 `HelloAction` 的类。并且,这个类继承了 `AnAction` ,并覆盖了 `actionPerformed()` 方法。这个 `actionPerformed` 方法就好比 JS 中的 `onClick` 方法,会在你点击的时候被触发对应的动作。 + +我简单对`actionPerformed` 方法进行了修改,添加了一行代码。这行代码很简单,就是显示 1 个对话框并展示一些信息。 + +```java +public class HelloAction extends AnAction { + + @Override + public void actionPerformed(AnActionEvent e) { + //显示对话框并展示对应的信息 + Messages.showInfoMessage("素材不够,插件来凑!", "Hello"); + } +} + +``` + +另外,我们上面也说了,每个动作都会归属到一个 Group 中,这个 Group 可以简单看作 IDEA 中已经存在的菜单。 + +举个例子。我上面创建的 Action 的所属 Group 是 **ToolsMenu(Tools)** 。这样的话,我们创建的 Action 所在的位置就在 Tools 这个菜单下。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/2020-11/image-20201113192255689.png) + +再举个例子。加入我上面创建的 Action 所属的 Group 是**MainMenu** (IDEA 最上方的主菜单栏)下的 **FileMenu(File)** 的话。 + +```xml + + + + + + +``` + +我们创建的 Action 所在的位置就在 File 这个菜单下。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/2020-11/image-20201113201634643.png) + +## 04 验收成果 + +点击 `Gradle -> runIde` 就会启动一个默认了这个插件的 IDEA。然后,你可以在这个 IDEA 上实际使用这个插件了。 + +![点击 runIde 就会启动一个默认了这个插件的 IDEA](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/2020-11/image-20201118075912490.png) + +效果如下: + +![点击 runIde 就会启动一个默认了这个插件的 IDEA](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/2020-11/image-20201118080358764.png) + +我们点击自定义的 Hello Action 的话就会弹出一个对话框并展示出我们自定义的信息。 + +![IDEA插件HelloWorld](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/2020-11/IDEA%E6%8F%92%E4%BB%B6HelloWorld.png) + +## 05 完善一下 + +想要弄点界面花里胡哨一下, 我们还可以通过 Swing 来写一个界面。 + +这里我们简单实现一个聊天机器人。代码的话,我是直接参考的我大二刚学 Java 那会写的一个小项目(_当时写的代码实在太烂了!就很菜!_)。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/2020-11/image-20201114100213337.png) + +首先,你需要在[图灵机器人官网](http://www.tuling123.com/ "图灵机器人官网")申请一个机器人。(_其他机器人也一样,感觉这个图灵机器人没有原来好用了,并且免费调用次数也不多_) + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/2020-11/image-20201118075453172.png) + +然后,简单写一个方法来请求调用机器人。由于代码比较简单,我这里就不放出来了,大家简单看一下效果就好。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/2020-11/image-20201118075803163.png) + +## 06 深入学习 + +如果你想要深入学习的 IDEA 插件的话,可以看一下官网文档:[https://jetbrains.org/intellij/sdk/docs/basics/basics.html ](https://jetbrains.org/intellij/sdk/docs/basics/basics.html "https://jetbrains.org/intellij/sdk/docs/basics/basics.html ") 。 + +这方面的资料还是比较少的。除了官方文档的话,你还可以简单看看下面这几篇文章: + +- [8 条经验轻松上手 IDEA 插件开发](https://developer.aliyun.com/article/777850?spm=a2c6h.12873581.0.dArticle777850.118d6446r096V4&groupCode=alitech "8 条经验轻松上手 IDEA 插件开发") +- [IDEA 插件开发入门教程](https://blog.xiaohansong.com/idea-plugin-development.html "IDEA 插件开发入门教程") + +## 07 后记 + +我们开发 IDEA 插件主要是为了让 IDEA 更加好用,比如有些框架使用之后可以减少重复代码的编写、有些主题类型的插件可以让你的 IDEA 更好看。 + +我这篇文章的这个案例说实话只是为了让大家简单入门一下 IDEA 开发,没有任何实际应用意义。**如果你想要开发一个不错的 IDEA 插件的话,还要充分发挥想象,利用 IDEA 插件平台的能力。** diff --git a/docs/idea-tutorial/idea-tips/idea-refractor-intro.md b/docs/idea-tutorial/idea-tips/idea-refractor-intro.md new file mode 100644 index 00000000000..7c3d4a66590 --- /dev/null +++ b/docs/idea-tutorial/idea-tips/idea-refractor-intro.md @@ -0,0 +1,75 @@ +# IDEA 重构入门 + +我们在使用 IDEA 进行重构之前,先介绍一个方便我们进行重构的快捷键:`ctrl+t(mac)/ctrl+shift+alt+t`(如果忘记快捷键的话,鼠标右键也能找到重构选项),使用这个快捷键可以快速调出常用重构的选项,如下图所示: + +![](./pictures/refractor-help.png) + +### 重命名(rename) + +快捷键:**Shift + F6(mac) / Shift + F6(windows/Linux):** 对类、变量或者方法名重命名。 + +![重命名](./pictures/rename.gif) + +### 提取相关重构手段 + +这部分的快捷键实际很好记忆,我是这样记忆的: + +前面两个键位是 `command + option(mac) / ctrl + alt (Windows/Linux)` 是固定的,只有后面一个键位会变比如Extract constant (提取变量)就是 c(constant)、Extract variable (提取变量)就是 v(variable)。 + +#### 提取常量(extract constant) + +1. **使用场景** :提取未经过定义就直接出现的常量。提取常量使得你的编码更易读,避免硬编码。 +2. **快捷键:** `command + option+ c(mac)/ ctrl + alt + c(Windows/Linux)` + +**示例:** + +![](./pictures/exact/extract-constant.gif) + +#### 提取参数(exact parameter) + +1. **使用场景** :提取参数到方法中。 +2. **快捷键:** `command + option+ p(mac)/ ctrl + alt + p(Windows/Linux)` + +![](./pictures/exact/exact-parameter.gif) + +#### 提取变量(exact variable) + +1. **使用场景** :提取多次出现的表达式。 +2. **快捷键:** `command + option+ v(mac) / ctrl + alt + v(Windows/Linux) ` + +**示例:** + +![](./pictures/exact/exact-variable.gif) + +#### 提取属性(exact field) + +1. **使用场景** :把当前表达式提取成为类的一个属性。 +2. **快捷键:** `command + option+ f(mac) / ctrl + alt + f(Windows/Linux) ` + +**示例:** + +![](./pictures/exact/exact-field.gif) + + +**示例:** + +![](./pictures/exact/exact-variable.gif) + +#### 提取方法(exact method) + +1. **使用场景** :1个或者多个表达式可以提取为一个方法。 提取方法也能使得你的编码更易读,更加语义化。 +2. **快捷键:** `command + option+ m(mac)/ ctrl + alt + m(Windows/Linux)` + +**示例:** + +![](./pictures/exact/exact-method.gif) + +#### 提取接口(exact interface) + +1. **使用场景** :想要把一个类中的1个或多个方法提取到一个接口中的时候。 +2. **快捷键:** `command + option+ m(mac)/ ctrl + alt + m(Windows/Linux)` + +**示例:** + +![](./pictures/exact/exact-interface.gif) + diff --git a/docs/idea-tutorial/idea-tips/idea-source-code-reading-skills.md b/docs/idea-tutorial/idea-tips/idea-source-code-reading-skills.md new file mode 100644 index 00000000000..0064598c423 --- /dev/null +++ b/docs/idea-tutorial/idea-tips/idea-source-code-reading-skills.md @@ -0,0 +1,189 @@ +# IDEA源码阅读技巧 + +项目有个新来了一个小伙伴,他看我查看项目源代码的时候,各种骚操作“花里胡哨”的。于是他向我请教,想让我分享一下我平时使用 IDEA 看源码的小技巧。 + +## 基本操作 + +这一部分的内容主要是一些我平时看源码的时候常用的快捷键/小技巧!非常好用! + +掌握这些快捷键/小技巧,看源码的效率提升一个等级! + +### 查看当前类的层次结构 + +| 使用频率 | 相关快捷键 | +| -------- | ---------- | +| ⭐⭐⭐⭐⭐ | `Ctrl + H` | + +平时,我们阅读源码的时候,经常需要查看类的层次结构。就比如我们遇到抽象类或者接口的时候,经常需要查看其被哪些类实现。 + +拿 Spring 源码为例,`BeanDefinition` 是一个关于 Bean 属性/定义的接口。 + +```java +public interface BeanDefinition extends AttributeAccessor, BeanMetadataElement { + ...... +} +``` + +如果我们需要查看 `BeanDefinition` 被哪些类实现的话,只需要把鼠标移动到 `BeanDefinition` 类名上,然后使用快捷键 `Ctrl + H` 即可。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/20210527135533686.png) + +同理,如果你想查看接口 `BeanDefinition` 继承的接口 `AttributeAccessor` 被哪些类实现的话,只需要把鼠标移动到 `AttributeAccessor` 类名上,然后使用快捷键 `Ctrl + H` 即可。 + +### 查看类结构 + +| 使用频率 | 相关快捷键 | +| -------- | ------------------------------------- | +| ⭐⭐⭐⭐ | `Alt + 7`(Win) / `Command +7` (Mac) | + +类结构可以让我们快速了解到当前类的方法、变量/常量,非常使用! + +我们在对应的类的任意位置使用快捷键 `Alt + 7`(Win) / `Command +7` (Mac)即可。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/20210527135552183.png) + +### 快速检索类 + +| 使用频率 | 相关快捷键 | +| -------- | ---------------------------------------- | +| ⭐⭐⭐⭐⭐ | `Ctrl + N` (Win) / `Command + O` (Mac) | + +使用快捷键 `Ctrl + N` (Win) / `Command + O` (Mac)可以快速检索类/文件。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/20210527135629367.png) + +### 关键字检索 + +| 使用频率 | 相关快捷键 | +| -------- | ---------- | +| ⭐⭐⭐⭐⭐ | 见下文 | + +- 当前文件下检索 : `Ctrl + F` (Win) / `Command + F` (Mac) +- 全局的文本检索 : `Ctrl + Shift + F` (Win) / `Command + Shift + F` (Mac) + +### 查看方法/类的实现类 + +| 使用频率 | 相关快捷键 | +| -------- | -------------------------------------------------- | +| ⭐⭐⭐⭐ | `Ctrl + Alt + B` (Win) / `Command + Alt + B` (Mac) | + +如果我们想直接跳转到某个方法/类的实现类,直接在方法名或者类名上使用快捷键 `Ctrl + Alt + B/鼠标左键` (Win) / `Command + Alt + B/鼠标左键` (Mac) 即可。 + +如果对应的方法/类只有一个实现类的话,会直接跳转到对应的实现类。 + +比如 `BeanDefinition` 接口的 `getBeanClassName()` 方法只被 `AbstractBeanDefinition` 抽象类实现,我们对这个方法使用快捷键就可以直接跳转到 `AbstractBeanDefinition` 抽象类中对应的实现方法。 + +```java +public interface BeanDefinition extends AttributeAccessor, BeanMetadataElement { + @Nullable + String getBeanClassName(); + ...... +} +``` + +如果对应的方法/类有多个实现类的话,IDEA 会弹出一个选择框让你选择。 + +比如 `BeanDefinition` 接口的 `getParentName()` 方法就有多个不同的实现。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/20210527135703164.png) + +### 查看方法被使用的情况 + +| 使用频率 | 相关快捷键 | +| -------- | ---------- | +| ⭐⭐⭐⭐ | `Alt + F7` | + +我们可以通过直接在方法名上使用快捷键 `Alt + F7` 来查看这个方法在哪些地方被调用过。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/20210527135712962.png) + +### 查看最近使用的文件 + +| 使用频率 | 相关快捷键 | +| -------- | -------------------------------------- | +| ⭐⭐⭐⭐⭐ | `Ctrl + E`(Win) / `Command +E` (Mac) | + +你可以通过快捷键 `Ctrl + E`(Win) / `Command +E` (Mac)来显示 IDEA 最近使用的一些文件。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/20210527135733816.png) + +### 查看图表形式的类继承链 + +| 使用频率 | 相关快捷键 | +| -------- | ------------------------ | +| ⭐⭐⭐⭐ | 相关快捷键较多,不建议记 | + +点击类名 **右键** ,选择 **Shw Diagrams** 即可查看图表形式的类继承链。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/20210527135745518.png) + +你还可以对图表进行一些操作。比如,你可以点击图表中具体的类 **右键**,然后选择显示它的实现类或者父类。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/20210527135757163.png) + +再比如你还可以选择是否显示类中的属性、方法、内部类等等信息。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/20210527135902827.png) + +如果你想跳转到对应类的源码的话,直接点击图表中具体的类 **右键** ,然后选择 **Jump to Source** 。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/20210527135807668.png) + +## 插件推荐 + +### 一键生成方法的序列图 + +**序列图**(Sequence Diagram),亦称为**循序图**,是一种 UML 行为图。表示系统执行某个方法/操作(如登录操作)时,对象之间的顺序调用关系。 + +这个顺序调用关系可以这样理解:你需要执行系统中某个对象 a 提供的方法/操作 login(登录),但是这个对象又依赖了对象 b 提供的方法 getUser(获取用户)。因此,这里就有了 a -> b 调用关系之说。 + +我们可以通过 **SequenceDiagram** 这个插件一键生成方法的序列图。 + +> 如果你因为网络问题没办法使用 IDEA 自带的插件市场的话,也可以通过 IDEA 插件市场的官网手动下载安装。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/2021052218304014.png) + +**如何使用呢?** + +1、选中方法名(注意不要选类名),然后点击鼠标右键,选择 **Sequence Diagram** 选项即可! + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/20201021170110697.png) + +2、配置生成的序列图的一些基本的参数比如调用深度之后,我们点击 ok 即可! + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/c5040f1105c762ddf8689892913bc02d.png) + +3、你还可以通过生成的时序图来定位到相关的代码,这对于我们阅读源码的时候尤其有帮助! + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/20201021171623809.png) + +4、时序图生成完成之后,你还可以选择将其导出为图片。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/20201021170228723.png) + +相关阅读:[《安利一个 IDEA 骚操作:一键生成方法的序列图》](https://mp.weixin.qq.com/s/SG1twZczqdup_EQAOmNERg) 。 + +### 项目代码统计 + +为了快速分析项目情况,我们可以对项目的 **代码的总行数、单个文件的代码行数、注释行数等信息进行统计。** + +**Statistic** 这个插件来帮助我们实现这一需求。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/20210522183550110.png) + +有了这个插件之后你可以非常直观地看到你的项目中所有类型的文件的信息比如数量、大小等等,可以帮助你更好地了解你们的项目。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/20210522183616310.png) + +你还可以使用它看所有类的总行数、有效代码行数、注释行数、以及有效代码比重等等这些东西。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/idea/20210522183630459.png) + +如果,你担心插件过多影响 IDEA 速度的话,可以只在有代码统计需求的时候开启这个插件,其他时间禁用它就完事了! + +相关阅读:[快速识别烂项目!试试这款项目代码统计 IDEA 插件](https://mp.weixin.qq.com/s/fVEeMW6elhu79I-rTZB40A) + + + + + diff --git a/docs/idea-tutorial/idea-tips/pictures/exact/exact-field.gif b/docs/idea-tutorial/idea-tips/pictures/exact/exact-field.gif new file mode 100644 index 00000000000..770df36522d Binary files /dev/null and b/docs/idea-tutorial/idea-tips/pictures/exact/exact-field.gif differ diff --git a/docs/idea-tutorial/idea-tips/pictures/exact/exact-interface.gif b/docs/idea-tutorial/idea-tips/pictures/exact/exact-interface.gif new file mode 100644 index 00000000000..678b93de0a8 Binary files /dev/null and b/docs/idea-tutorial/idea-tips/pictures/exact/exact-interface.gif differ diff --git a/docs/idea-tutorial/idea-tips/pictures/exact/exact-method.gif b/docs/idea-tutorial/idea-tips/pictures/exact/exact-method.gif new file mode 100644 index 00000000000..3748903e21d Binary files /dev/null and b/docs/idea-tutorial/idea-tips/pictures/exact/exact-method.gif differ diff --git a/docs/idea-tutorial/idea-tips/pictures/exact/exact-parameter.gif b/docs/idea-tutorial/idea-tips/pictures/exact/exact-parameter.gif new file mode 100644 index 00000000000..578b5ccca83 Binary files /dev/null and b/docs/idea-tutorial/idea-tips/pictures/exact/exact-parameter.gif differ diff --git a/docs/idea-tutorial/idea-tips/pictures/exact/exact-variable.gif b/docs/idea-tutorial/idea-tips/pictures/exact/exact-variable.gif new file mode 100644 index 00000000000..7326761ef55 Binary files /dev/null and b/docs/idea-tutorial/idea-tips/pictures/exact/exact-variable.gif differ diff --git a/docs/idea-tutorial/idea-tips/pictures/exact/extract-constant.gif b/docs/idea-tutorial/idea-tips/pictures/exact/extract-constant.gif new file mode 100644 index 00000000000..6752a385e74 Binary files /dev/null and b/docs/idea-tutorial/idea-tips/pictures/exact/extract-constant.gif differ diff --git a/docs/idea-tutorial/idea-tips/pictures/refractor-help.png b/docs/idea-tutorial/idea-tips/pictures/refractor-help.png new file mode 100644 index 00000000000..032319487ae Binary files /dev/null and b/docs/idea-tutorial/idea-tips/pictures/refractor-help.png differ diff --git a/docs/idea-tutorial/idea-tips/pictures/rename.gif b/docs/idea-tutorial/idea-tips/pictures/rename.gif new file mode 100644 index 00000000000..c8a61b12863 Binary files /dev/null and b/docs/idea-tutorial/idea-tips/pictures/rename.gif differ diff --git a/docs/idea-tutorial/readme.md b/docs/idea-tutorial/readme.md new file mode 100644 index 00000000000..a5297b6bbed --- /dev/null +++ b/docs/idea-tutorial/readme.md @@ -0,0 +1,11 @@ +--- +icon: creative +category: IDEA指南 +--- + +# IntelliJ IDEA 使用指南 | 必备插件推荐 | 插件开发入门 | 重构小技巧 | 源码阅读技巧 + +分享一下自己使用 IDEA 的一些经验,希望对大家有帮助! + +- Github 地址:https://github.com/CodingDocs/awesome-idea-tutorial +- 码云地址:https://gitee.com/SnailClimb/awesome-idea-tutorial (Github 无法访问或者访问速度比较慢的小伙伴可以看码云上的对应内容) diff --git "a/docs/java/basis/BIO,NIO,AIO\346\200\273\347\273\223.md" "b/docs/java/basis/BIO,NIO,AIO\346\200\273\347\273\223.md" deleted file mode 100644 index 50f6b7fec83..00000000000 --- "a/docs/java/basis/BIO,NIO,AIO\346\200\273\347\273\223.md" +++ /dev/null @@ -1,347 +0,0 @@ -熟练掌握 BIO,NIO,AIO 的基本概念以及一些常见问题是你准备面试的过程中不可或缺的一部分,另外这些知识点也是你学习 Netty 的基础。 - - - -- [BIO,NIO,AIO 总结](#bionioaio-总结) - - [1. BIO \(Blocking I/O\)](#1-bio-blocking-io) - - [1.1 传统 BIO](#11-传统-bio) - - [1.2 伪异步 IO](#12-伪异步-io) - - [1.3 代码示例](#13-代码示例) - - [1.4 总结](#14-总结) - - [2. NIO \(New I/O\)](#2-nio-new-io) - - [2.1 NIO 简介](#21-nio-简介) - - [2.2 NIO的特性/NIO与IO区别](#22-nio的特性nio与io区别) - - [1)Non-blocking IO(非阻塞IO)](#1non-blocking-io非阻塞io) - - [2)Buffer\(缓冲区\)](#2buffer缓冲区) - - [3)Channel \(通道\)](#3channel-通道) - - [4)Selectors\(选择器\)](#4selector-选择器) - - [2.3 NIO 读数据和写数据方式](#23-nio-读数据和写数据方式) - - [2.4 NIO核心组件简单介绍](#24-nio核心组件简单介绍) - - [2.5 代码示例](#25-代码示例) - - [3. AIO \(Asynchronous I/O\)](#3-aio-asynchronous-io) - - [参考](#参考) - - - - -# BIO,NIO,AIO 总结 - - Java 中的 BIO、NIO和 AIO 理解为是 Java 语言对操作系统的各种 IO 模型的封装。程序员在使用这些 API 的时候,不需要关心操作系统层面的知识,也不需要根据不同操作系统编写不同的代码。只需要使用Java的API就可以了。 - -在讲 BIO,NIO,AIO 之前先来回顾一下这样几个概念:同步与异步,阻塞与非阻塞。 - -关于同步和异步的概念解读困扰着很多程序员,大部分的解读都会带有自己的一点偏见。参考了 [Stackoverflow](https://stackoverflow.com/questions/748175/asynchronous-vs-synchronous-execution-what-does-it-really-mean)相关问题后对原有答案进行了进一步完善: - -> When you execute something synchronously, you wait for it to finish before moving on to another task. When you execute something asynchronously, you can move on to another task before it finishes. -> -> 当你同步执行某项任务时,你需要等待其完成才能继续执行其他任务。当你异步执行某些操作时,你可以在完成另一个任务之前继续进行。 - -- **同步** :两个同步任务相互依赖,并且一个任务必须以依赖于另一任务的某种方式执行。 比如在`A->B`事件模型中,你需要先完成 A 才能执行B。 再换句话说,同步调用中被调用者未处理完请求之前,调用不返回,调用者会一直等待结果的返回。 -- **异步**: 两个异步的任务是完全独立的,一方的执行不需要等待另外一方的执行。再换句话说,异步调用中一调用就返回结果不需要等待结果返回,当结果返回的时候通过回调函数或者其他方式拿着结果再做相关事情, - -**阻塞和非阻塞** - -- **阻塞:** 阻塞就是发起一个请求,调用者一直等待请求结果返回,也就是当前线程会被挂起,无法从事其他任务,只有当条件就绪才能继续。 -- **非阻塞:** 非阻塞就是发起一个请求,调用者不用一直等着结果返回,可以先去干其他事情。 - -**如何区分 “同步/异步 ”和 “阻塞/非阻塞” 呢?** - -同步/异步是从行为角度描述事物的,而阻塞和非阻塞描述的当前事物的状态(等待调用结果时的状态)。 - -## 1. BIO (Blocking I/O) - -同步阻塞I/O模式,数据的读取写入必须阻塞在一个线程内等待其完成。 - -### 1.1 传统 BIO - -BIO通信(一请求一应答)模型图如下(图源网络,原出处不明): - -![传统BIO通信模型图](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2.png) - -采用 **BIO 通信模型** 的服务端,通常由一个独立的 Acceptor 线程负责监听客户端的连接。我们一般通过在`while(true)` 循环中服务端会调用 `accept()` 方法等待接收客户端的连接的方式监听请求,请求一旦接收到一个连接请求,就可以建立通信套接字在这个通信套接字上进行读写操作,此时不能再接收其他客户端连接请求,只能等待同当前连接的客户端的操作执行完成, 不过可以通过多线程来支持多个客户端的连接,如上图所示。 - -如果要让 **BIO 通信模型** 能够同时处理多个客户端请求,就必须使用多线程(主要原因是`socket.accept()`、`socket.read()`、`socket.write()` 涉及的三个主要函数都是同步阻塞的),也就是说它在接收到客户端连接请求之后为每个客户端创建一个新的线程进行链路处理,处理完成之后,通过输出流返回应答给客户端,线程销毁。这就是典型的 **一请求一应答通信模型** 。我们可以设想一下如果这个连接不做任何事情的话就会造成不必要的线程开销,不过可以通过 **线程池机制** 改善,线程池还可以让线程的创建和回收成本相对较低。使用`FixedThreadPool` 可以有效的控制了线程的最大数量,保证了系统有限的资源的控制,实现了N(客户端请求数量):M(处理客户端请求的线程数量)的伪异步I/O模型(N 可以远远大于 M),下面一节"伪异步 BIO"中会详细介绍到。 - -**我们再设想一下当客户端并发访问量增加后这种模型会出现什么问题?** - -在 Java 虚拟机中,线程是宝贵的资源,线程的创建和销毁成本很高,除此之外,线程的切换成本也是很高的。尤其在 Linux 这样的操作系统中,线程本质上就是一个进程,创建和销毁线程都是重量级的系统函数。如果并发访问量增加会导致线程数急剧膨胀可能会导致线程堆栈溢出、创建新线程失败等问题,最终导致进程宕机或者僵死,不能对外提供服务。 - -### 1.2 伪异步 IO - -为了解决同步阻塞I/O面临的一个链路需要一个线程处理的问题,后来有人对它的线程模型进行了优化一一一后端通过一个线程池来处理多个客户端的请求接入,形成客户端个数M:线程池最大线程数N的比例关系,其中M可以远远大于N.通过线程池可以灵活地调配线程资源,设置线程的最大值,防止由于海量并发接入导致线程耗尽。 - -伪异步IO模型图(图源网络,原出处不明): - -![伪异步IO模型图](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/3.png) - -采用线程池和任务队列可以实现一种叫做伪异步的 I/O 通信框架,它的模型图如上图所示。当有新的客户端接入时,将客户端的 Socket 封装成一个Task(该任务实现java.lang.Runnable接口)投递到后端的线程池中进行处理,JDK 的线程池维护一个消息队列和 N 个活跃线程,对消息队列中的任务进行处理。由于线程池可以设置消息队列的大小和最大线程数,因此,它的资源占用是可控的,无论多少个客户端并发访问,都不会导致资源的耗尽和宕机。 - -伪异步I/O通信框架采用了线程池实现,因此避免了为每个请求都创建一个独立线程造成的线程资源耗尽问题。不过因为它的底层仍然是同步阻塞的BIO模型,因此无法从根本上解决问题。 - -### 1.3 代码示例 - -下面代码中演示了BIO通信(一请求一应答)模型。我们会在客户端创建多个线程依次连接服务端并向其发送"当前时间+:hello world",服务端会为每个客户端线程创建一个线程来处理。代码示例出自闪电侠的博客,原地址如下: - -[https://www.jianshu.com/p/a4e03835921a](https://www.jianshu.com/p/a4e03835921a) - -**客户端** - -```java -/** - * - * @author 闪电侠 - * @date 2018年10月14日 - * @Description:客户端 - */ -public class IOClient { - - public static void main(String[] args) { - // TODO 创建多个线程,模拟多个客户端连接服务端 - new Thread(() -> { - try { - Socket socket = new Socket("127.0.0.1", 3333); - while (true) { - try { - socket.getOutputStream().write((new Date() + ": hello world").getBytes()); - Thread.sleep(2000); - } catch (Exception e) { - } - } - } catch (IOException e) { - } - }).start(); - - } - -} - -``` - -**服务端** - -```java -/** - * @author 闪电侠 - * @date 2018年10月14日 - * @Description: 服务端 - */ -public class IOServer { - - public static void main(String[] args) throws IOException { - // TODO 服务端处理客户端连接请求 - ServerSocket serverSocket = new ServerSocket(3333); - - // 接收到客户端连接请求之后为每个客户端创建一个新的线程进行链路处理 - new Thread(() -> { - while (true) { - try { - // 阻塞方法获取新的连接 - Socket socket = serverSocket.accept(); - - // 每一个新的连接都创建一个线程,负责读取数据 - new Thread(() -> { - try { - int len; - byte[] data = new byte[1024]; - InputStream inputStream = socket.getInputStream(); - // 按字节流方式读取数据 - while ((len = inputStream.read(data)) != -1) { - System.out.println(new String(data, 0, len)); - } - } catch (IOException e) { - } - }).start(); - - } catch (IOException e) { - } - - } - }).start(); - - } - -} -``` - -### 1.4 总结 - -在活动连接数不是特别高(小于单机1000)的情况下,这种模型是比较不错的,可以让每一个连接专注于自己的 I/O 并且编程模型简单,也不用过多考虑系统的过载、限流等问题。线程池本身就是一个天然的漏斗,可以缓冲一些系统处理不了的连接或请求。但是,当面对十万甚至百万级连接的时候,传统的 BIO 模型是无能为力的。因此,我们需要一种更高效的 I/O 处理模型来应对更高的并发量。 - -## 2. NIO (New I/O) - -### 2.1 NIO 简介 - - NIO是一种同步非阻塞的I/O模型,在Java 1.4 中引入了 NIO 框架,对应 java.nio 包,提供了 Channel , Selector,Buffer等抽象。 - -NIO中的N可以理解为Non-blocking,不单纯是New。它支持面向缓冲的,基于通道的I/O操作方法。 NIO提供了与传统BIO模型中的 `Socket` 和 `ServerSocket` 相对应的 `SocketChannel` 和 `ServerSocketChannel` 两种不同的套接字通道实现,两种通道都支持阻塞和非阻塞两种模式。阻塞模式使用就像传统中的支持一样,比较简单,但是性能和可靠性都不好;非阻塞模式正好与之相反。对于低负载、低并发的应用程序,可以使用同步阻塞I/O来提升开发速率和更好的维护性;对于高负载、高并发的(网络)应用,应使用 NIO 的非阻塞模式来开发。 - -### 2.2 NIO的特性/NIO与IO区别 - -如果是在面试中回答这个问题,我觉得首先肯定要从 NIO 流是非阻塞 IO 而 IO 流是阻塞 IO 说起。然后,可以从 NIO 的3个核心组件/特性为 NIO 带来的一些改进来分析。如果,你把这些都回答上了我觉得你对于 NIO 就有了更为深入一点的认识,面试官问到你这个问题,你也能很轻松的回答上来了。 - -#### 1)Non-blocking IO(非阻塞IO) - -**IO流是阻塞的,NIO流是不阻塞的。** - -Java NIO使我们可以进行非阻塞IO操作。比如说,单线程中从通道读取数据到buffer,同时可以继续做别的事情,当数据读取到buffer中后,线程再继续处理数据。写数据也是一样的。另外,非阻塞写也是如此。一个线程请求写入一些数据到某通道,但不需要等待它完全写入,这个线程同时可以去做别的事情。 - -Java IO的各种流是阻塞的。这意味着,当一个线程调用 `read()` 或 `write()` 时,该线程被阻塞,直到有一些数据被读取,或数据完全写入。该线程在此期间不能再干任何事情了 - -#### 2)Buffer(缓冲区) - -**IO 面向流(Stream oriented),而 NIO 面向缓冲区(Buffer oriented)。** - -Buffer是一个对象,它包含一些要写入或者要读出的数据。在NIO类库中加入Buffer对象,体现了新库与原I/O的一个重要区别。在面向流的I/O中·可以将数据直接写入或者将数据直接读到 Stream 对象中。虽然 Stream 中也有 Buffer 开头的扩展类,但只是流的包装类,还是从流读到缓冲区,而 NIO 却是直接读到 Buffer 中进行操作。 - -在NIO厍中,所有数据都是用缓冲区处理的。在读取数据时,它是直接读到缓冲区中的; 在写入数据时,写入到缓冲区中。任何时候访问NIO中的数据,都是通过缓冲区进行操作。 - -最常用的缓冲区是 ByteBuffer,一个 ByteBuffer 提供了一组功能用于操作 byte 数组。除了ByteBuffer,还有其他的一些缓冲区,事实上,每一种Java基本类型(除了Boolean类型)都对应有一种缓冲区。 - -#### 3)Channel (通道) - -NIO 通过Channel(通道) 进行读写。 - -通道是双向的,可读也可写,而流的读写是单向的。无论读写,通道只能和Buffer交互。因为 Buffer,通道可以异步地读写。 - -#### 4)Selector (选择器) - -NIO有选择器,而IO没有。 - -选择器用于使用单个线程处理多个通道。因此,它需要较少的线程来处理这些通道。线程之间的切换对于操作系统来说是昂贵的。 因此,为了提高系统效率选择器是有用的。 - -![一个单线程中Selector维护3个Channel的示意图](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-2/Slector.png) - -### 2.3 NIO 读数据和写数据方式 -通常来说NIO中的所有IO都是从 Channel(通道) 开始的。 - -- 从通道进行数据读取 :创建一个缓冲区,然后请求通道读取数据。 -- 从通道进行数据写入 :创建一个缓冲区,填充数据,并要求通道写入数据。 - -数据读取和写入操作图示: - -![NIO读写数据的方式](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-2/NIO读写数据的方式.png) - - -### 2.4 NIO核心组件简单介绍 - -NIO 包含下面几个核心的组件: - -- Channel(通道) -- Buffer(缓冲区) -- Selector(选择器) - -整个NIO体系包含的类远远不止这三个,只能说这三个是NIO体系的“核心API”。我们上面已经对这三个概念进行了基本的阐述,这里就不多做解释了。 - -### 2.5 代码示例 - -代码示例出自闪电侠的博客,原地址如下: - -[https://www.jianshu.com/p/a4e03835921a](https://www.jianshu.com/p/a4e03835921a) - -客户端 IOClient.java 的代码不变,我们对服务端使用 NIO 进行改造。以下代码较多而且逻辑比较复杂,大家看看就好。 - -```java -/** - * - * @author 闪电侠 - * @date 2019年2月21日 - * @Description: NIO 改造后的服务端 - */ -public class NIOServer { - public static void main(String[] args) throws IOException { - // 1. serverSelector负责轮询是否有新的连接,服务端监测到新的连接之后,不再创建一个新的线程, - // 而是直接将新连接绑定到clientSelector上,这样就不用 IO 模型中 1w 个 while 循环在死等 - Selector serverSelector = Selector.open(); - // 2. clientSelector负责轮询连接是否有数据可读 - Selector clientSelector = Selector.open(); - - new Thread(() -> { - try { - // 对应IO编程中服务端启动 - ServerSocketChannel listenerChannel = ServerSocketChannel.open(); - listenerChannel.socket().bind(new InetSocketAddress(3333)); - listenerChannel.configureBlocking(false); - listenerChannel.register(serverSelector, SelectionKey.OP_ACCEPT); - - while (true) { - // 监测是否有新的连接,这里的1指的是阻塞的时间为 1ms - if (serverSelector.select(1) > 0) { - Set set = serverSelector.selectedKeys(); - Iterator keyIterator = set.iterator(); - - while (keyIterator.hasNext()) { - SelectionKey key = keyIterator.next(); - - if (key.isAcceptable()) { - try { - // (1) 每来一个新连接,不需要创建一个线程,而是直接注册到clientSelector - SocketChannel clientChannel = ((ServerSocketChannel) key.channel()).accept(); - clientChannel.configureBlocking(false); - clientChannel.register(clientSelector, SelectionKey.OP_READ); - } finally { - keyIterator.remove(); - } - } - - } - } - } - } catch (IOException ignored) { - } - }).start(); - new Thread(() -> { - try { - while (true) { - // (2) 批量轮询是否有哪些连接有数据可读,这里的1指的是阻塞的时间为 1ms - if (clientSelector.select(1) > 0) { - Set set = clientSelector.selectedKeys(); - Iterator keyIterator = set.iterator(); - - while (keyIterator.hasNext()) { - SelectionKey key = keyIterator.next(); - - if (key.isReadable()) { - try { - SocketChannel clientChannel = (SocketChannel) key.channel(); - ByteBuffer byteBuffer = ByteBuffer.allocate(1024); - // (3) 面向 Buffer - clientChannel.read(byteBuffer); - byteBuffer.flip(); - System.out.println( - Charset.defaultCharset().newDecoder().decode(byteBuffer).toString()); - } finally { - keyIterator.remove(); - key.interestOps(SelectionKey.OP_READ); - } - } - - } - } - } - } catch (IOException ignored) { - } - }).start(); - - } -} -``` - -为什么大家都不愿意用 JDK 原生 NIO 进行开发呢?从上面的代码中大家都可以看出来,是真的难用!除了编程复杂、编程模型难之外,它还有以下让人诟病的问题: - -- JDK 的 NIO 底层由 epoll 实现,该实现饱受诟病的空轮询 bug 会导致 cpu 飙升 100% -- 项目庞大之后,自行实现的 NIO 很容易出现各类 bug,维护成本较高,上面这一坨代码我都不能保证没有 bug - -Netty 的出现很大程度上改善了 JDK 原生 NIO 所存在的一些让人难以忍受的问题。 - -### 3. AIO (Asynchronous I/O) - -AIO 也就是 NIO 2。在 Java 7 中引入了 NIO 的改进版 NIO 2,它是异步非阻塞的IO模型。异步 IO 是基于事件和回调机制实现的,也就是应用操作之后会直接返回,不会堵塞在那里,当后台处理完成,操作系统会通知相应的线程进行后续的操作。 - -AIO 是异步IO的缩写,虽然 NIO 在网络操作中,提供了非阻塞的方法,但是 NIO 的 IO 行为还是同步的。对于 NIO 来说,我们的业务线程是在 IO 操作准备好时,得到通知,接着就由这个线程自行进行 IO 操作,IO操作本身是同步的。(除了 AIO 其他的 IO 类型都是同步的,这一点可以从底层IO线程模型解释,推荐一篇文章:[《漫话:如何给女朋友解释什么是Linux的五种IO模型?》](https://mp.weixin.qq.com/s?__biz=Mzg3MjA4MTExMw==&mid=2247484746&idx=1&sn=c0a7f9129d780786cabfcac0a8aa6bb7&source=41#wechat_redirect) ) - -查阅网上相关资料,我发现就目前来说 AIO 的应用还不是很广泛,Netty 之前也尝试使用过 AIO,不过又放弃了。 - -## 参考 - -- 《Netty 权威指南》第二版 -- https://zhuanlan.zhihu.com/p/23488863 (美团技术团队) diff --git "a/docs/java/basis/BigDecimal\350\247\243\345\206\263\346\265\256\347\202\271\346\225\260\350\277\220\347\256\227\347\262\276\345\272\246\344\270\242\345\244\261\351\227\256\351\242\230.md" "b/docs/java/basis/BigDecimal\350\247\243\345\206\263\346\265\256\347\202\271\346\225\260\350\277\220\347\256\227\347\262\276\345\272\246\344\270\242\345\244\261\351\227\256\351\242\230.md" new file mode 100644 index 00000000000..5f788f087e8 --- /dev/null +++ "b/docs/java/basis/BigDecimal\350\247\243\345\206\263\346\265\256\347\202\271\346\225\260\350\277\220\347\256\227\347\262\276\345\272\246\344\270\242\345\244\261\351\227\256\351\242\230.md" @@ -0,0 +1,69 @@ +## BigDecimal 介绍 + +`BigDecimal` 可以实现对浮点数的运算,不会造成精度丢失。 + +那为什么浮点数 `float` 或 `double` 运算的时候会有精度丢失的风险呢? + +这是因为计算机是二进制的,浮点数没有办法用二进制精确表示。 + +## BigDecimal 的用处 + +《阿里巴巴Java开发手册》中提到:**浮点数之间的等值判断,基本数据类型不能用==来比较,包装数据类型不能用 equals 来判断。** 具体原理和浮点数的编码方式有关,这里就不多提了,我们下面直接上实例: + +```java +float a = 1.0f - 0.9f; +float b = 0.9f - 0.8f; +System.out.println(a);// 0.100000024 +System.out.println(b);// 0.099999964 +System.out.println(a == b);// false +``` +具有基本数学知识的我们很清楚的知道输出并不是我们想要的结果(**精度丢失**),我们如何解决这个问题呢?一种很常用的方法是:**使用 BigDecimal 来定义浮点数的值,再进行浮点数的运算操作。** + +```java +BigDecimal a = new BigDecimal("1.0"); +BigDecimal b = new BigDecimal("0.9"); +BigDecimal c = new BigDecimal("0.8"); + +BigDecimal x = a.subtract(b); +BigDecimal y = b.subtract(c); + +System.out.println(x); /* 0.1 */ +System.out.println(y); /* 0.1 */ +System.out.println(Objects.equals(x, y)); /* true */ +``` + +## BigDecimal 常见方法 + +## 大小比较 + +`a.compareTo(b)` : 返回 -1 表示 `a` 小于 `b`,0 表示 `a` 等于 `b` , 1表示 `a` 大于 `b`。 + +```java +BigDecimal a = new BigDecimal("1.0"); +BigDecimal b = new BigDecimal("0.9"); +System.out.println(a.compareTo(b));// 1 +``` +### 保留几位小数 + +通过 `setScale`方法设置保留几位小数以及保留规则。保留规则有挺多种,不需要记,IDEA会提示。 + +```java +BigDecimal m = new BigDecimal("1.255433"); +BigDecimal n = m.setScale(3,BigDecimal.ROUND_HALF_DOWN); +System.out.println(n);// 1.255 +``` + +## BigDecimal 的使用注意事项 + +注意:我们在使用BigDecimal时,为了防止精度丢失,推荐使用它的 **BigDecimal(String)** 构造方法来创建对象。《阿里巴巴Java开发手册》对这部分内容也有提到如下图所示。 + +![《阿里巴巴Java开发手册》对这部分BigDecimal的描述](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019/7/BigDecimal.png) + +## 总结 + +BigDecimal 主要用来操作(大)浮点数,BigInteger 主要用来操作大整数(超过 long 类型)。 + +BigDecimal 的实现利用到了 BigInteger, 所不同的是 BigDecimal 加入了小数位的概念 + + + diff --git "a/docs/java/basis/Java\345\237\272\347\241\200\347\237\245\350\257\206\347\226\221\351\232\276\347\202\271.md" "b/docs/java/basis/Java\345\237\272\347\241\200\347\237\245\350\257\206\347\226\221\351\232\276\347\202\271.md" deleted file mode 100644 index eb5c17b2c79..00000000000 --- "a/docs/java/basis/Java\345\237\272\347\241\200\347\237\245\350\257\206\347\226\221\351\232\276\347\202\271.md" +++ /dev/null @@ -1,396 +0,0 @@ - - -- [1. 基础](#1-基础) - - [1.1. 正确使用 equals 方法](#11-正确使用-equals-方法) - - [1.2. 整型包装类值的比较](#12-整型包装类值的比较) - - [1.3. BigDecimal](#13-bigdecimal) - - [1.3.1. BigDecimal 的用处](#131-bigdecimal-的用处) - - [1.3.2. BigDecimal 的大小比较](#132-bigdecimal-的大小比较) - - [1.3.3. BigDecimal 保留几位小数](#133-bigdecimal-保留几位小数) - - [1.3.4. BigDecimal 的使用注意事项](#134-bigdecimal-的使用注意事项) - - [1.3.5. 总结](#135-总结) - - [1.4. 基本数据类型与包装数据类型的使用标准](#14-基本数据类型与包装数据类型的使用标准) -- [2. 集合](#_2-集合) - - [2.1. Arrays.asList()使用指南](#21-arraysaslist使用指南) - - [2.1.1. 简介](#211-简介) - - [2.1.2. 《阿里巴巴Java 开发手册》对其的描述](#212-阿里巴巴java-开发手册对其的描述) - - [2.1.3. 使用时的注意事项总结](#213-使用时的注意事项总结) - - [2.1.4. 如何正确的将数组转换为ArrayList?](#214-如何正确的将数组转换为arraylist) - - [2.2. Collection.toArray()方法使用的坑&如何反转数组](#22-collectiontoarray方法使用的坑如何反转数组) - - [2.3. 不要在 foreach 循环里进行元素的 remove/add 操作](#23-不要在-foreach-循环里进行元素的-removeadd-操作) - - - -# 1. 基础 - -## 1.1. 正确使用 equals 方法 - -Object的equals方法容易抛空指针异常,应使用常量或确定有值的对象来调用 equals。 - -举个例子: - -```java -// 不能使用一个值为null的引用类型变量来调用非静态方法,否则会抛出异常 -String str = null; -if (str.equals("SnailClimb")) { - ... -} else { - .. -} -``` - -运行上面的程序会抛出空指针异常,但是我们把第二行的条件判断语句改为下面这样的话,就不会抛出空指针异常,else 语句块得到执行。: - -```java -"SnailClimb".equals(str);// false -``` -不过更推荐使用 `java.util.Objects#equals`(JDK7 引入的工具类)。 - -```java -Objects.equals(null,"SnailClimb");// false -``` -我们看一下`java.util.Objects#equals`的源码就知道原因了。 -```java -public static boolean equals(Object a, Object b) { - // 可以避免空指针异常。如果a==null的话此时a.equals(b)就不会得到执行,避免出现空指针异常。 - return (a == b) || (a != null && a.equals(b)); -} -``` - -**注意:** - -Reference:[Java中equals方法造成空指针异常的原因及解决方案](https://blog.csdn.net/tick_tock97/article/details/72824894) - -- 每种原始类型都有默认值一样,如int默认值为 0,boolean 的默认值为 false,null 是任何引用类型的默认值,不严格的说是所有 Object 类型的默认值。 -- 可以使用 == 或者 != 操作来比较null值,但是不能使用其他算法或者逻辑操作。在Java中`null == null`将返回true。 -- 不能使用一个值为null的引用类型变量来调用非静态方法,否则会抛出异常 - -## 1.2. 整型包装类值的比较 - -所有整型包装类对象值的比较必须使用equals方法。 - -先看下面这个例子: - -```java -Integer i1 = 40; -Integer i2 = new Integer(40); -System.out.println(i1==i2);//false -``` - -`Integer i1=40` 这一行代码会发生装箱,也就是说这行代码等价于 `Integer i1=Integer.valueOf(40)` 。因此,`i1` 直接使用的是常量池中的对象。而`Integer i1 = new Integer(40)` 会直接创建新的对象。因此,输出 false 。 - -记住:**所有整型包装类对象之间值的比较,全部使用 `equals()` 方法比较**。 - -![](https://img-blog.csdnimg.cn/20210313164740893.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM0MzM3Mjcy,size_16,color_FFFFFF,t_70) - -**注意:** 如果你的IDE(IDEA/Eclipse)上安装了阿里巴巴的p3c插件,这个插件如果检测到你用 ==的话会报错提示,推荐安装一个这个插件,很不错。 - -## 1.3. BigDecimal - -### 1.3.1. BigDecimal 的用处 - -《阿里巴巴Java开发手册》中提到:**浮点数之间的等值判断,基本数据类型不能用==来比较,包装数据类型不能用 equals 来判断。** 具体原理和浮点数的编码方式有关,这里就不多提了,我们下面直接上实例: - -```java -float a = 1.0f - 0.9f; -float b = 0.9f - 0.8f; -System.out.println(a);// 0.100000024 -System.out.println(b);// 0.099999964 -System.out.println(a == b);// false -``` -具有基本数学知识的我们很清楚的知道输出并不是我们想要的结果(**精度丢失**),我们如何解决这个问题呢?一种很常用的方法是:**使用 BigDecimal 来定义浮点数的值,再进行浮点数的运算操作。** - -```java -BigDecimal a = new BigDecimal("1.0"); -BigDecimal b = new BigDecimal("0.9"); -BigDecimal c = new BigDecimal("0.8"); - -BigDecimal x = a.subtract(b); -BigDecimal y = b.subtract(c); - -System.out.println(x); /* 0.1 */ -System.out.println(y); /* 0.1 */ -System.out.println(Objects.equals(x, y)); /* true */ -``` - -### 1.3.2. BigDecimal 的大小比较 - -`a.compareTo(b)` : 返回 -1 表示 `a` 小于 `b`,0 表示 `a` 等于 `b` , 1表示 `a` 大于 `b`。 - -```java -BigDecimal a = new BigDecimal("1.0"); -BigDecimal b = new BigDecimal("0.9"); -System.out.println(a.compareTo(b));// 1 -``` -### 1.3.3. BigDecimal 保留几位小数 - -通过 `setScale`方法设置保留几位小数以及保留规则。保留规则有挺多种,不需要记,IDEA会提示。 - -```java -BigDecimal m = new BigDecimal("1.255433"); -BigDecimal n = m.setScale(3,BigDecimal.ROUND_HALF_DOWN); -System.out.println(n);// 1.255 -``` - -### 1.3.4. BigDecimal 的使用注意事项 - -注意:我们在使用BigDecimal时,为了防止精度丢失,推荐使用它的 **BigDecimal(String)** 构造方法来创建对象。《阿里巴巴Java开发手册》对这部分内容也有提到如下图所示。 - -![《阿里巴巴Java开发手册》对这部分BigDecimal的描述](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019/7/BigDecimal.png) - -### 1.3.5. 总结 - -BigDecimal 主要用来操作(大)浮点数,BigInteger 主要用来操作大整数(超过 long 类型)。 - -BigDecimal 的实现利用到了 BigInteger, 所不同的是 BigDecimal 加入了小数位的概念 - -## 1.4. 基本数据类型与包装数据类型的使用标准 - -Reference:《阿里巴巴Java开发手册》 - -- 【强制】所有的 POJO 类属性必须使用包装数据类型。 -- 【强制】RPC 方法的返回值和参数必须使用包装数据类型。 -- 【推荐】所有的局部变量使用基本数据类型。 - -比如我们如果自定义了一个Student类,其中有一个属性是成绩score,如果用Integer而不用int定义,一次考试,学生可能没考,值是null,也可能考了,但考了0分,值是0,这两个表达的状态明显不一样. - -**说明** :POJO 类属性没有初值是提醒使用者在需要使用时,必须自己显式地进行赋值,任何 NPE 问题,或者入库检查,都由使用者来保证。 - -**正例** : 数据库的查询结果可能是 null,因为自动拆箱,用基本数据类型接收有 NPE 风险。 - -**反例** : 比如显示成交总额涨跌情况,即正负 x%,x 为基本数据类型,调用的 RPC 服务,调用不成功时,返回的是默认值,页面显示为 0%,这是不合理的,应该显示成中划线。所以包装数据类型的 null 值,能够表示额外的信息,如:远程调用失败,异常退出。 - -# 2. 集合 - -## 2.1. Arrays.asList()使用指南 - -最近使用`Arrays.asList()`遇到了一些坑,然后在网上看到这篇文章:[Java Array to List Examples](http://javadevnotes.com/java-array-to-list-examples) 感觉挺不错的,但是还不是特别全面。所以,自己对于这块小知识点进行了简单的总结。 - -### 2.1.1. 简介 - -`Arrays.asList()`在平时开发中还是比较常见的,我们可以使用它将一个数组转换为一个List集合。 - -```java -String[] myArray = {"Apple", "Banana", "Orange"}; -List myList = Arrays.asList(myArray); -//上面两个语句等价于下面一条语句 -List myList = Arrays.asList("Apple","Banana", "Orange"); -``` - -JDK 源码对于这个方法的说明: - -```java -/** - *返回由指定数组支持的固定大小的列表。此方法作为基于数组和基于集合的API之间的桥梁, - * 与 Collection.toArray()结合使用。返回的List是可序列化并实现RandomAccess接口。 - */ -public static List asList(T... a) { - return new ArrayList<>(a); -} -``` - -### 2.1.2. 《阿里巴巴Java 开发手册》对其的描述 - -`Arrays.asList()`将数组转换为集合后,底层其实还是数组,《阿里巴巴Java 开发手册》对于这个方法有如下描述: - -![阿里巴巴Java开发手-Arrays.asList()方法](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-6/阿里巴巴Java开发手-Arrays.asList()方法.png) - -### 2.1.3. 使用时的注意事项总结 - -**传递的数组必须是对象数组,而不是基本类型。** - -`Arrays.asList()`是泛型方法,传入的对象必须是对象数组。 - -```java -int[] myArray = {1, 2, 3}; -List myList = Arrays.asList(myArray); -System.out.println(myList.size());//1 -System.out.println(myList.get(0));//数组地址值 -System.out.println(myList.get(1));//报错:ArrayIndexOutOfBoundsException -int[] array = (int[]) myList.get(0); -System.out.println(array[0]);//1 -``` -当传入一个原生数据类型数组时,`Arrays.asList()` 的真正得到的参数就不是数组中的元素,而是数组对象本身!此时List 的唯一元素就是这个数组,这也就解释了上面的代码。 - -我们使用包装类型数组就可以解决这个问题。 - -```java -Integer[] myArray = {1, 2, 3}; -``` - -**使用集合的修改方法:`add()`、`remove()`、`clear()`会抛出异常。** - -```java -List myList = Arrays.asList(1, 2, 3); -myList.add(4);//运行时报错:UnsupportedOperationException -myList.remove(1);//运行时报错:UnsupportedOperationException -myList.clear();//运行时报错:UnsupportedOperationException -``` - -`Arrays.asList()` 方法返回的并不是 `java.util.ArrayList` ,而是 `java.util.Arrays` 的一个内部类,这个内部类并没有实现集合的修改方法或者说并没有重写这些方法。 - -```java -List myList = Arrays.asList(1, 2, 3); -System.out.println(myList.getClass());//class java.util.Arrays$ArrayList -``` - -下图是`java.util.Arrays$ArrayList`的简易源码,我们可以看到这个类重写的方法有哪些。 - -```java - private static class ArrayList extends AbstractList - implements RandomAccess, java.io.Serializable - { - ... - - @Override - public E get(int index) { - ... - } - - @Override - public E set(int index, E element) { - ... - } - - @Override - public int indexOf(Object o) { - ... - } - - @Override - public boolean contains(Object o) { - ... - } - - @Override - public void forEach(Consumer action) { - ... - } - - @Override - public void replaceAll(UnaryOperator operator) { - ... - } - - @Override - public void sort(Comparator c) { - ... - } - } -``` - -我们再看一下`java.util.AbstractList`的`remove()`方法,这样我们就明白为啥会抛出`UnsupportedOperationException`。 - -```java -public E remove(int index) { - throw new UnsupportedOperationException(); -} -``` - -### 2.1.4. 如何正确的将数组转换为ArrayList? - -stackoverflow:https://dwz.cn/vcBkTiTW - -**1. 自己动手实现(教育目的)** - -```java -//JDK1.5+ -static List arrayToList(final T[] array) { - final List l = new ArrayList(array.length); - - for (final T s : array) { - l.add(s); - } - return l; -} -``` - -```java -Integer [] myArray = { 1, 2, 3 }; -System.out.println(arrayToList(myArray).getClass());//class java.util.ArrayList -``` - -**2. 最简便的方法(推荐)** - -```java -List list = new ArrayList<>(Arrays.asList("a", "b", "c")) -``` - -**3. 使用 Java8 的Stream(推荐)** - -```java -Integer [] myArray = { 1, 2, 3 }; -List myList = Arrays.stream(myArray).collect(Collectors.toList()); -//基本类型也可以实现转换(依赖boxed的装箱操作) -int [] myArray2 = { 1, 2, 3 }; -List myList = Arrays.stream(myArray2).boxed().collect(Collectors.toList()); -``` - -**4. 使用 Guava(推荐)** - -对于不可变集合,你可以使用[`ImmutableList`](https://github.com/google/guava/blob/master/guava/src/com/google/common/collect/ImmutableList.java)类及其[`of()`](https://github.com/google/guava/blob/master/guava/src/com/google/common/collect/ImmutableList.java#L101)与[`copyOf()`](https://github.com/google/guava/blob/master/guava/src/com/google/common/collect/ImmutableList.java#L225)工厂方法:(参数不能为空) - -```java -List il = ImmutableList.of("string", "elements"); // from varargs -List il = ImmutableList.copyOf(aStringArray); // from array -``` -对于可变集合,你可以使用[`Lists`](https://github.com/google/guava/blob/master/guava/src/com/google/common/collect/Lists.java)类及其[`newArrayList()`](https://github.com/google/guava/blob/master/guava/src/com/google/common/collect/Lists.java#L87)工厂方法: - -```java -List l1 = Lists.newArrayList(anotherListOrCollection); // from collection -List l2 = Lists.newArrayList(aStringArray); // from array -List l3 = Lists.newArrayList("or", "string", "elements"); // from varargs -``` - -**5. 使用 Apache Commons Collections** - -```java -List list = new ArrayList(); -CollectionUtils.addAll(list, str); -``` - -**6. 使用 Java9 的 `List.of()`方法** -``` java -Integer[] array = {1, 2, 3}; -List list = List.of(array); -System.out.println(list); /* [1, 2, 3] */ -/* 不支持基本数据类型 */ -``` - -## 2.2. Collection.toArray()方法使用的坑&如何反转数组 - -该方法是一个泛型方法:` T[] toArray(T[] a);` 如果`toArray`方法中没有传递任何参数的话返回的是`Object`类型数组。 - -```java -String [] s= new String[]{ - "dog", "lazy", "a", "over", "jumps", "fox", "brown", "quick", "A" -}; -List list = Arrays.asList(s); -Collections.reverse(list); -s=list.toArray(new String[0]);//没有指定类型的话会报错 -``` - -由于JVM优化,`new String[0]`作为`Collection.toArray()`方法的参数现在使用更好,`new String[0]`就是起一个模板的作用,指定了返回数组的类型,0是为了节省空间,因为它只是为了说明返回的类型。详见: - -## 2.3. 不要在 foreach 循环里进行元素的 remove/add 操作 - -如果要进行`remove`操作,可以调用迭代器的 `remove `方法而不是集合类的 remove 方法。因为如果列表在任何时间从结构上修改创建迭代器之后,以任何方式除非通过迭代器自身`remove/add`方法,迭代器都将抛出一个`ConcurrentModificationException`,这就是单线程状态下产生的 **fail-fast 机制**。 - -> **fail-fast 机制** :多个线程对 fail-fast 集合进行修改的时候,可能会抛出ConcurrentModificationException,单线程下也会出现这种情况,上面已经提到过。 - -Java8开始,可以使用`Collection#removeIf()`方法删除满足特定条件的元素,如 -``` java -List list = new ArrayList<>(); -for (int i = 1; i <= 10; ++i) { - list.add(i); -} -list.removeIf(filter -> filter % 2 == 0); /* 删除list中的所有偶数 */ -System.out.println(list); /* [1, 3, 5, 7, 9] */ -``` - -`java.util`包下面的所有的集合类都是fail-fast的,而`java.util.concurrent`包下面的所有的类都是fail-safe的。 - -![不要在 foreach 循环里进行元素的 remove/add 操作](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019/7/foreach-remove:add.png) - - - diff --git "a/docs/java/basis/Java\345\270\270\350\247\201\345\205\263\351\224\256\345\255\227\346\200\273\347\273\223.md" "b/docs/java/basis/Java\345\270\270\350\247\201\345\205\263\351\224\256\345\255\227\346\200\273\347\273\223.md" deleted file mode 100644 index 5958debc452..00000000000 --- "a/docs/java/basis/Java\345\270\270\350\247\201\345\205\263\351\224\256\345\255\227\346\200\273\347\273\223.md" +++ /dev/null @@ -1,352 +0,0 @@ - - -- [final,static,this,super 关键字总结](#finalstaticthissuper-关键字总结) - - [final 关键字](#final-关键字) - - [static 关键字](#static-关键字) - - [this 关键字](#this-关键字) - - [super 关键字](#super-关键字) - - [参考](#参考) -- [static 关键字详解](#static-关键字详解) - - [static 关键字主要有以下四种使用场景](#static-关键字主要有以下四种使用场景) - - [修饰成员变量和成员方法\(常用\)](#修饰成员变量和成员方法常用) - - [静态代码块](#静态代码块) - - [静态内部类](#静态内部类) - - [静态导包](#静态导包) - - [补充内容](#补充内容) - - [静态方法与非静态方法](#静态方法与非静态方法) - - [static{}静态代码块与{}非静态代码块\(构造代码块\)](#static静态代码块与非静态代码块构造代码块) - - [参考](#参考-1) - - - -# final,static,this,super 关键字总结 - -## final 关键字 - -**final 关键字,意思是最终的、不可修改的,最见不得变化 ,用来修饰类、方法和变量,具有以下特点:** - -1. **final 修饰的类不能被继承,final 类中的所有成员方法都会被隐式的指定为 final 方法;** - -2. **final 修饰的方法不能被重写;** - -3. **final 修饰的变量是常量,如果是基本数据类型的变量,则其数值一旦在初始化之后便不能更改;如果是引用类型的变量,则在对其初始化之后便不能让其指向另一个对象。** - -说明:使用 final 方法的原因有两个。第一个原因是把方法锁定,以防任何继承类修改它的含义;第二个原因是效率。在早期的 Java 实现版本中,会将 final 方法转为内嵌调用。但是如果方法过于庞大,可能看不到内嵌调用带来的任何性能提升(现在的 Java 版本已经不需要使用 final 方法进行这些优化了)。类中所有的 private 方法都隐式地指定为 final。 - -## static 关键字 - -**static 关键字主要有以下四种使用场景:** - -1. **修饰成员变量和成员方法:** 被 static 修饰的成员属于类,不属于单个这个类的某个对象,被类中所有对象共享,可以并且建议通过类名调用。被 static 声明的成员变量属于静态成员变量,静态变量 存放在 Java 内存区域的方法区。调用格式:`类名.静态变量名` `类名.静态方法名()` -2. **静态代码块:** 静态代码块定义在类中方法外, 静态代码块在非静态代码块之前执行(静态代码块—>非静态代码块—>构造方法)。 该类不管创建多少对象,静态代码块只执行一次. -3. **静态内部类(static 修饰类的话只能修饰内部类):** 静态内部类与非静态内部类之间存在一个最大的区别: 非静态内部类在编译完成之后会隐含地保存着一个引用,该引用是指向创建它的外围类,但是静态内部类却没有。没有这个引用就意味着:1. 它的创建是不需要依赖外围类的创建。2. 它不能使用任何外围类的非 static 成员变量和方法。 -4. **静态导包(用来导入类中的静态资源,1.5 之后的新特性):** 格式为:`import static` 这两个关键字连用可以指定导入某个类中的指定静态资源,并且不需要使用类名调用类中静态成员,可以直接使用类中静态成员变量和成员方法。 - -## this 关键字 - -this 关键字用于引用类的当前实例。 例如: - -```java -class Manager { - Employees[] employees; - - void manageEmployees() { - int totalEmp = this.employees.length; - System.out.println("Total employees: " + totalEmp); - this.report(); - } - - void report() { } -} -``` - -在上面的示例中,this 关键字用于两个地方: - -- this.employees.length:访问类 Manager 的当前实例的变量。 -- this.report():调用类 Manager 的当前实例的方法。 - -此关键字是可选的,这意味着如果上面的示例在不使用此关键字的情况下表现相同。 但是,使用此关键字可能会使代码更易读或易懂。 - -## super 关键字 - -super 关键字用于从子类访问父类的变量和方法。 例如: - -```java -public class Super { - protected int number; - - protected showNumber() { - System.out.println("number = " + number); - } -} - -public class Sub extends Super { - void bar() { - super.number = 10; - super.showNumber(); - } -} -``` - -在上面的例子中,Sub 类访问父类成员变量 number 并调用其父类 Super 的 `showNumber()` 方法。 - -**使用 this 和 super 要注意的问题:** - -- 在构造器中使用 `super()` 调用父类中的其他构造方法时,该语句必须处于构造器的首行,否则编译器会报错。另外,this 调用本类中的其他构造方法时,也要放在首行。 -- this、super 不能用在 static 方法中。 - -**简单解释一下:** - -被 static 修饰的成员属于类,不属于单个这个类的某个对象,被类中所有对象共享。而 this 代表对本类对象的引用,指向本类对象;而 super 代表对父类对象的引用,指向父类对象;所以, **this 和 super 是属于对象范畴的东西,而静态方法是属于类范畴的东西**。 - -## 参考 - -- https://www.codejava.net/java-core/the-java-language/java-keywords -- https://blog.csdn.net/u013393958/article/details/79881037 - -# static 关键字详解 - -## static 关键字主要有以下四种使用场景 - -1. 修饰成员变量和成员方法 -2. 静态代码块 -3. 修饰类(只能修饰内部类) -4. 静态导包(用来导入类中的静态资源,1.5 之后的新特性) - -### 修饰成员变量和成员方法(常用) - -被 static 修饰的成员属于类,不属于单个这个类的某个对象,被类中所有对象共享,可以并且建议通过类名调用。被 static 声明的成员变量属于静态成员变量,静态变量 存放在 Java 内存区域的方法区。 - -方法区与 Java 堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。虽然 Java 虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫做 Non-Heap(非堆),目的应该是与 Java 堆区分开来。 - -HotSpot 虚拟机中方法区也常被称为 “永久代”,本质上两者并不等价。仅仅是因为 HotSpot 虚拟机设计团队用永久代来实现方法区而已,这样 HotSpot 虚拟机的垃圾收集器就可以像管理 Java 堆一样管理这部分内存了。但是这并不是一个好主意,因为这样更容易遇到内存溢出问题。 - -调用格式: - -- `类名.静态变量名` -- `类名.静态方法名()` - -如果变量或者方法被 private 则代表该属性或者该方法只能在类的内部被访问而不能在类的外部被访问。 - -测试方法: - -```java -public class StaticBean { - - String name; - //静态变量 - static int age; - - public StaticBean(String name) { - this.name = name; - } - //静态方法 - static void sayHello() { - System.out.println("Hello i am java"); - } - @Override - public String toString() { - return "StaticBean{"+ - "name=" + name + ",age=" + age + - "}"; - } -} -``` - -```java -public class StaticDemo { - - public static void main(String[] args) { - StaticBean staticBean = new StaticBean("1"); - StaticBean staticBean2 = new StaticBean("2"); - StaticBean staticBean3 = new StaticBean("3"); - StaticBean staticBean4 = new StaticBean("4"); - StaticBean.age = 33; - System.out.println(staticBean + " " + staticBean2 + " " + staticBean3 + " " + staticBean4); - //StaticBean{name=1,age=33} StaticBean{name=2,age=33} StaticBean{name=3,age=33} StaticBean{name=4,age=33} - StaticBean.sayHello();//Hello i am java - } - -} -``` - -### 静态代码块 - -静态代码块定义在类中方法外, 静态代码块在非静态代码块之前执行(静态代码块 —> 非静态代码块 —> 构造方法)。 该类不管创建多少对象,静态代码块只执行一次. - -静态代码块的格式是 - -``` -static { -语句体; -} -``` - -一个类中的静态代码块可以有多个,位置可以随便放,它不在任何的方法体内,JVM 加载类时会执行这些静态的代码块,如果静态代码块有多个,JVM 将按照它们在类中出现的先后顺序依次执行它们,每个代码块只会被执行一次。 - -![](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/18-9-14/88531075.jpg) - -静态代码块对于定义在它之后的静态变量,可以赋值,但是不能访问. - -### 静态内部类 - -静态内部类与非静态内部类之间存在一个最大的区别,我们知道非静态内部类在编译完成之后会隐含地保存着一个引用,该引用是指向创建它的外围类,但是静态内部类却没有。没有这个引用就意味着: - -1. 它的创建是不需要依赖外围类的创建。 -2. 它不能使用任何外围类的非 static 成员变量和方法。 - -Example(静态内部类实现单例模式) - -```java -public class Singleton { - - //声明为 private 避免调用默认构造方法创建对象 - private Singleton() { - } - - // 声明为 private 表明静态内部该类只能在该 Singleton 类中被访问 - private static class SingletonHolder { - private static final Singleton INSTANCE = new Singleton(); - } - - public static Singleton getUniqueInstance() { - return SingletonHolder.INSTANCE; - } -} -``` - -当 Singleton 类加载时,静态内部类 SingletonHolder 没有被加载进内存。只有当调用 `getUniqueInstance()`方法从而触发 `SingletonHolder.INSTANCE` 时 SingletonHolder 才会被加载,此时初始化 INSTANCE 实例,并且 JVM 能确保 INSTANCE 只被实例化一次。 - -这种方式不仅具有延迟初始化的好处,而且由 JVM 提供了对线程安全的支持。 - -### 静态导包 - -格式为:import static - -这两个关键字连用可以指定导入某个类中的指定静态资源,并且不需要使用类名调用类中静态成员,可以直接使用类中静态成员变量和成员方法 - -```java - - - //将Math中的所有静态资源导入,这时候可以直接使用里面的静态方法,而不用通过类名进行调用 - //如果只想导入单一某个静态方法,只需要将*换成对应的方法名即可 - -import static java.lang.Math.*;//换成import static java.lang.Math.max;具有一样的效果 - -public class Demo { - public static void main(String[] args) { - - int max = max(1,2); - System.out.println(max); - } -} - -``` - -## 补充内容 - -### 静态方法与非静态方法 - -静态方法属于类本身,非静态方法属于从该类生成的每个对象。 如果您的方法执行的操作不依赖于其类的各个变量和方法,请将其设置为静态(这将使程序的占用空间更小)。 否则,它应该是非静态的。 - -Example - -```java -class Foo { - int i; - public Foo(int i) { - this.i = i; - } - - public static String method1() { - return "An example string that doesn't depend on i (an instance variable)"; - - } - - public int method2() { - return this.i + 1; //Depends on i - } - -} -``` - -你可以像这样调用静态方法:`Foo.method1()`。 如果您尝试使用这种方法调用 method2 将失败。 但这样可行 - -```java -Foo bar = new Foo(1); -bar.method2(); -``` - -总结: - -- 在外部调用静态方法时,可以使用”类名.方法名”的方式,也可以使用”对象名.方法名”的方式。而实例方法只有后面这种方式。也就是说,调用静态方法可以无需创建对象。 -- 静态方法在访问本类的成员时,只允许访问静态成员(即静态成员变量和静态方法),而不允许访问实例成员变量和实例方法;实例方法则无此限制 - -### `static{}`静态代码块与`{}`非静态代码块(构造代码块) - -相同点: 都是在 JVM 加载类时且在构造方法执行之前执行,在类中都可以定义多个,定义多个时按定义的顺序执行,一般在代码块中对一些 static 变量进行赋值。 - -不同点: 静态代码块在非静态代码块之前执行(静态代码块 -> 非静态代码块 -> 构造方法)。静态代码块只在第一次 new 执行一次,之后不再执行,而非静态代码块在每 new 一次就执行一次。 非静态代码块可在普通方法中定义(不过作用不大);而静态代码块不行。 - -> **🐛 修正(参见: [issue #677](https://github.com/Snailclimb/JavaGuide/issues/677))** :静态代码块可能在第一次 new 对象的时候执行,但不一定只在第一次 new 的时候执行。比如通过 `Class.forName("ClassDemo")`创建 Class 对象的时候也会执行,即 new 或者 `Class.forName("ClassDemo")` 都会执行静态代码块。 - -一般情况下,如果有些代码比如一些项目最常用的变量或对象必须在项目启动的时候就执行的时候,需要使用静态代码块,这种代码是主动执行的。如果我们想要设计不需要创建对象就可以调用类中的方法,例如:`Arrays` 类,`Character` 类,`String` 类等,就需要使用静态方法, 两者的区别是 静态代码块是自动执行的而静态方法是被调用的时候才执行的. - -Example: - -```java -public class Test { - public Test() { - System.out.print("默认构造方法!--"); - } - - //非静态代码块 - { - System.out.print("非静态代码块!--"); - } - - //静态代码块 - static { - System.out.print("静态代码块!--"); - } - - private static void test() { - System.out.print("静态方法中的内容! --"); - { - System.out.print("静态方法中的代码块!--"); - } - - } - - public static void main(String[] args) { - Test test = new Test(); - Test.test();//静态代码块!--静态方法中的内容! --静态方法中的代码块!-- - } -} -``` - -上述代码输出: - -``` -静态代码块!--非静态代码块!--默认构造方法!--静态方法中的内容! --静态方法中的代码块!-- -``` - -当只执行 `Test.test();` 时输出: - -``` -静态代码块!--静态方法中的内容! --静态方法中的代码块!-- -``` - -当只执行 `Test test = new Test();` 时输出: - -``` -静态代码块!--非静态代码块!--默认构造方法!-- -``` - -非静态代码块与构造函数的区别是: 非静态代码块是给所有对象进行统一初始化,而构造函数是给对应的对象初始化,因为构造函数是可以多个的,运行哪个构造函数就会建立什么样的对象,但无论建立哪个对象,都会先执行相同的构造代码块。也就是说,构造代码块中定义的是不同对象共性的初始化内容。 - -### 参考 - -- https://blog.csdn.net/chen13579867831/article/details/78995480 -- https://www.cnblogs.com/chenssy/p/3388487.html -- https://www.cnblogs.com/Qian123/p/5713440.html diff --git "a/docs/java/basis/IO\346\250\241\345\236\213.md" "b/docs/java/basis/io\346\250\241\345\236\213\350\257\246\350\247\243.md" similarity index 93% rename from "docs/java/basis/IO\346\250\241\345\236\213.md" rename to "docs/java/basis/io\346\250\241\345\236\213\350\257\246\350\247\243.md" index 243fdc00107..231da542c35 100644 --- "a/docs/java/basis/IO\346\250\241\345\236\213.md" +++ "b/docs/java/basis/io\346\250\241\345\236\213\350\257\246\350\247\243.md" @@ -1,3 +1,11 @@ +--- +title: IO模型详解 +category: Java +tag: + - Java基础 +--- + + IO 模型这块确实挺难理解的,需要太多计算机底层知识。写这篇文章用了挺久,就非常希望能把我所知道的讲出来吧!希望朋友们能有收获!为了写这篇文章,还翻看了一下《UNIX 网络编程》这本书,太难了,我滴乖乖!心痛~ _个人能力有限。如果文章有任何需要补充/完善/修改的地方,欢迎在评论区指出,共同进步!_ @@ -18,7 +26,7 @@ I/O(**I**nput/**O**utpu) 即**输入/输出** 。 ![冯诺依曼体系结构](https://img-blog.csdnimg.cn/20190624122126398.jpeg?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9pcy1jbG91ZC5ibG9nLmNzZG4ubmV0,size_16,color_FFFFFF,t_70) -输入设备(比如键盘)和输出设备(比如鼠标)都属于外部设备。网卡、硬盘这种既可以属于输入设备,也可以属于输出设备。 +输入设备(比如键盘)和输出设备(比如显示器)都属于外部设备。网卡、硬盘这种既可以属于输入设备,也可以属于输出设备。 输入设备向计算机输入数据,输出设备接收计算机输出的数据。 @@ -28,7 +36,7 @@ I/O(**I**nput/**O**utpu) 即**输入/输出** 。 根据大学里学到的操作系统相关的知识:为了保证操作系统的稳定性和安全性,一个进程的地址空间划分为 **用户空间(User space)** 和 **内核空间(Kernel space )** 。 -像我们平常运行的应用程序都是运行在用户空间,只有内核空间才能进行系统态级别的资源有关的操作,比如如文件管理、进程通信、内存管理等等。也就是说,我们想要进行 IO 操作,一定是要依赖内核空间的能力。 +像我们平常运行的应用程序都是运行在用户空间,只有内核空间才能进行系统态级别的资源有关的操作,比如文件管理、进程通信、内存管理等等。也就是说,我们想要进行 IO 操作,一定是要依赖内核空间的能力。 并且,用户空间的程序不能直接访问内核空间。 @@ -36,7 +44,7 @@ I/O(**I**nput/**O**utpu) 即**输入/输出** 。 因此,用户进程想要执行 IO 操作的话,必须通过 **系统调用** 来间接访问内核空间 -我们在平常开发过程中接触最多的就是 **磁盘 IO(读写文件)** 和 **网络 IO(网络请求和相应)**。 +我们在平常开发过程中接触最多的就是 **磁盘 IO(读写文件)** 和 **网络 IO(网络请求和响应)**。 **从应用程序的视角来看的话,我们的应用程序对操作系统的内核发起 IO 调用(系统调用),操作系统负责的内核执行具体的 IO 操作。也就是说,我们的应用程序实际上只是发起了 IO 操作的调用而已,具体 IO 的执行是由操作系统的内核来完成的。** @@ -57,7 +65,7 @@ UNIX 系统下, IO 模型一共有 5 种: **同步阻塞 I/O**、**同步非 **BIO 属于同步阻塞 IO 模型** 。 -同步阻塞 IO 模型中,应用程序发起 read 调用后,会一直阻塞,直到在内核把数据拷贝到用户空间。 +同步阻塞 IO 模型中,应用程序发起 read 调用后,会一直阻塞,直到内核把数据拷贝到用户空间。 ![图源:《深入拆解Tomcat & Jetty》](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/6a9e704af49b4380bb686f0c96d33b81~tplv-k3u1fbpfcp-watermark.image) @@ -120,3 +128,4 @@ AIO 也就是 NIO 2。Java 7 中引入了 NIO 的改进版 NIO 2,它是异步 IO - 10 分钟看懂, Java NIO 底层原理:https://www.cnblogs.com/crazymakercircle/p/10225159.html - IO 模型知多少 | 理论篇:https://www.cnblogs.com/sheng-jie/p/how-much-you-know-about-io-models.html - 《UNIX 网络编程 卷 1;套接字联网 API 》6.2 节 IO 模型 + diff --git "a/docs/java/basis/Java\345\237\272\347\241\200\347\237\245\350\257\206.md" "b/docs/java/basis/java\345\237\272\347\241\200\347\237\245\350\257\206\346\200\273\347\273\223.md" similarity index 89% rename from "docs/java/basis/Java\345\237\272\347\241\200\347\237\245\350\257\206.md" rename to "docs/java/basis/java\345\237\272\347\241\200\347\237\245\350\257\206\346\200\273\347\273\223.md" index e624f6f117d..867bfb63867 100644 --- "a/docs/java/basis/Java\345\237\272\347\241\200\347\237\245\350\257\206.md" +++ "b/docs/java/basis/java\345\237\272\347\241\200\347\237\245\350\257\206\346\200\273\347\273\223.md" @@ -1,71 +1,9 @@ - - - - -- [基础概念与常识](#基础概念与常识) - - [Java 语言有哪些特点?](#java-语言有哪些特点) - - [JVM vs JDK vs JRE](#jvm-vs-jdk-vs-jre) - - [JVM](#jvm) - - [JDK 和 JRE](#jdk-和-jre) - - [为什么说 Java 语言“编译与解释并存”?](#为什么说-java-语言编译与解释并存) - - [Oracle JDK 和 OpenJDK 的对比](#oracle-jdk-和-openjdk-的对比) - - [Java 和 C++的区别?](#java-和-c的区别) - - [import java 和 javax 有什么区别?](#import-java-和-javax-有什么区别) -- [基本语法](#基本语法) - - [字符型常量和字符串常量的区别?](#字符型常量和字符串常量的区别) - - [注释](#注释) - - [标识符和关键字的区别是什么?](#标识符和关键字的区别是什么) - - [Java 中有哪些常见的关键字?](#java-中有哪些常见的关键字) - - [自增自减运算符](#自增自减运算符) - - [continue、break、和 return 的区别是什么?](#continue-break-和-return-的区别是什么) - - [Java 泛型了解么?什么是类型擦除?介绍一下常用的通配符?](#java-泛型了解么什么是类型擦除介绍一下常用的通配符) - - [==和 equals 的区别](#和-equals-的区别) - - [hashCode()与 equals()](#hashcode与-equals) -- [基本数据类型](#基本数据类型) - - [Java 中的几种基本数据类型是什么?对应的包装类型是什么?各自占用多少字节呢?](#java-中的几种基本数据类型是什么对应的包装类型是什么各自占用多少字节呢) - - [自动装箱与拆箱](#自动装箱与拆箱) - - [8 种基本类型的包装类和常量池](#8-种基本类型的包装类和常量池) -- [方法(函数)](#方法函数) - - [什么是方法的返回值?](#什么是方法的返回值) - - [方法有哪几种类型?](#方法有哪几种类型) - - [在一个静态方法内调用一个非静态成员为什么是非法的?](#在一个静态方法内调用一个非静态成员为什么是非法的) - - [静态方法和实例方法有何不同?](#静态方法和实例方法有何不同) - - [为什么 Java 中只有值传递?](#为什么-java-中只有值传递) - - [重载和重写的区别](#重载和重写的区别) - - [重载](#重载) - - [重写](#重写) - - [深拷贝 vs 浅拷贝](#深拷贝-vs-浅拷贝) -- [Java 面向对象](#java-面向对象) - - [面向对象和面向过程的区别](#面向对象和面向过程的区别) - - [成员变量与局部变量的区别有哪些?](#成员变量与局部变量的区别有哪些) - - [创建一个对象用什么运算符?对象实体与对象引用有何不同?](#创建一个对象用什么运算符对象实体与对象引用有何不同) - - [对象的相等与指向他们的引用相等,两者有什么不同?](#对象的相等与指向他们的引用相等两者有什么不同) - - [一个类的构造方法的作用是什么? 若一个类没有声明构造方法,该程序能正确执行吗? 为什么?](#一个类的构造方法的作用是什么-若一个类没有声明构造方法该程序能正确执行吗-为什么) - - [构造方法有哪些特点?是否可被 override?](#构造方法有哪些特点是否可被-override) - - [面向对象三大特征](#面向对象三大特征) - - [封装](#封装) - - [继承](#继承) - - [多态](#多态) - - [String StringBuffer 和 StringBuilder 的区别是什么? String 为什么是不可变的?](#string-stringbuffer-和-stringbuilder-的区别是什么-string-为什么是不可变的) - - [Object 类的常见方法总结](#object-类的常见方法总结) -- [反射](#反射) - - [何为反射?](#何为反射) - - [反射机制优缺点](#反射机制优缺点) - - [反射的应用场景](#反射的应用场景) -- [异常](#异常) - - [Java 异常类层次结构图](#java-异常类层次结构图) - - [Throwable 类常用方法](#throwable-类常用方法) - - [try-catch-finally](#try-catch-finally) - - [使用 `try-with-resources` 来代替`try-catch-finally`](#使用-try-with-resources-来代替try-catch-finally) -- [I\O 流](#io-流) - - [什么是序列化?什么是反序列化?](#什么是序列化什么是反序列化) - - [Java 序列化中如果有些字段不想进行序列化,怎么办?](#java-序列化中如果有些字段不想进行序列化怎么办) - - [获取用键盘输入常用的两种方法](#获取用键盘输入常用的两种方法) - - [Java 中 IO 流分为几种?](#java-中-io-流分为几种) - - [既然有了字节流,为什么还要有字符流?](#既然有了字节流为什么还要有字符流) -- [4. 参考](#4-参考) - - +--- +title: Java基础知识&面试题总结 +category: Java +tag: + - Java基础 +--- ## 基础概念与常识 @@ -117,17 +55,17 @@ JRE 是 Java 运行时环境。它是运行已编译 Java 程序所需的所有 高级编程语言按照程序的执行方式分为编译型和解释型两种。简单来说,编译型语言是指编译器针对特定的操作系统将源代码一次性翻译成可被该平台执行的机器码;解释型语言是指解释器对源程序逐行解释成特定平台的机器码并立即执行。比如,你想阅读一本英文名著,你可以找一个英文翻译人员帮助你阅读, 有两种选择方式,你可以先等翻译人员将全本的英文名著(也就是源码)都翻译成汉语,再去阅读,也可以让翻译人员翻译一段,你在旁边阅读一段,慢慢把书读完。 -Java 语言既具有编译型语言的特征,也具有解释型语言的特征,因为 Java 程序要经过先编译,后解释两个步骤,由 Java 编写的程序需要先经过编译步骤,生成字节码(`\*.class` 文件),这种字节码必须由 Java 解释器来解释执行。因此,我们可以认为 Java 语言编译与解释并存。 +Java 语言既具有编译型语言的特征,也具有解释型语言的特征,因为 Java 程序要经过先编译,后解释两个步骤,由 Java 编写的程序需要先经过编译步骤,生成字节码(`*.class` 文件),这种字节码必须由 Java 解释器来解释执行。因此,我们可以认为 Java 语言编译与解释并存。 ### Oracle JDK 和 OpenJDK 的对比 -可能在看这个问题之前很多人和我一样并没有接触和使用过 OpenJDK 。那么 Oracle 和 OpenJDK 之间是否存在重大差异?下面我通过收集到的一些资料,为你解答这个被很多人忽视的问题。 +可能在看这个问题之前很多人和我一样并没有接触和使用过 OpenJDK 。那么 Oracle JDK 和 OpenJDK 之间是否存在重大差异?下面我通过收集到的一些资料,为你解答这个被很多人忽视的问题。 对于 Java 7,没什么关键的地方。OpenJDK 项目主要基于 Sun 捐赠的 HotSpot 源代码。此外,OpenJDK 被选为 Java 7 的参考实现,由 Oracle 工程师维护。关于 JVM,JDK,JRE 和 OpenJDK 之间的区别,Oracle 博客帖子在 2012 年有一个更详细的答案: > 问:OpenJDK 存储库中的源代码与用于构建 Oracle JDK 的代码之间有什么区别? > -> 答:非常接近 - 我们的 Oracle JDK 版本构建过程基于 OpenJDK 7 构建,只添加了几个部分,例如部署代码,其中包括 Oracle 的 Java 插件和 Java WebStart 的实现,以及一些封闭的源代码派对组件,如图形光栅化器,一些开源的第三方组件,如 Rhino,以及一些零碎的东西,如附加文档或第三方字体。展望未来,我们的目的是开源 Oracle JDK 的所有部分,除了我们考虑商业功能的部分。 +> 答:非常接近 - 我们的 Oracle JDK 版本构建过程基于 OpenJDK 7 构建,只添加了几个部分,例如部署代码,其中包括 Oracle 的 Java 插件和 Java WebStart 的实现,以及一些闭源的第三方组件,如图形光栅化器,一些开源的第三方组件,如 Rhino,以及一些零碎的东西,如附加文档或第三方字体。展望未来,我们的目的是开源 Oracle JDK 的所有部分,除了我们考虑商业功能的部分。 **总结:** @@ -216,8 +154,9 @@ Java 中的注释有三种: ### Java 中有哪些常见的关键字? +| 分类 | 关键字 | | | | | | | +| :-------------------- | -------- | ---------- | -------- | ------------ | ---------- | --------- | ------ | | 访问控制 | private | protected | public | | | | | -| -------------------- | -------- | ---------- | -------- | ------------ | ---------- | --------- | ------ | | 类,方法和变量修饰符 | abstract | class | extends | final | implements | interface | native | | | new | static | strictfp | synchronized | transient | volatile | | | 程序控制 | break | continue | return | do | while | if | else | @@ -251,7 +190,7 @@ return 用于跳出所在方法,结束该方法的运行。return 一般有两 Java 泛型(generics)是 JDK 5 中引入的一个新特性, 泛型提供了编译时类型安全检测机制,该机制允许程序员在编译时检测到非法的类型。泛型的本质是参数化类型,也就是说所操作的数据类型被指定为一个参数。 -Java 的泛型是伪泛型,这是因为 Java 在编译期间,所有的泛型信息都会被擦掉,这也就是通常所说类型擦除 。 +Java 的泛型是伪泛型,这是因为 Java 在运行期间,所有的泛型信息都会被擦掉,这也就是通常所说类型擦除 。 ```java List list = new ArrayList<>(); @@ -456,7 +395,7 @@ public native int hashCode(); 在这里解释一位小伙伴的问题。以下内容摘自《Head Fisrt Java》。 -因为 `hashCode()` 所使用的哈希算法也许刚好会让多个对象传回相同的哈希值。越糟糕的哈希算法越容易碰撞,但这也与数据值域分布的特性有关(所谓碰撞也就是指的是不同的对象得到相同的 `hashCode`。 +因为 `hashCode()` 所使用的哈希算法也许刚好会让多个对象传回相同的哈希值。越糟糕的哈希算法越容易碰撞,但这也与数据值域分布的特性有关(所谓碰撞也就是指的是不同的对象得到相同的 `hashCode` )。 我们刚刚也提到了 `HashSet`,如果 `HashSet` 在对比的时候,同样的 hashcode 有多个对象,它会使用 `equals()` 来判断是否真的相同。也就是说 `hashcode` 只是用来缩小查找成本。 @@ -500,7 +439,7 @@ Java 中有 8 种基本数据类型,分别为: 基本数据类型直接存放在 Java 虚拟机栈中的局部变量表中,而包装类型属于对象类型,我们知道对象实例都存在于堆中。相比于对象类型, 基本数据类型占用的空间非常小。 -> 《深入理解 Java 虚拟机》 :局部变量表主要存放了编译期可知的基本数据类型**(boolean、byte、char、short、int、float、long、double)**、**对象引用**(reference 类型,它不同于对象本身,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或其他与此对象相关的位置)。 +> 《深入理解 Java 虚拟机》 :局部变量表主要存放了编译期可知的基本数据类型 **(boolean、byte、char、short、int、float、long、double)**、**对象引用**(reference 类型,它不同于对象本身,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或其他与此对象相关的位置)。 ### 自动装箱与拆箱 @@ -741,9 +680,37 @@ public void f5(int a) { ### 静态方法和实例方法有何不同? -1. 在外部调用静态方法时,可以使用"类名.方法名"的方式,也可以使用"对象名.方法名"的方式。而实例方法只有后面这种方式。也就是说,**调用静态方法可以无需创建对象。** +**1、调用方式** -2. 静态方法在访问本类的成员时,只允许访问静态成员(即静态成员变量和静态方法),而不允许访问实例成员变量和实例方法;实例方法则无此限制。 +在外部调用静态方法时,可以使用 `类名.方法名` 的方式,也可以使用 `对象.方法名` 的方式,而实例方法只有后面这种方式。也就是说,**调用静态方法可以无需创建对象** 。 + +不过,需要注意的是一般不建议使用 `对象.方法名` 的方式来调用静态方法。这种方式非常容易造成混淆,静态方法不属于类的某个对象而是属于这个类。 + +因此,一般建议使用 `类名.方法名` 的方式来调用静态方法。 + +```java + +public class Person { + public void method() { + //...... + } + + public static void staicMethod(){ + //...... + } + public static void main(String[] args) { + Person person = new Person(); + // 调用实例方法 + person.method(); + // 调用静态方法 + Person.staicMethod() + } +} +``` + +**2、访问类成员是否存在限制** + +静态方法在访问本类的成员时,只允许访问静态成员(即静态成员变量和静态方法),不允许访问实例成员(即实例成员变量和实例方法),而实例方法不存在这个限制。 ### 为什么 Java 中只有值传递? @@ -931,7 +898,7 @@ Java 程序设计语言对对象采用的不是引用调用,实际上,对象 - “两小”指的是子类方法返回值类型应比父类方法返回值类型更小或相等,子类方法声明抛出的异常类应比父类方法声明抛出的异常类更小或相等; - “一大”指的是子类方法的访问权限应比父类方法的访问权限更大或相等。 -⭐️ 关于 **重写的返回值类**型 这里需要额外多说明一下,上面的表述不太清晰准确:如果方法的返回类型是 void 和基本数据类型,则返回值重写时不可修改。但是如果方法的返回值是引用类型,重写时是可以返回该引用类型的子类的。 +⭐️ 关于 **重写的返回值类型** 这里需要额外多说明一下,上面的表述不太清晰准确:如果方法的返回类型是 void 和基本数据类型,则返回值重写时不可修改。但是如果方法的返回值是引用类型,重写时是可以返回该引用类型的子类的。 ```java public class Hero { @@ -1229,9 +1196,9 @@ Java 代码在编译过程中 ,我们即使不处理不受检查异常也可 ### Throwable 类常用方法 -- **`public string getMessage()`**:返回异常发生时的简要描述 -- **`public string toString()`**:返回异常发生时的详细信息 -- **`public string getLocalizedMessage()`**:返回异常对象的本地化信息。使用 `Throwable` 的子类覆盖这个方法,可以生成本地化信息。如果子类没有覆盖该方法,则该方法返回的信息与 `getMessage()`返回的结果相同 +- **`public String getMessage()`**:返回异常发生时的简要描述 +- **`public String toString()`**:返回异常发生时的详细信息 +- **`public String getLocalizedMessage()`**:返回异常对象的本地化信息。使用 `Throwable` 的子类覆盖这个方法,可以生成本地化信息。如果子类没有覆盖该方法,则该方法返回的信息与 `getMessage()`返回的结果相同 - **`public void printStackTrace()`**:在控制台上打印 `Throwable` 对象封装的异常信息 ### try-catch-finally @@ -1242,9 +1209,9 @@ Java 代码在编译过程中 ,我们即使不处理不受检查异常也可 **在以下 3 种特殊情况下,`finally` 块不会被执行:** -2. 在 `try` 或 `finally`块中用了 `System.exit(int)`退出程序。但是,如果 `System.exit(int)` 在异常语句之后,`finally` 还是会被执行 -3. 程序所在的线程死亡。 -4. 关闭 CPU。 +1. 在 `try` 或 `finally`块中用了 `System.exit(int)`退出程序。但是,如果 `System.exit(int)` 在异常语句之后,`finally` 还是会被执行 +2. 程序所在的线程死亡。 +3. 关闭 CPU。 下面这部分内容来自 issue:。 @@ -1332,7 +1299,7 @@ try (BufferedInputStream bin = new BufferedInputStream(new FileInputStream(new F 简单来说: - **序列化**: 将数据结构或对象转换成二进制字节流的过程 -- **反序列化**:将在序列化过程中所生成的二进制字节流的过程转换成数据结构或者对象的过程 +- **反序列化**:将在序列化过程中所生成的二进制字节流转换成数据结构或者对象的过程 对于 Java 这种面向对象编程语言来说,我们序列化的都是对象(Object)也就是实例化后的类(Class),但是在 C++这种半面向对象的语言中,struct(结构体)定义的是数据结构类型,而 class 对应的是对象类型。 @@ -1348,9 +1315,14 @@ try (BufferedInputStream bin = new BufferedInputStream(new FileInputStream(new F ### Java 序列化中如果有些字段不想进行序列化,怎么办? -对于不想进行序列化的变量,使用`transient`关键字修饰。` +对于不想进行序列化的变量,使用 `transient` 关键字修饰。 + +`transient` 关键字的作用是:阻止实例中那些用此关键字修饰的的变量序列化;当对象被反序列化时,被 `transient` 修饰的变量值不会被持久化和恢复。 -`transient` 关键字的作用是:阻止实例中那些用此关键字修饰的的变量序列化;当对象被反序列化时,被 `transient` 修饰的变量值不会被持久化和恢复。`transient` 只能修饰变量,不能修饰类和方法。 +关于 `transient` 还有几点注意: +- `transient` 只能修饰变量,不能修饰类和方法。 +- `transient` 修饰的变量,在反序列化后变量值将会被置成类型的默认值。例如,如果是修饰 `int` 类型,那么反序列后结果就是 `0`。 +- `static` 变量因为不属于任何对象(Object),所以无论有没有 `transient` 关键字修饰,均不会被序列化。 ### 获取用键盘输入常用的两种方法 @@ -1375,7 +1347,7 @@ String s = input.readLine(); - 按照操作单元划分,可以划分为字节流和字符流; - 按照流的角色划分为节点流和处理流。 -Java Io 流共涉及 40 多个类,这些类看上去很杂乱,但实际上很有规则,而且彼此之间存在非常紧密的联系, Java I0 流的 40 多个类都是从如下 4 个抽象类基类中派生出来的。 +Java IO 流共涉及 40 多个类,这些类看上去很杂乱,但实际上很有规则,而且彼此之间存在非常紧密的联系, Java IO 流的 40 多个类都是从如下 4 个抽象类基类中派生出来的。 - InputStream/Reader: 所有的输入流的基类,前者是字节输入流,后者是字符输入流。 - OutputStream/Writer: 所有输出流的基类,前者是字节输出流,后者是字符输出流。 @@ -1394,8 +1366,9 @@ Java Io 流共涉及 40 多个类,这些类看上去很杂乱,但实际上 回答:字符流是由 Java 虚拟机将字节转换得到的,问题就出在这个过程还算是非常耗时,并且,如果我们不知道编码类型就很容易出现乱码问题。所以, I/O 流就干脆提供了一个直接操作字符的接口,方便我们平时对字符进行流操作。如果音频文件、图片等媒体文件用字节流比较好,如果涉及到字符的话使用字符流比较好。 -## 4. 参考 +## 参考 - https://stackoverflow.com/questions/1906445/what-is-the-difference-between-jdk-and-jre - https://www.educba.com/oracle-vs-openjdk/ - https://stackoverflow.com/questions/22358071/differences-between-oracle-jdk-and-openjdk 基础概念与常识 + diff --git "a/docs/java/basis/\344\273\243\347\220\206\346\250\241\345\274\217\350\257\246\350\247\243.md" "b/docs/java/basis/\344\273\243\347\220\206\346\250\241\345\274\217\350\257\246\350\247\243.md" index 8323cedc168..0006caed0aa 100644 --- "a/docs/java/basis/\344\273\243\347\220\206\346\250\241\345\274\217\350\257\246\350\247\243.md" +++ "b/docs/java/basis/\344\273\243\347\220\206\346\250\241\345\274\217\350\257\246\350\247\243.md" @@ -1,26 +1,9 @@ -> 本文首更于[《从零开始手把手教你实现一个简单的RPC框架》](https://t.zsxq.com/iIUv7Mn) 。 - - - - - -- [1. 代理模式](#1-代理模式) -- [2. 静态代理](#2-静态代理) -- [3. 动态代理](#3-动态代理) - - [3.1. JDK 动态代理机制](#31-jdk-动态代理机制) - - [3.1.1. 介绍](#311-介绍) - - [3.1.2. JDK 动态代理类使用步骤](#312-jdk-动态代理类使用步骤) - - [3.1.3. 代码示例](#313-代码示例) - - [3.2. CGLIB 动态代理机制](#32-cglib-动态代理机制) - - [3.2.1. 介绍](#321-介绍) - - [3.2.2. CGLIB 动态代理类使用步骤](#322-cglib-动态代理类使用步骤) - - [3.2.3. 代码示例](#323-代码示例) - - [3.3. JDK 动态代理和 CGLIB 动态代理对比](#33-jdk-动态代理和-cglib-动态代理对比) -- [4. 静态代理和动态代理的对比](#4-静态代理和动态代理的对比) -- [5. 总结](#5-总结) - - - +--- +title: 代理详解!静态代理+JDK/CGLIB 动态代理实战 +category: Java +tag: + - Java基础 +--- ## 1. 代理模式 @@ -120,15 +103,15 @@ after method send() **从 JVM 角度来说,动态代理是在运行时动态生成类字节码,并加载到 JVM 中的。** -说到动态代理,Spring AOP、RPC 框架应该是两个不得不的提的,它们的实现都依赖了动态代理。 +说到动态代理,Spring AOP、RPC 框架应该是两个不得不提的,它们的实现都依赖了动态代理。 -**动态代理在我们日常开发中使用的相对较小,但是在框架中的几乎是必用的一门技术。学会了动态代理之后,对于我们理解和学习各种框架的原理也非常有帮助。** +**动态代理在我们日常开发中使用的相对较少,但是在框架中的几乎是必用的一门技术。学会了动态代理之后,对于我们理解和学习各种框架的原理也非常有帮助。** 就 Java 来说,动态代理的实现方式有很多种,比如 **JDK 动态代理**、**CGLIB 动态代理**等等。 [guide-rpc-framework](https://github.com/Snailclimb/guide-rpc-framework) 使用的是 JDK 动态代理,我们先来看看 JDK 动态代理的使用。 -另外,虽然 [guide-rpc-framework](https://github.com/Snailclimb/guide-rpc-framework) 没有用到 **CGLIB 动态代理 ,我们这里还是简单介绍一下其使用以及和**JDK 动态代理的对比。 +另外,虽然 [guide-rpc-framework](https://github.com/Snailclimb/guide-rpc-framework) 没有用到 **CGLIB 动态代理** ,我们这里还是简单介绍一下其使用以及和**JDK 动态代理**的对比。 ### 3.1. JDK 动态代理机制 @@ -154,7 +137,7 @@ after method send() 2. **interfaces** : 被代理类实现的一些接口; 3. **h** : 实现了 `InvocationHandler` 接口的对象; -要实现动态代理的话,还必须需要实现`InvocationHandler` 来自定义处理逻辑。 当我们的动态代理对象调用一个方法时候,这个方法的调用就会被转发到实现`InvocationHandler` 接口类的 `invoke` 方法来调用。 +要实现动态代理的话,还必须需要实现`InvocationHandler` 来自定义处理逻辑。 当我们的动态代理对象调用一个方法时,这个方法的调用就会被转发到实现`InvocationHandler` 接口类的 `invoke` 方法来调用。 ```java public interface InvocationHandler { @@ -298,7 +281,7 @@ extends Callback{ 1. **obj** :被代理的对象(需要增强的对象) 2. **method** :被拦截的方法(需要增强的方法) 3. **args** :方法入参 -4. **methodProxy** :用于调用原始方法 +4. **proxy** :用于调用原始方法 你可以通过 `Enhancer`类来动态获取被代理类,当代理类调用方法的时候,实际调用的是 `MethodInterceptor` 中的 `intercept` 方法。 @@ -348,7 +331,7 @@ public class DebugMethodInterceptor implements MethodInterceptor { /** - * @param o 被代理的对象(需要增强的对象) + * @param o 代理对象(增强的对象) * @param method 被拦截的方法(需要增强的方法) * @param args 方法入参 * @param methodProxy 用于调用原始方法 @@ -405,7 +388,7 @@ after method send ### 3.3. JDK 动态代理和 CGLIB 动态代理对比 -1. **JDK 动态代理只能只能代理实现了接口的类或者直接代理接口,而 CGLIB 可以代理未实现任何接口的类。** 另外, CGLIB 动态代理是通过生成一个被代理类的子类来拦截被代理类的方法调用,因此不能代理声明为 final 类型的类和方法。 +1. **JDK 动态代理只能代理实现了接口的类或者直接代理接口,而 CGLIB 可以代理未实现任何接口的类。** 另外, CGLIB 动态代理是通过生成一个被代理类的子类来拦截被代理类的方法调用,因此不能代理声明为 final 类型的类和方法。 2. 就二者的效率来说,大部分情况都是 JDK 动态代理更优秀,随着 JDK 版本的升级,这个优势更加明显。 ## 4. 静态代理和动态代理的对比 @@ -418,3 +401,4 @@ after method send 这篇文章中主要介绍了代理模式的两种实现:静态代理以及动态代理。涵盖了静态代理和动态代理实战、静态代理和动态代理的区别、JDK 动态代理和 Cglib 动态代理区别等内容。 文中涉及到的所有源码,你可以在这里找到:[https://github.com/Snailclimb/guide-rpc-framework-learning/tree/master/src/main/java/github/javaguide/proxy](https://github.com/Snailclimb/guide-rpc-framework-learning/tree/master/src/main/java/github/javaguide/proxy) 。 + diff --git "a/docs/java/basis/\345\217\215\345\260\204\346\234\272\345\210\266.md" "b/docs/java/basis/\345\217\215\345\260\204\346\234\272\345\210\266\350\257\246\350\247\243.md" similarity index 98% rename from "docs/java/basis/\345\217\215\345\260\204\346\234\272\345\210\266.md" rename to "docs/java/basis/\345\217\215\345\260\204\346\234\272\345\210\266\350\257\246\350\247\243.md" index d6fe42631a5..cac029638e4 100644 --- "a/docs/java/basis/\345\217\215\345\260\204\346\234\272\345\210\266.md" +++ "b/docs/java/basis/\345\217\215\345\260\204\346\234\272\345\210\266\350\257\246\350\247\243.md" @@ -1,3 +1,10 @@ +--- +title: 反射机制详解! +category: Java +tag: + - Java基础 +--- + ## 何为反射? 如果说大家研究过框架的底层原理或者咱们自己写过框架的话,一定对反射这个概念不陌生。 @@ -87,8 +94,6 @@ Class clazz = ClassLoader.loadClass("cn.javaguide.TargetObject"); ### 反射的一些基本操作 -**简单用代码演示一下反射的一些操作!** - 1.创建一个我们要使用反射操作的类 `TargetObject`。 ```java @@ -174,3 +179,4 @@ value is JavaGuide ```java Class tagetClass = Class.forName("cn.javaguide.TargetObject"); ``` + diff --git "a/docs/java/basis/\347\224\250\345\245\275Java\344\270\255\347\232\204\346\236\232\344\270\276\347\234\237\347\232\204\346\262\241\346\234\211\351\202\243\344\271\210\347\256\200\345\215\225.md" "b/docs/java/basis/\347\224\250\345\245\275Java\344\270\255\347\232\204\346\236\232\344\270\276\347\234\237\347\232\204\346\262\241\346\234\211\351\202\243\344\271\210\347\256\200\345\215\225.md" deleted file mode 100644 index 23e47ef6b8a..00000000000 --- "a/docs/java/basis/\347\224\250\345\245\275Java\344\270\255\347\232\204\346\236\232\344\270\276\347\234\237\347\232\204\346\262\241\346\234\211\351\202\243\344\271\210\347\256\200\345\215\225.md" +++ /dev/null @@ -1,557 +0,0 @@ -> 最近重看 Java 枚举,看到这篇觉得还不错的文章,于是简单翻译和完善了一些内容,分享给大家,希望你们也能有所收获。另外,不要忘了文末还有补充哦! -> -> ps: 这里发一篇枚举的文章,也是因为后面要发一篇非常实用的关于 SpringBoot 全局异常处理的比较好的实践,里面就用到了枚举。 -> -> 这篇文章由 JavaGuide 翻译,公众号: JavaGuide,原文地址:https://www.baeldung.com/a-guide-to-java-enums 。 -> -> 转载请注明上面这段文字。 - -## 1.概览 - -在本文中,我们将看到什么是 Java 枚举,它们解决了哪些问题以及如何在实践中使用 Java 枚举实现一些设计模式。 - -enum关键字在 java5 中引入,表示一种特殊类型的类,其总是继承java.lang.Enum类,更多内容可以自行查看其[官方文档](https://docs.oracle.com/javase/6/docs/api/java/lang/Enum.html)。 - -枚举在很多时候会和常量拿来对比,可能因为本身我们大量实际使用枚举的地方就是为了替代常量。那么这种方式由什么优势呢? - -**以这种方式定义的常量使代码更具可读性,允许进行编译时检查,预先记录可接受值的列表,并避免由于传入无效值而引起的意外行为。** - -下面示例定义一个简单的枚举类型 pizza 订单的状态,共有三种 ORDERED, READY, DELIVERED状态: - -```java -package shuang.kou.enumdemo.enumtest; - -public enum PizzaStatus { - ORDERED, - READY, - DELIVERED; -} -``` - -**简单来说,我们通过上面的代码避免了定义常量,我们将所有和 pizza 订单的状态的常量都统一放到了一个枚举类型里面。** - -```java -System.out.println(PizzaStatus.ORDERED.name());//ORDERED -System.out.println(PizzaStatus.ORDERED);//ORDERED -System.out.println(PizzaStatus.ORDERED.name().getClass());//class java.lang.String -System.out.println(PizzaStatus.ORDERED.getClass());//class shuang.kou.enumdemo.enumtest.PizzaStatus -``` - -## 2.自定义枚举方法 - -现在我们对枚举是什么以及如何使用它们有了基本的了解,让我们通过在枚举上定义一些额外的API方法,将上一个示例提升到一个新的水平: - -```java -public class Pizza { - private PizzaStatus status; - public enum PizzaStatus { - ORDERED, - READY, - DELIVERED; - } - - public boolean isDeliverable() { - return getStatus() == PizzaStatus.READY; - } - - // Methods that set and get the status variable. -} -``` - -## 3.使用 == 比较枚举类型 - -由于枚举类型确保JVM中仅存在一个常量实例,因此我们可以安全地使用 `==` 运算符比较两个变量,如上例所示;此外,`==` 运算符可提供编译时和运行时的安全性。 - -首先,让我们看一下以下代码段中的运行时安全性,其中 `==` 运算符用于比较状态,并且如果两个值均为null 都不会引发 NullPointerException。相反,如果使用equals方法,将抛出 NullPointerException: - -```java -Pizza.PizzaStatus pizza = null; -System.out.println(pizza.equals(Pizza.PizzaStatus.DELIVERED));//空指针异常 -System.out.println(pizza == Pizza.PizzaStatus.DELIVERED);//正常运行 -``` - -对于编译时安全性,我们看另一个示例,两个不同枚举类型进行比较: - -```java -if (Pizza.PizzaStatus.DELIVERED.equals(TestColor.GREEN)); // 编译正常 -if (Pizza.PizzaStatus.DELIVERED == TestColor.GREEN); // 编译失败,类型不匹配 -``` - -## 4.在 switch 语句中使用枚举类型 - -```java -public int getDeliveryTimeInDays() { - switch (status) { - case ORDERED: - return 5; - case READY: - return 2; - case DELIVERED: - return 0; - } - return 0; -} -``` - -## 5.枚举类型的属性,方法和构造函数 - -> 文末有我(JavaGuide)的补充。 - -你可以通过在枚举类型中定义属性,方法和构造函数让它变得更加强大。 - -下面,让我们扩展上面的示例,实现从比萨的一个阶段到另一个阶段的过渡,并了解如何摆脱之前使用的if语句和switch语句: - -```java -public class Pizza { - - private PizzaStatus status; - public enum PizzaStatus { - ORDERED (5){ - @Override - public boolean isOrdered() { - return true; - } - }, - READY (2){ - @Override - public boolean isReady() { - return true; - } - }, - DELIVERED (0){ - @Override - public boolean isDelivered() { - return true; - } - }; - - private int timeToDelivery; - - public boolean isOrdered() {return false;} - - public boolean isReady() {return false;} - - public boolean isDelivered(){return false;} - - public int getTimeToDelivery() { - return timeToDelivery; - } - - PizzaStatus (int timeToDelivery) { - this.timeToDelivery = timeToDelivery; - } - } - - public boolean isDeliverable() { - return this.status.isReady(); - } - - public void printTimeToDeliver() { - System.out.println("Time to delivery is " + - this.getStatus().getTimeToDelivery()); - } - - // Methods that set and get the status variable. -} -``` - -下面这段代码展示它是如何 work 的: - -```java -@Test -public void givenPizaOrder_whenReady_thenDeliverable() { - Pizza testPz = new Pizza(); - testPz.setStatus(Pizza.PizzaStatus.READY); - assertTrue(testPz.isDeliverable()); -} -``` - -## 6.EnumSet and EnumMap - -### 6.1. EnumSet - -`EnumSet` 是一种专门为枚举类型所设计的 `Set` 类型。 - -与`HashSet`相比,由于使用了内部位向量表示,因此它是特定 `Enum` 常量集的非常有效且紧凑的表示形式。 - -它提供了类型安全的替代方法,以替代传统的基于int的“位标志”,使我们能够编写更易读和易于维护的简洁代码。 - -`EnumSet` 是抽象类,其有两个实现:`RegularEnumSet` 、`JumboEnumSet`,选择哪一个取决于实例化时枚举中常量的数量。 - -在很多场景中的枚举常量集合操作(如:取子集、增加、删除、`containsAll`和`removeAll`批操作)使用`EnumSet`非常合适;如果需要迭代所有可能的常量则使用`Enum.values()`。 - -```java -public class Pizza { - - private static EnumSet undeliveredPizzaStatuses = - EnumSet.of(PizzaStatus.ORDERED, PizzaStatus.READY); - - private PizzaStatus status; - - public enum PizzaStatus { - ... - } - - public boolean isDeliverable() { - return this.status.isReady(); - } - - public void printTimeToDeliver() { - System.out.println("Time to delivery is " + - this.getStatus().getTimeToDelivery() + " days"); - } - - public static List getAllUndeliveredPizzas(List input) { - return input.stream().filter( - (s) -> undeliveredPizzaStatuses.contains(s.getStatus())) - .collect(Collectors.toList()); - } - - public void deliver() { - if (isDeliverable()) { - PizzaDeliverySystemConfiguration.getInstance().getDeliveryStrategy() - .deliver(this); - this.setStatus(PizzaStatus.DELIVERED); - } - } - - // Methods that set and get the status variable. -} -``` - - 下面的测试演示了展示了 `EnumSet` 在某些场景下的强大功能: - -```java -@Test -public void givenPizaOrders_whenRetrievingUnDeliveredPzs_thenCorrectlyRetrieved() { - List pzList = new ArrayList<>(); - Pizza pz1 = new Pizza(); - pz1.setStatus(Pizza.PizzaStatus.DELIVERED); - - Pizza pz2 = new Pizza(); - pz2.setStatus(Pizza.PizzaStatus.ORDERED); - - Pizza pz3 = new Pizza(); - pz3.setStatus(Pizza.PizzaStatus.ORDERED); - - Pizza pz4 = new Pizza(); - pz4.setStatus(Pizza.PizzaStatus.READY); - - pzList.add(pz1); - pzList.add(pz2); - pzList.add(pz3); - pzList.add(pz4); - - List undeliveredPzs = Pizza.getAllUndeliveredPizzas(pzList); - assertTrue(undeliveredPzs.size() == 3); -} -``` - -### 6.2. EnumMap - -`EnumMap`是一个专门化的映射实现,用于将枚举常量用作键。与对应的 `HashMap` 相比,它是一个高效紧凑的实现,并且在内部表示为一个数组: - -```java -EnumMap map; -``` - -让我们快速看一个真实的示例,该示例演示如何在实践中使用它: - -```java -Iterator iterator = pizzaList.iterator(); -while (iterator.hasNext()) { - Pizza pz = iterator.next(); - PizzaStatus status = pz.getStatus(); - if (pzByStatus.containsKey(status)) { - pzByStatus.get(status).add(pz); - } else { - List newPzList = new ArrayList<>(); - newPzList.add(pz); - pzByStatus.put(status, newPzList); - } -} -``` - - 下面的测试演示了展示了 `EnumMap` 在某些场景下的强大功能: - -```java -@Test -public void givenPizaOrders_whenGroupByStatusCalled_thenCorrectlyGrouped() { - List pzList = new ArrayList<>(); - Pizza pz1 = new Pizza(); - pz1.setStatus(Pizza.PizzaStatus.DELIVERED); - - Pizza pz2 = new Pizza(); - pz2.setStatus(Pizza.PizzaStatus.ORDERED); - - Pizza pz3 = new Pizza(); - pz3.setStatus(Pizza.PizzaStatus.ORDERED); - - Pizza pz4 = new Pizza(); - pz4.setStatus(Pizza.PizzaStatus.READY); - - pzList.add(pz1); - pzList.add(pz2); - pzList.add(pz3); - pzList.add(pz4); - - EnumMap> map = Pizza.groupPizzaByStatus(pzList); - assertTrue(map.get(Pizza.PizzaStatus.DELIVERED).size() == 1); - assertTrue(map.get(Pizza.PizzaStatus.ORDERED).size() == 2); - assertTrue(map.get(Pizza.PizzaStatus.READY).size() == 1); -} -``` - -## 7. 通过枚举实现一些设计模式 - -### 7.1 单例模式 - -通常,使用类实现 Singleton 模式并非易事,枚举提供了一种实现单例的简便方法。 - -《Effective Java 》和《Java与模式》都非常推荐这种方式,使用这种方式方式实现枚举可以有什么好处呢? - -《Effective Java》 - -> 这种方法在功能上与公有域方法相近,但是它更加简洁,无偿提供了序列化机制,绝对防止多次实例化,即使是在面对复杂序列化或者反射攻击的时候。虽然这种方法还没有广泛采用,但是单元素的枚举类型已经成为实现 Singleton的最佳方法。 —-《Effective Java 中文版 第二版》 - -《Java与模式》 - -> 《Java与模式》中,作者这样写道,使用枚举来实现单实例控制会更加简洁,而且无偿地提供了序列化机制,并由JVM从根本上提供保障,绝对防止多次实例化,是更简洁、高效、安全的实现单例的方式。 - -下面的代码段显示了如何使用枚举实现单例模式: - -```java -public enum PizzaDeliverySystemConfiguration { - INSTANCE; - PizzaDeliverySystemConfiguration() { - // Initialization configuration which involves - // overriding defaults like delivery strategy - } - - private PizzaDeliveryStrategy deliveryStrategy = PizzaDeliveryStrategy.NORMAL; - - public static PizzaDeliverySystemConfiguration getInstance() { - return INSTANCE; - } - - public PizzaDeliveryStrategy getDeliveryStrategy() { - return deliveryStrategy; - } -} -``` - -如何使用呢?请看下面的代码: - -```java -PizzaDeliveryStrategy deliveryStrategy = PizzaDeliverySystemConfiguration.getInstance().getDeliveryStrategy(); -``` - -通过 `PizzaDeliverySystemConfiguration.getInstance()` 获取的就是单例的 `PizzaDeliverySystemConfiguration` - -### 7.2 策略模式 - -通常,策略模式由不同类实现同一个接口来实现的。 - - 这也就意味着添加新策略意味着添加新的实现类。使用枚举,可以轻松完成此任务,添加新的实现意味着只定义具有某个实现的另一个实例。 - -下面的代码段显示了如何使用枚举实现策略模式: - -```java -public enum PizzaDeliveryStrategy { - EXPRESS { - @Override - public void deliver(Pizza pz) { - System.out.println("Pizza will be delivered in express mode"); - } - }, - NORMAL { - @Override - public void deliver(Pizza pz) { - System.out.println("Pizza will be delivered in normal mode"); - } - }; - - public abstract void deliver(Pizza pz); -} -``` - -给 `Pizza `增加下面的方法: - -```java -public void deliver() { - if (isDeliverable()) { - PizzaDeliverySystemConfiguration.getInstance().getDeliveryStrategy() - .deliver(this); - this.setStatus(PizzaStatus.DELIVERED); - } -} -``` - -如何使用呢?请看下面的代码: - -```java -@Test -public void givenPizaOrder_whenDelivered_thenPizzaGetsDeliveredAndStatusChanges() { - Pizza pz = new Pizza(); - pz.setStatus(Pizza.PizzaStatus.READY); - pz.deliver(); - assertTrue(pz.getStatus() == Pizza.PizzaStatus.DELIVERED); -} -``` - -## 8. Java 8 与枚举 - -Pizza 类可以用Java 8重写,您可以看到方法 lambda 和Stream API如何使 `getAllUndeliveredPizzas()`和`groupPizzaByStatus()`方法变得如此简洁: - -`getAllUndeliveredPizzas()`: - -```java -public static List getAllUndeliveredPizzas(List input) { - return input.stream().filter( - (s) -> !deliveredPizzaStatuses.contains(s.getStatus())) - .collect(Collectors.toList()); -} -``` - -`groupPizzaByStatus()` : - -```java -public static EnumMap> - groupPizzaByStatus(List pzList) { - EnumMap> map = pzList.stream().collect( - Collectors.groupingBy(Pizza::getStatus, - () -> new EnumMap<>(PizzaStatus.class), Collectors.toList())); - return map; -} -``` - -## 9. Enum 类型的 JSON 表现形式 - -使用Jackson库,可以将枚举类型的JSON表示为POJO。下面的代码段显示了可以用于同一目的的Jackson批注: - -```java -@JsonFormat(shape = JsonFormat.Shape.OBJECT) -public enum PizzaStatus { - ORDERED (5){ - @Override - public boolean isOrdered() { - return true; - } - }, - READY (2){ - @Override - public boolean isReady() { - return true; - } - }, - DELIVERED (0){ - @Override - public boolean isDelivered() { - return true; - } - }; - - private int timeToDelivery; - - public boolean isOrdered() {return false;} - - public boolean isReady() {return false;} - - public boolean isDelivered(){return false;} - - @JsonProperty("timeToDelivery") - public int getTimeToDelivery() { - return timeToDelivery; - } - - private PizzaStatus (int timeToDelivery) { - this.timeToDelivery = timeToDelivery; - } -} -``` - -我们可以按如下方式使用 `Pizza` 和 `PizzaStatus`: - -```java -Pizza pz = new Pizza(); -pz.setStatus(Pizza.PizzaStatus.READY); -System.out.println(Pizza.getJsonString(pz)); -``` - -生成 Pizza 状态以以下JSON展示: - -```json -{ - "status" : { - "timeToDelivery" : 2, - "ready" : true, - "ordered" : false, - "delivered" : false - }, - "deliverable" : true -} -``` - -有关枚举类型的JSON序列化/反序列化(包括自定义)的更多信息,请参阅[Jackson-将枚举序列化为JSON对象。](https://www.baeldung.com/jackson-serialize-enums) - -## 10.总结 - -本文我们讨论了Java枚举类型,从基础知识到高级应用以及实际应用场景,让我们感受到枚举的强大功能。 - -## 11. 补充 - -我们在上面讲到了,我们可以通过在枚举类型中定义属性,方法和构造函数让它变得更加强大。 - -下面我通过一个实际的例子展示一下,当我们调用短信验证码的时候可能有几种不同的用途,我们在下面这样定义: - -```java - -public enum PinType { - - REGISTER(100000, "注册使用"), - FORGET_PASSWORD(100001, "忘记密码使用"), - UPDATE_PHONE_NUMBER(100002, "更新手机号码使用"); - - private final int code; - private final String message; - - PinType(int code, String message) { - this.code = code; - this.message = message; - } - - public int getCode() { - return code; - } - - public String getMessage() { - return message; - } - - @Override - public String toString() { - return "PinType{" + - "code=" + code + - ", message='" + message + '\'' + - '}'; - } -} -``` - -实际使用: - - ```java -System.out.println(PinType.FORGET_PASSWORD.getCode()); -System.out.println(PinType.FORGET_PASSWORD.getMessage()); -System.out.println(PinType.FORGET_PASSWORD.toString()); - ``` - -Output: - -```java -100001 -忘记密码使用 -PinType{code=100001, message='忘记密码使用'} -``` - -这样的话,在实际使用起来就会非常灵活方便! \ No newline at end of file diff --git "a/docs/java/collection/LinkedList\346\272\220\347\240\201\345\210\206\346\236\220.md" "b/docs/java/collection/LinkedList\346\272\220\347\240\201\345\210\206\346\236\220.md" deleted file mode 100644 index a8159a34367..00000000000 --- "a/docs/java/collection/LinkedList\346\272\220\347\240\201\345\210\206\346\236\220.md" +++ /dev/null @@ -1,517 +0,0 @@ - - - -- [简介](#简介) -- [内部结构分析](#内部结构分析) -- [LinkedList源码分析](#linkedlist源码分析) - - [构造方法](#构造方法) - - [添加(add)方法](#add方法) - - [根据位置取数据的方法](#根据位置取数据的方法) - - [根据对象得到索引的方法](#根据对象得到索引的方法) - - [检查链表是否包含某对象的方法:](#检查链表是否包含某对象的方法:) - - [删除(remove/pop)方法](#删除方法) -- [LinkedList类常用方法测试:](#linkedlist类常用方法测试) - - - -## 简介 -LinkedList是一个实现了List接口Deque接口双端链表。 -LinkedList底层的链表结构使它支持高效的插入和删除操作,另外它实现了Deque接口,使得LinkedList类也具有队列的特性; -LinkedList不是线程安全的,如果想使LinkedList变成线程安全的,可以调用静态类Collections类中的synchronizedList方法: -```java -List list=Collections.synchronizedList(new LinkedList(...)); -``` -## 内部结构分析 -**如下图所示:** - -![LinkedList内部结构](images/linkedlist/LinkedList内部结构.png) -看完了图之后,我们再看LinkedList类中的一个**内部私有类Node**就很好理解了: - -```java -private static class Node { - E item;//节点值 - Node next;//后继节点 - Node prev;//前驱节点 - - Node(Node prev, E element, Node next) { - this.item = element; - this.next = next; - this.prev = prev; - } - } -``` -这个类就代表双端链表的节点Node。这个类有三个属性,分别是前驱节点,本节点的值,后继结点。 - -## LinkedList源码分析 -### 构造方法 -**空构造方法:** -```java - public LinkedList() { - } -``` -**用已有的集合创建链表的构造方法:** -```java - public LinkedList(Collection c) { - this(); - addAll(c); - } -``` -### add方法 -**add(E e)** 方法:将元素添加到链表尾部 -```java -public boolean add(E e) { - linkLast(e);//这里就只调用了这一个方法 - return true; - } -``` - -```java - /** - * 链接使e作为最后一个元素。 - */ - void linkLast(E e) { - final Node l = last; - final Node newNode = new Node<>(l, e, null); - last = newNode;//新建节点 - if (l == null) - first = newNode; - else - l.next = newNode;//指向后继元素也就是指向下一个元素 - size++; - modCount++; - } -``` -**add(int index,E e)**:在指定位置添加元素 -```java -public void add(int index, E element) { - checkPositionIndex(index); //检查索引是否处于[0-size]之间 - - if (index == size)//添加在链表尾部 - linkLast(element); - else//添加在链表中间 - linkBefore(element, node(index)); - } -``` -linkBefore方法需要给定两个参数,一个插入节点的值,一个指定的node,所以我们又调用了Node(index)去找到index对应的node - -**addAll(Collection c ):将集合插入到链表尾部** - -```java -public boolean addAll(Collection c) { - return addAll(size, c); - } -``` -**addAll(int index, Collection c):** 将集合从指定位置开始插入 -```java -public boolean addAll(int index, Collection c) { - //1:检查index范围是否在size之内 - checkPositionIndex(index); - - //2:toArray()方法把集合的数据存到对象数组中 - Object[] a = c.toArray(); - int numNew = a.length; - if (numNew == 0) - return false; - - //3:得到插入位置的前驱节点和后继节点 - Node pred, succ; - //如果插入位置为尾部,前驱节点为last,后继节点为null - if (index == size) { - succ = null; - pred = last; - } - //否则,调用node()方法得到后继节点,再得到前驱节点 - else { - succ = node(index); - pred = succ.prev; - } - - // 4:遍历数据将数据插入 - for (Object o : a) { - @SuppressWarnings("unchecked") E e = (E) o; - //创建新节点 - Node newNode = new Node<>(pred, e, null); - //如果插入位置在链表头部 - if (pred == null) - first = newNode; - else - pred.next = newNode; - pred = newNode; - } - - //如果插入位置在尾部,重置last节点 - if (succ == null) { - last = pred; - } - //否则,将插入的链表与先前链表连接起来 - else { - pred.next = succ; - succ.prev = pred; - } - - size += numNew; - modCount++; - return true; - } -``` -上面可以看出addAll方法通常包括下面四个步骤: -1. 检查index范围是否在size之内 -2. toArray()方法把集合的数据存到对象数组中 -3. 得到插入位置的前驱和后继节点 -4. 遍历数据,将数据插入到指定位置 - -**addFirst(E e):** 将元素添加到链表头部 -```java - public void addFirst(E e) { - linkFirst(e); - } -``` -```java -private void linkFirst(E e) { - final Node f = first; - final Node newNode = new Node<>(null, e, f);//新建节点,以头节点为后继节点 - first = newNode; - //如果链表为空,last节点也指向该节点 - if (f == null) - last = newNode; - //否则,将头节点的前驱指针指向新节点,也就是指向前一个元素 - else - f.prev = newNode; - size++; - modCount++; - } -``` -**addLast(E e):** 将元素添加到链表尾部,与 **add(E e)** 方法一样 -```java -public void addLast(E e) { - linkLast(e); - } -``` -### 根据位置取数据的方法 -**get(int index):** 根据指定索引返回数据 -```java -public E get(int index) { - //检查index范围是否在size之内 - checkElementIndex(index); - //调用Node(index)去找到index对应的node然后返回它的值 - return node(index).item; - } -``` -**获取头节点(index=0)数据方法:** -```java -public E getFirst() { - final Node f = first; - if (f == null) - throw new NoSuchElementException(); - return f.item; - } -public E element() { - return getFirst(); - } -public E peek() { - final Node f = first; - return (f == null) ? null : f.item; - } - -public E peekFirst() { - final Node f = first; - return (f == null) ? null : f.item; - } -``` -**区别:** -getFirst(),element(),peek(),peekFirst() -这四个获取头结点方法的区别在于对链表为空时的处理,是抛出异常还是返回null,其中**getFirst()** 和**element()** 方法将会在链表为空时,抛出异常 - -element()方法的内部就是使用getFirst()实现的。它们会在链表为空时,抛出NoSuchElementException -**获取尾节点(index=-1)数据方法:** -```java - public E getLast() { - final Node l = last; - if (l == null) - throw new NoSuchElementException(); - return l.item; - } - public E peekLast() { - final Node l = last; - return (l == null) ? null : l.item; - } -``` -**两者区别:** -**getLast()** 方法在链表为空时,会抛出**NoSuchElementException**,而**peekLast()** 则不会,只是会返回 **null**。 -### 根据对象得到索引的方法 -**int indexOf(Object o):** 从头遍历找 -```java -public int indexOf(Object o) { - int index = 0; - if (o == null) { - //从头遍历 - for (Node x = first; x != null; x = x.next) { - if (x.item == null) - return index; - index++; - } - } else { - //从头遍历 - for (Node x = first; x != null; x = x.next) { - if (o.equals(x.item)) - return index; - index++; - } - } - return -1; - } -``` -**int lastIndexOf(Object o):** 从尾遍历找 -```java -public int lastIndexOf(Object o) { - int index = size; - if (o == null) { - //从尾遍历 - for (Node x = last; x != null; x = x.prev) { - index--; - if (x.item == null) - return index; - } - } else { - //从尾遍历 - for (Node x = last; x != null; x = x.prev) { - index--; - if (o.equals(x.item)) - return index; - } - } - return -1; - } -``` -### 检查链表是否包含某对象的方法: -**contains(Object o):** 检查对象o是否存在于链表中 -```java - public boolean contains(Object o) { - return indexOf(o) != -1; - } -``` -### 删除方法 -**remove()** ,**removeFirst(),pop():** 删除头节点 -``` -public E pop() { - return removeFirst(); - } -public E remove() { - return removeFirst(); - } -public E removeFirst() { - final Node f = first; - if (f == null) - throw new NoSuchElementException(); - return unlinkFirst(f); - } -``` -**removeLast(),pollLast():** 删除尾节点 -```java -public E removeLast() { - final Node l = last; - if (l == null) - throw new NoSuchElementException(); - return unlinkLast(l); - } -public E pollLast() { - final Node l = last; - return (l == null) ? null : unlinkLast(l); - } -``` -**区别:** removeLast()在链表为空时将抛出NoSuchElementException,而pollLast()方法返回null。 - -**remove(Object o):** 删除指定元素 -```java -public boolean remove(Object o) { - //如果删除对象为null - if (o == null) { - //从头开始遍历 - for (Node x = first; x != null; x = x.next) { - //找到元素 - if (x.item == null) { - //从链表中移除找到的元素 - unlink(x); - return true; - } - } - } else { - //从头开始遍历 - for (Node x = first; x != null; x = x.next) { - //找到元素 - if (o.equals(x.item)) { - //从链表中移除找到的元素 - unlink(x); - return true; - } - } - } - return false; - } -``` -当删除指定对象时,只需调用remove(Object o)即可,不过该方法一次只会删除一个匹配的对象,如果删除了匹配对象,返回true,否则false。 - -unlink(Node x) 方法: -```java -E unlink(Node x) { - // assert x != null; - final E element = x.item; - final Node next = x.next;//得到后继节点 - final Node prev = x.prev;//得到前驱节点 - - //删除前驱指针 - if (prev == null) { - first = next;//如果删除的节点是头节点,令头节点指向该节点的后继节点 - } else { - prev.next = next;//将前驱节点的后继节点指向后继节点 - x.prev = null; - } - - //删除后继指针 - if (next == null) { - last = prev;//如果删除的节点是尾节点,令尾节点指向该节点的前驱节点 - } else { - next.prev = prev; - x.next = null; - } - - x.item = null; - size--; - modCount++; - return element; - } -``` -**remove(int index)**:删除指定位置的元素 -```java -public E remove(int index) { - //检查index范围 - checkElementIndex(index); - //将节点删除 - return unlink(node(index)); - } -``` -## LinkedList类常用方法测试 - -```java -package list; - -import java.util.Iterator; -import java.util.LinkedList; - -public class LinkedListDemo { - public static void main(String[] srgs) { - //创建存放int类型的linkedList - LinkedList linkedList = new LinkedList<>(); - /************************** linkedList的基本操作 ************************/ - linkedList.addFirst(0); // 添加元素到列表开头 - linkedList.add(1); // 在列表结尾添加元素 - linkedList.add(2, 2); // 在指定位置添加元素 - linkedList.addLast(3); // 添加元素到列表结尾 - - System.out.println("LinkedList(直接输出的): " + linkedList); - - System.out.println("getFirst()获得第一个元素: " + linkedList.getFirst()); // 返回此列表的第一个元素 - System.out.println("getLast()获得第最后一个元素: " + linkedList.getLast()); // 返回此列表的最后一个元素 - System.out.println("removeFirst()删除第一个元素并返回: " + linkedList.removeFirst()); // 移除并返回此列表的第一个元素 - System.out.println("removeLast()删除最后一个元素并返回: " + linkedList.removeLast()); // 移除并返回此列表的最后一个元素 - System.out.println("After remove:" + linkedList); - System.out.println("contains()方法判断列表是否包含1这个元素:" + linkedList.contains(1)); // 判断此列表包含指定元素,如果是,则返回true - System.out.println("该linkedList的大小 : " + linkedList.size()); // 返回此列表的元素个数 - - /************************** 位置访问操作 ************************/ - System.out.println("-----------------------------------------"); - linkedList.set(1, 3); // 将此列表中指定位置的元素替换为指定的元素 - System.out.println("After set(1, 3):" + linkedList); - System.out.println("get(1)获得指定位置(这里为1)的元素: " + linkedList.get(1)); // 返回此列表中指定位置处的元素 - - /************************** Search操作 ************************/ - System.out.println("-----------------------------------------"); - linkedList.add(3); - System.out.println("indexOf(3): " + linkedList.indexOf(3)); // 返回此列表中首次出现的指定元素的索引 - System.out.println("lastIndexOf(3): " + linkedList.lastIndexOf(3));// 返回此列表中最后出现的指定元素的索引 - - /************************** Queue操作 ************************/ - System.out.println("-----------------------------------------"); - System.out.println("peek(): " + linkedList.peek()); // 获取但不移除此列表的头 - System.out.println("element(): " + linkedList.element()); // 获取但不移除此列表的头 - linkedList.poll(); // 获取并移除此列表的头 - System.out.println("After poll():" + linkedList); - linkedList.remove(); - System.out.println("After remove():" + linkedList); // 获取并移除此列表的头 - linkedList.offer(4); - System.out.println("After offer(4):" + linkedList); // 将指定元素添加到此列表的末尾 - - /************************** Deque操作 ************************/ - System.out.println("-----------------------------------------"); - linkedList.offerFirst(2); // 在此列表的开头插入指定的元素 - System.out.println("After offerFirst(2):" + linkedList); - linkedList.offerLast(5); // 在此列表末尾插入指定的元素 - System.out.println("After offerLast(5):" + linkedList); - System.out.println("peekFirst(): " + linkedList.peekFirst()); // 获取但不移除此列表的第一个元素 - System.out.println("peekLast(): " + linkedList.peekLast()); // 获取但不移除此列表的第一个元素 - linkedList.pollFirst(); // 获取并移除此列表的第一个元素 - System.out.println("After pollFirst():" + linkedList); - linkedList.pollLast(); // 获取并移除此列表的最后一个元素 - System.out.println("After pollLast():" + linkedList); - linkedList.push(2); // 将元素推入此列表所表示的堆栈(插入到列表的头) - System.out.println("After push(2):" + linkedList); - linkedList.pop(); // 从此列表所表示的堆栈处弹出一个元素(获取并移除列表第一个元素) - System.out.println("After pop():" + linkedList); - linkedList.add(3); - linkedList.removeFirstOccurrence(3); // 从此列表中移除第一次出现的指定元素(从头部到尾部遍历列表) - System.out.println("After removeFirstOccurrence(3):" + linkedList); - linkedList.removeLastOccurrence(3); // 从此列表中移除最后一次出现的指定元素(从尾部到头部遍历列表) - System.out.println("After removeFirstOccurrence(3):" + linkedList); - - /************************** 遍历操作 ************************/ - System.out.println("-----------------------------------------"); - linkedList.clear(); - for (int i = 0; i < 100000; i++) { - linkedList.add(i); - } - // 迭代器遍历 - long start = System.currentTimeMillis(); - Iterator iterator = linkedList.iterator(); - while (iterator.hasNext()) { - iterator.next(); - } - long end = System.currentTimeMillis(); - System.out.println("Iterator:" + (end - start) + " ms"); - - // 顺序遍历(随机遍历) - start = System.currentTimeMillis(); - for (int i = 0; i < linkedList.size(); i++) { - linkedList.get(i); - } - end = System.currentTimeMillis(); - System.out.println("for:" + (end - start) + " ms"); - - // 另一种for循环遍历 - start = System.currentTimeMillis(); - for (Integer i : linkedList) - ; - end = System.currentTimeMillis(); - System.out.println("for2:" + (end - start) + " ms"); - - // 通过pollFirst()或pollLast()来遍历LinkedList - LinkedList temp1 = new LinkedList<>(); - temp1.addAll(linkedList); - start = System.currentTimeMillis(); - while (temp1.size() != 0) { - temp1.pollFirst(); - } - end = System.currentTimeMillis(); - System.out.println("pollFirst()或pollLast():" + (end - start) + " ms"); - - // 通过removeFirst()或removeLast()来遍历LinkedList - LinkedList temp2 = new LinkedList<>(); - temp2.addAll(linkedList); - start = System.currentTimeMillis(); - while (temp2.size() != 0) { - temp2.removeFirst(); - } - end = System.currentTimeMillis(); - System.out.println("removeFirst()或removeLast():" + (end - start) + " ms"); - } -} -``` diff --git "a/docs/java/collection/ArrayList\346\272\220\347\240\201+\346\211\251\345\256\271\346\234\272\345\210\266\345\210\206\346\236\220.md" b/docs/java/collection/arraylist-source-code.md similarity index 98% rename from "docs/java/collection/ArrayList\346\272\220\347\240\201+\346\211\251\345\256\271\346\234\272\345\210\266\345\210\206\346\236\220.md" rename to docs/java/collection/arraylist-source-code.md index 8a8c5298b60..36dfcbdbfc8 100644 --- "a/docs/java/collection/ArrayList\346\272\220\347\240\201+\346\211\251\345\256\271\346\234\272\345\210\266\345\210\206\346\236\220.md" +++ b/docs/java/collection/arraylist-source-code.md @@ -1,3 +1,11 @@ +--- +title: ArrayList 源码+扩容机制分析 +category: Java +tag: + - Java集合 +--- + + ## 1. ArrayList 简介 `ArrayList` 的底层是数组队列,相当于动态数组。与 Java 中的数组相比,它的容量能动态增长。在添加大量元素前,应用程序可以使用`ensureCapacity`操作来增加 `ArrayList` 实例的容量。这可以减少递增式再分配的数量。 @@ -14,7 +22,7 @@ public class ArrayList extends AbstractList - `RandomAccess` 是一个标志接口,表明实现这个这个接口的 List 集合是支持**快速随机访问**的。在 `ArrayList` 中,我们即可以通过元素的序号快速获取元素对象,这就是快速随机访问。 - `ArrayList` 实现了 **`Cloneable` 接口** ,即覆盖了函数`clone()`,能被克隆。 -- `ArrayList` 实现了 `java.io.Serializable `接口,这意味着`ArrayList`支持序列化,能通过序列化去传输。 +- `ArrayList` 实现了 `java.io.Serializable`接口,这意味着`ArrayList`支持序列化,能通过序列化去传输。 ### 1.1. Arraylist 和 Vector 的区别? @@ -594,9 +602,9 @@ public class ArrayList extends AbstractList ``` -细心的同学一定会发现 :**以无参数构造方法创建 ArrayList 时,实际上初始化赋值的是一个空数组。当真正对数组进行添加元素操作时,才真正分配容量。即向数组中添加第一个元素时,数组容量扩为 10。** 下面在我们分析 ArrayList 扩容时会讲到这一点内容! +细心的同学一定会发现 :**以无参数构造方法创建 `ArrayList` 时,实际上初始化赋值的是一个空数组。当真正对数组进行添加元素操作时,才真正分配容量。即向数组中添加第一个元素时,数组容量扩为 10。** 下面在我们分析 ArrayList 扩容时会讲到这一点内容! -> 补充:JDK7 new无参构造的ArrayList对象时,直接创建了长度是10的Object[]数组elementData 。jdk7中的ArrayList的对象的创建**类似于单例的饿汉式**,而jdk8中的ArrayList的对象的创建**类似于单例的懒汉式**。JDK8的内存优化也值得我们在平时开发中学习。 +> 补充:JDK6 new 无参构造的 `ArrayList` 对象时,直接创建了长度是 10 的 `Object[]` 数组 elementData 。 ### 3.2. 一步一步分析 ArrayList 扩容机制 @@ -751,6 +759,7 @@ public class ArrayList extends AbstractList ``` 场景: + ```java /** * 在此列表中的指定位置插入指定的元素。 diff --git "a/docs/java/collection/ConcurrentHashMap\346\272\220\347\240\201+\345\272\225\345\261\202\346\225\260\346\215\256\347\273\223\346\236\204\345\210\206\346\236\220.md" b/docs/java/collection/concurrent-hash-map-source-code.md similarity index 97% rename from "docs/java/collection/ConcurrentHashMap\346\272\220\347\240\201+\345\272\225\345\261\202\346\225\260\346\215\256\347\273\223\346\236\204\345\210\206\346\236\220.md" rename to docs/java/collection/concurrent-hash-map-source-code.md index cb5ce8185a4..6d765697df9 100644 --- "a/docs/java/collection/ConcurrentHashMap\346\272\220\347\240\201+\345\272\225\345\261\202\346\225\260\346\215\256\347\273\223\346\236\204\345\210\206\346\236\220.md" +++ b/docs/java/collection/concurrent-hash-map-source-code.md @@ -1,3 +1,11 @@ +--- +title: ConcurrentHashMap源码+底层数据结构分析 +category: Java +tag: + - Java集合 +--- + + > 本文来自公众号:末读代码的投稿,原文地址:https://mp.weixin.qq.com/s/AHWzboztt53ZfFZmsSnMSw 。 上一篇文章介绍了 HashMap 源码,反响不错,也有很多同学发表了自己的观点,这次又来了,这次是 `ConcurrentHashMap ` 了,作为线程安全的HashMap ,它的使用频率也是很高。那么它的存储结构和实现原理是怎么样的呢? @@ -6,9 +14,11 @@ ### 1. 存储结构 +> 下图存在一个笔误 Segmeng -> Segment + ![Java 7 ConcurrentHashMap 存储结构](./images/image-20200405151029416.png) -Java 7 中 ConcurrentHashMap 的存储结构如上图,ConcurrnetHashMap 由很多个 Segment 组合,而每一个 Segment 是一个类似于 HashMap 的结构,所以每一个 HashMap 的内部可以进行扩容。但是 Segment 的个数一旦**初始化就不能改变**,默认 Segment 的个数是 16 个,你也可以认为 ConcurrentHashMap 默认支持最多 16 个线程并发。 +Java 7 中 `ConcurrentHashMap` 的存储结构如上图,`ConcurrnetHashMap` 由很多个 `Segment` 组合,而每一个 `Segment` 是一个类似于 HashMap 的结构,所以每一个 `HashMap` 的内部可以进行扩容。但是 `Segment` 的个数一旦**初始化就不能改变**,默认 `Segment` 的个数是 16 个,你也可以认为 `ConcurrentHashMap` 默认支持最多 16 个线程并发。 ### 2. 初始化 diff --git "a/docs/java/collection/HashMap(JDK1.8)\346\272\220\347\240\201+\345\272\225\345\261\202\346\225\260\346\215\256\347\273\223\346\236\204\345\210\206\346\236\220.md" b/docs/java/collection/hashmap-source-code.md similarity index 97% rename from "docs/java/collection/HashMap(JDK1.8)\346\272\220\347\240\201+\345\272\225\345\261\202\346\225\260\346\215\256\347\273\223\346\236\204\345\210\206\346\236\220.md" rename to docs/java/collection/hashmap-source-code.md index e78ba116057..7996b2766d1 100644 --- "a/docs/java/collection/HashMap(JDK1.8)\346\272\220\347\240\201+\345\272\225\345\261\202\346\225\260\346\215\256\347\273\223\346\236\204\345\210\206\346\236\220.md" +++ b/docs/java/collection/hashmap-source-code.md @@ -1,19 +1,9 @@ - - - - -- [HashMap 简介](#hashmap-简介) -- [底层数据结构分析](#底层数据结构分析) - - [JDK1.8 之前](#jdk18-之前) - - [JDK1.8 之后](#jdk18-之后) -- [HashMap 源码分析](#hashmap-源码分析) - - [构造方法](#构造方法) - - [put 方法](#put-方法) - - [get 方法](#get-方法) - - [resize 方法](#resize-方法) -- [HashMap 常用方法测试](#hashmap-常用方法测试) - - +--- +title: HashMap源码+底层数据结构分析 +category: Java +tag: + - Java集合 +--- > 感谢 [changfubai](https://github.com/changfubai) 对本文的改进做出的贡献! diff --git a/docs/java/collection/images/java-collection-hierarchy.png b/docs/java/collection/images/java-collection-hierarchy.png new file mode 100644 index 00000000000..78daf980845 Binary files /dev/null and b/docs/java/collection/images/java-collection-hierarchy.png differ diff --git "a/docs/java/collection/java\351\233\206\345\220\210\344\275\277\347\224\250\346\263\250\346\204\217\344\272\213\351\241\271.md" "b/docs/java/collection/java\351\233\206\345\220\210\344\275\277\347\224\250\346\263\250\346\204\217\344\272\213\351\241\271.md" new file mode 100644 index 00000000000..6a65c33a264 --- /dev/null +++ "b/docs/java/collection/java\351\233\206\345\220\210\344\275\277\347\224\250\346\263\250\346\204\217\344\272\213\351\241\271.md" @@ -0,0 +1,439 @@ +--- +title: Java集合使用注意事项总结 +category: Java +tag: + - Java集合 +--- + +这篇文章我根据《阿里巴巴 Java 开发手册》总结了关于集合使用常见的注意事项以及其具体原理。 + +强烈建议小伙伴们多多阅读几遍,避免自己写代码的时候出现这些低级的问题。 + +## 集合判空 + +《阿里巴巴 Java 开发手册》的描述如下: + +> **判断所有集合内部的元素是否为空,使用 `isEmpty()` 方法,而不是 `size()==0` 的方式。** + +这是因为 `isEmpty()` 方法的可读性更好,并且时间复杂度为 O(1)。 + +绝大部分我们使用的集合的 `size()` 方法的时间复杂度也是 O(1),不过,也有很多复杂度不是 O(1) 的,比如 `java.util.concurrent` 包下的某些集合(`ConcurrentLinkedQueue` 、`ConcurrentHashMap`...)。 + +下面是 `ConcurrentHashMap` 的 `size()` 方法和 `isEmpty()` 方法的源码。 + +```java +public int size() { + long n = sumCount(); + return ((n < 0L) ? 0 : + (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE : + (int)n); +} +final long sumCount() { + CounterCell[] as = counterCells; CounterCell a; + long sum = baseCount; + if (as != null) { + for (int i = 0; i < as.length; ++i) { + if ((a = as[i]) != null) + sum += a.value; + } + } + return sum; +} +public boolean isEmpty() { + return sumCount() <= 0L; // ignore transient negative values +} +``` + +## 集合转 Map + +《阿里巴巴 Java 开发手册》的描述如下: + +> **在使用 `java.util.stream.Collectors` 类的 `toMap()` 方法转为 `Map` 集合时,一定要注意当 value 为 null 时会抛 NPE 异常。** + +```java +class Person { + private String name; + private String phoneNumber; + // getters and setters +} + +List bookList = new ArrayList<>(); +bookList.add(new Person("jack","18163138123")); +bookList.add(new Person("martin",null)); +// 空指针异常 +bookList.stream().collect(Collectors.toMap(Person::getName, Person::getPhoneNumber)); +``` + +下面我们来解释一下原因。 + +首先,我们来看 `java.util.stream.Collectors` 类的 `toMap()` 方法 ,可以看到其内部调用了 `Map` 接口的 `merge()` 方法。 + +```java +public static > +Collector toMap(Function keyMapper, + Function valueMapper, + BinaryOperator mergeFunction, + Supplier mapSupplier) { + BiConsumer accumulator + = (map, element) -> map.merge(keyMapper.apply(element), + valueMapper.apply(element), mergeFunction); + return new CollectorImpl<>(mapSupplier, accumulator, mapMerger(mergeFunction), CH_ID); +} +``` + +`Map` 接口的 `merge()` 方法如下,这个方法是接口中的默认实现。 + +> 如果你还不了解 Java 8 新特性的话,请看这篇文章:[《Java8 新特性总结》](https://mp.weixin.qq.com/s/ojyl7B6PiHaTWADqmUq2rw) 。 + +```java +default V merge(K key, V value, + BiFunction remappingFunction) { + Objects.requireNonNull(remappingFunction); + Objects.requireNonNull(value); + V oldValue = get(key); + V newValue = (oldValue == null) ? value : + remappingFunction.apply(oldValue, value); + if(newValue == null) { + remove(key); + } else { + put(key, newValue); + } + return newValue; +} +``` + +`merge()` 方法会先调用 `Objects.requireNonNull()` 方法判断 value 是否为空。 + +```java +public static T requireNonNull(T obj) { + if (obj == null) + throw new NullPointerException(); + return obj; +} +``` + +## 集合遍历 + +《阿里巴巴 Java 开发手册》的描述如下: + +> **不要在 foreach 循环里进行元素的 `remove/add` 操作。remove 元素请使用 `Iterator` 方式,如果并发操作,需要对 `Iterator` 对象加锁。** + +通过反编译你会发现 foreach 语法糖底层其实还是依赖 `Iterator` 。不过, `remove/add` 操作直接调用的是集合自己的方法,而不是 `Iterator` 的 `remove/add`方法 + +这就导致 `Iterator` 莫名其妙地发现自己有元素被 `remove/add` ,然后,它就会抛出一个 `ConcurrentModificationException` 来提示用户发生了并发修改异常。这就是单线程状态下产生的 **fail-fast 机制**。 + +> **fail-fast 机制** :多个线程对 fail-fast 集合进行修改的时候,可能会抛出`ConcurrentModificationException`。 即使是单线程下也有可能会出现这种情况,上面已经提到过。 + +Java8 开始,可以使用 `Collection#removeIf()`方法删除满足特定条件的元素,如 + +```java +List list = new ArrayList<>(); +for (int i = 1; i <= 10; ++i) { + list.add(i); +} +list.removeIf(filter -> filter % 2 == 0); /* 删除list中的所有偶数 */ +System.out.println(list); /* [1, 3, 5, 7, 9] */ +``` + +除了上面介绍的直接使用 `Iterator` 进行遍历操作之外,你还可以: + +- 使用普通的 for 循环 +- 使用 fail-safe 的集合类。`java.util`包下面的所有的集合类都是 fail-fast 的,而`java.util.concurrent`包下面的所有的类都是 fail-safe 的。 +- ...... + +## 集合去重 + +《阿里巴巴 Java 开发手册》的描述如下: + +> **可以利用 `Set` 元素唯一的特性,可以快速对一个集合进行去重操作,避免使用 `List` 的 `contains()` 进行遍历去重或者判断包含操作。** + +这里我们以 `HashSet` 和 `ArrayList` 为例说明。 + +```java +// Set 去重代码示例 +public static Set removeDuplicateBySet(List data) { + + if (CollectionUtils.isEmpty(data)) { + return new HashSet<>(); + } + return new HashSet<>(data); +} + +// List 去重代码示例 +public static List removeDuplicateByList(List data) { + + if (CollectionUtils.isEmpty(data)) { + return new ArrayList<>(); + + } + List result = new ArrayList<>(data.size()); + for (T current : data) { + if (!result.contains(current)) { + result.add(current); + } + } + return result; +} + +``` + +两者的核心差别在于 `contains()` 方法的实现。 + +`HashSet` 的 `contains()` 方法底部依赖的 `HashMap` 的 `containsKey()` 方法,时间复杂度接近于 O(1)(没有出现哈希冲突的时候为 O(1))。 + +```java +private transient HashMap map; +public boolean contains(Object o) { + return map.containsKey(o); +} +``` + +我们有 N 个元素插入进 Set 中,那时间复杂度就接近是 O (n)。 + +`ArrayList` 的 `contains()` 方法是通过遍历所有元素的方法来做的,时间复杂度接近是 O(n)。 + +```java +public boolean contains(Object o) { + return indexOf(o) >= 0; +} +public int indexOf(Object o) { + if (o == null) { + for (int i = 0; i < size; i++) + if (elementData[i]==null) + return i; + } else { + for (int i = 0; i < size; i++) + if (o.equals(elementData[i])) + return i; + } + return -1; +} + +``` + +我们的 `List` 有 N 个元素,那时间复杂度就接近是 O (n^2)。 + +## 集合转数组 + +《阿里巴巴 Java 开发手册》的描述如下: + +> **使用集合转数组的方法,必须使用集合的 `toArray(T[] array)`,传入的是类型完全一致、长度为 0 的空数组。** + +`toArray(T[] array)` 方法的参数是一个泛型数组,如果 `toArray` 方法中没有传递任何参数的话返回的是 `Object`类 型数组。 + +```java +String [] s= new String[]{ + "dog", "lazy", "a", "over", "jumps", "fox", "brown", "quick", "A" +}; +List list = Arrays.asList(s); +Collections.reverse(list); +//没有指定类型的话会报错 +s=list.toArray(new String[0]); +``` + +由于 JVM 优化,`new String[0]`作为`Collection.toArray()`方法的参数现在使用更好,`new String[0]`就是起一个模板的作用,指定了返回数组的类型,0 是为了节省空间,因为它只是为了说明返回的类型。详见: + +## 数组转集合 + +《阿里巴巴 Java 开发手册》的描述如下: + +> **使用工具类 `Arrays.asList()` 把数组转换成集合时,不能使用其修改集合相关的方法, 它的 `add/remove/clear` 方法会抛出 `UnsupportedOperationException` 异常。** + +我在之前的一个项目中就遇到一个类似的坑。 + +`Arrays.asList()`在平时开发中还是比较常见的,我们可以使用它将一个数组转换为一个 `List` 集合。 + +```java +String[] myArray = {"Apple", "Banana", "Orange"}; +List myList = Arrays.asList(myArray); +//上面两个语句等价于下面一条语句 +List myList = Arrays.asList("Apple","Banana", "Orange"); +``` + +JDK 源码对于这个方法的说明: + +```java +/** + *返回由指定数组支持的固定大小的列表。此方法作为基于数组和基于集合的API之间的桥梁, + * 与 Collection.toArray()结合使用。返回的List是可序列化并实现RandomAccess接口。 + */ +public static List asList(T... a) { + return new ArrayList<>(a); +} +``` + +下面我们来总结一下使用注意事项。 + +**1、`Arrays.asList()`是泛型方法,传递的数组必须是对象数组,而不是基本类型。** + +```java +int[] myArray = {1, 2, 3}; +List myList = Arrays.asList(myArray); +System.out.println(myList.size());//1 +System.out.println(myList.get(0));//数组地址值 +System.out.println(myList.get(1));//报错:ArrayIndexOutOfBoundsException +int[] array = (int[]) myList.get(0); +System.out.println(array[0]);//1 +``` + +当传入一个原生数据类型数组时,`Arrays.asList()` 的真正得到的参数就不是数组中的元素,而是数组对象本身!此时 `List` 的唯一元素就是这个数组,这也就解释了上面的代码。 + +我们使用包装类型数组就可以解决这个问题。 + +```java +Integer[] myArray = {1, 2, 3}; +``` + +**2、使用集合的修改方法: `add()`、`remove()`、`clear()`会抛出异常。** + +```java +List myList = Arrays.asList(1, 2, 3); +myList.add(4);//运行时报错:UnsupportedOperationException +myList.remove(1);//运行时报错:UnsupportedOperationException +myList.clear();//运行时报错:UnsupportedOperationException +``` + +`Arrays.asList()` 方法返回的并不是 `java.util.ArrayList` ,而是 `java.util.Arrays` 的一个内部类,这个内部类并没有实现集合的修改方法或者说并没有重写这些方法。 + +```java +List myList = Arrays.asList(1, 2, 3); +System.out.println(myList.getClass());//class java.util.Arrays$ArrayList +``` + +下图是 `java.util.Arrays$ArrayList` 的简易源码,我们可以看到这个类重写的方法有哪些。 + +```java + private static class ArrayList extends AbstractList + implements RandomAccess, java.io.Serializable + { + ... + + @Override + public E get(int index) { + ... + } + + @Override + public E set(int index, E element) { + ... + } + + @Override + public int indexOf(Object o) { + ... + } + + @Override + public boolean contains(Object o) { + ... + } + + @Override + public void forEach(Consumer action) { + ... + } + + @Override + public void replaceAll(UnaryOperator operator) { + ... + } + + @Override + public void sort(Comparator c) { + ... + } + } +``` + +我们再看一下`java.util.AbstractList`的 `add/remove/clear` 方法就知道为什么会抛出 `UnsupportedOperationException` 了。 + +```java +public E remove(int index) { + throw new UnsupportedOperationException(); +} +public boolean add(E e) { + add(size(), e); + return true; +} +public void add(int index, E element) { + throw new UnsupportedOperationException(); +} + +public void clear() { + removeRange(0, size()); +} +protected void removeRange(int fromIndex, int toIndex) { + ListIterator it = listIterator(fromIndex); + for (int i=0, n=toIndex-fromIndex; i List arrayToList(final T[] array) { + final List l = new ArrayList(array.length); + + for (final T s : array) { + l.add(s); + } + return l; +} + + +Integer [] myArray = { 1, 2, 3 }; +System.out.println(arrayToList(myArray).getClass());//class java.util.ArrayList +``` + +2、最简便的方法 + +```java +List list = new ArrayList<>(Arrays.asList("a", "b", "c")) +``` + +3、使用 Java8 的 `Stream`(推荐) + +```java +Integer [] myArray = { 1, 2, 3 }; +List myList = Arrays.stream(myArray).collect(Collectors.toList()); +//基本类型也可以实现转换(依赖boxed的装箱操作) +int [] myArray2 = { 1, 2, 3 }; +List myList = Arrays.stream(myArray2).boxed().collect(Collectors.toList()); +``` + +4、使用 Guava + +对于不可变集合,你可以使用[`ImmutableList`](https://github.com/google/guava/blob/master/guava/src/com/google/common/collect/ImmutableList.java)类及其[`of()`](https://github.com/google/guava/blob/master/guava/src/com/google/common/collect/ImmutableList.java#L101)与[`copyOf()`](https://github.com/google/guava/blob/master/guava/src/com/google/common/collect/ImmutableList.java#L225)工厂方法:(参数不能为空) + +```java +List il = ImmutableList.of("string", "elements"); // from varargs +List il = ImmutableList.copyOf(aStringArray); // from array +``` + +对于可变集合,你可以使用[`Lists`](https://github.com/google/guava/blob/master/guava/src/com/google/common/collect/Lists.java)类及其[`newArrayList()`](https://github.com/google/guava/blob/master/guava/src/com/google/common/collect/Lists.java#L87)工厂方法: + +```java +List l1 = Lists.newArrayList(anotherListOrCollection); // from collection +List l2 = Lists.newArrayList(aStringArray); // from array +List l3 = Lists.newArrayList("or", "string", "elements"); // from varargs +``` + +5、使用 Apache Commons Collections + +```java +List list = new ArrayList(); +CollectionUtils.addAll(list, str); +``` + +6、 使用 Java9 的 `List.of()`方法 + +```java +Integer[] array = {1, 2, 3}; +List list = List.of(array); +``` \ No newline at end of file diff --git "a/docs/java/collection/Java\351\233\206\345\220\210\346\241\206\346\236\266\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230.md" "b/docs/java/collection/java\351\233\206\345\220\210\346\241\206\346\236\266\345\237\272\347\241\200\347\237\245\350\257\206&\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" similarity index 76% rename from "docs/java/collection/Java\351\233\206\345\220\210\346\241\206\346\236\266\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230.md" rename to "docs/java/collection/java\351\233\206\345\220\210\346\241\206\346\236\266\345\237\272\347\241\200\347\237\245\350\257\206&\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" index 2db5c4b13c9..1f901750654 100644 --- "a/docs/java/collection/Java\351\233\206\345\220\210\346\241\206\346\236\266\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230.md" +++ "b/docs/java/collection/java\351\233\206\345\220\210\346\241\206\346\236\266\345\237\272\347\241\200\347\237\245\350\257\206&\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" @@ -1,101 +1,67 @@ - - -- [1. 剖析面试最常见问题之 Java 集合框架](#1-剖析面试最常见问题之-java-集合框架) - - [1.1. 集合概述](#11-集合概述) - - [1.1.1. Java 集合概览](#111-java-集合概览) - - [1.1.2. 说说 List,Set,Map 三者的区别?](#112-说说-listsetmap-三者的区别) - - [1.1.3. 集合框架底层数据结构总结](#113-集合框架底层数据结构总结) - - [1.1.3.1. List](#1131-list) - - [1.1.3.2. Set](#1132-set) - - [1.1.3.3. Map](#1133-map) - - [1.1.4. 如何选用集合?](#114-如何选用集合) - - [1.1.5. 为什么要使用集合?](#115-为什么要使用集合) - - [1.2. Collection 子接口之 List](#12-collection-子接口之-list) - - [1.2.1. Arraylist 和 Vector 的区别?](#121-arraylist-和-vector-的区别) - - [1.2.2. Arraylist 与 LinkedList 区别?](#122-arraylist-与-linkedlist-区别) - - [1.2.2.1. 补充内容:双向链表和双向循环链表](#1221-补充内容双向链表和双向循环链表) - - [1.2.2.2. 补充内容:RandomAccess 接口](#1222-补充内容randomaccess-接口) - - [1.2.3. 说一说 ArrayList 的扩容机制吧](#123-说一说-arraylist-的扩容机制吧) - - [1.3. Collection 子接口之 Set](#13-collection-子接口之-set) - - [1.3.1. comparable 和 Comparator 的区别](#131-comparable-和-comparator-的区别) - - [1.3.1.1. Comparator 定制排序](#1311-comparator-定制排序) - - [1.3.1.2. 重写 compareTo 方法实现按年龄来排序](#1312-重写-compareto-方法实现按年龄来排序) - - [1.3.2. 无序性和不可重复性的含义是什么](#132-无序性和不可重复性的含义是什么) - - [1.3.3. 比较 HashSet、LinkedHashSet 和 TreeSet 三者的异同](#133-比较-hashsetlinkedhashset-和-treeset-三者的异同) - - [1.4. Map 接口](#14-map-接口) - - [1.4.1. HashMap 和 Hashtable 的区别](#141-hashmap-和-hashtable-的区别) - - [1.4.2. HashMap 和 HashSet 区别](#142-hashmap-和-hashset-区别) - - [1.4.3. HashMap 和 TreeMap 区别](#143-hashmap-和-treemap-区别) - - [1.4.4. HashSet 如何检查重复](#144-hashset-如何检查重复) - - [1.4.5. HashMap 的底层实现](#145-hashmap-的底层实现) - - [1.4.5.1. JDK1.8 之前](#1451-jdk18-之前) - - [1.4.5.2. JDK1.8 之后](#1452-jdk18-之后) - - [1.4.6. HashMap 的长度为什么是 2 的幂次方](#146-hashmap-的长度为什么是-2-的幂次方) - - [1.4.7. HashMap 多线程操作导致死循环问题](#147-hashmap-多线程操作导致死循环问题) - - [1.4.8. HashMap 有哪几种常见的遍历方式?](#148-hashmap-有哪几种常见的遍历方式) - - [1.4.9. ConcurrentHashMap 和 Hashtable 的区别](#149-concurrenthashmap-和-hashtable-的区别) - - [1.4.10. ConcurrentHashMap 线程安全的具体实现方式/底层具体实现](#1410-concurrenthashmap-线程安全的具体实现方式底层具体实现) - - [1.4.10.1. JDK1.7(上面有示意图)](#14101-jdk17上面有示意图) - - [1.4.10.2. JDK1.8 (上面有示意图)](#14102-jdk18-上面有示意图) - - [1.5. Collections 工具类](#15-collections-工具类) - - [1.5.1. 排序操作](#151-排序操作) - - [1.5.2. 查找,替换操作](#152-查找替换操作) - - [1.5.3. 同步控制](#153-同步控制) - - - -# 1. 剖析面试最常见问题之 Java 集合框架 - -## 1.1. 集合概述 - -### 1.1.1. Java 集合概览 - -从下图可以看出,在 Java 中除了以 `Map` 结尾的类之外, 其他类都实现了 `Collection` 接口。 - -并且,以 `Map` 结尾的类都实现了 `Map` 接口。 - -![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/source-code/dubbo/java-collection-hierarchy.png) - -

https://www.javatpoint.com/collections-in-java

- -### 1.1.2. 说说 List,Set,Map 三者的区别? - -- `List`(对付顺序的好帮手): 存储的元素是有序的、可重复的。 +--- +category: Java +tag: + - Java集合 +--- + +# Java集合框架基础知识&面试题总结 + +## 集合概述 + +### Java 集合概览 + +Java 集合, 也叫作容器,主要是由两大接口派生而来:一个是 `Collecton`接口,主要用于存放单一元素;另一个是 `Map` 接口,主要用于存放键值对。对于`Collection` 接口,下面又有三个主要的子接口:`List`、`Set` 和 `Queue`。 + +Java 集合框架如下图所示: + +![](./images/java-collection-hierarchy.png) + + +注:图中只列举了主要的继承派生关系,并没有列举所有关系。比方省略了`AbstractList`, `NavigableSet`等抽象类以及其他的一些辅助类,如想深入了解,可自行查看源码。 + +### 说说 List, Set, Queue, Map 四者的区别? + +- `List`(对付顺序的好帮手): 存储的元素是有序的、可重复的。 - `Set`(注重独一无二的性质): 存储的元素是无序的、不可重复的。 -- `Map`(用 Key 来搜索的专家): 使用键值对(key-value)存储,类似于数学上的函数 y=f(x),“x”代表 key,"y"代表 value,Key 是无序的、不可重复的,value 是无序的、可重复的,每个键最多映射到一个值。 +- `Queue`(实现排队功能的叫号机): 按特定的排队规则来确定先后顺序,存储的元素是有序的、可重复的。 +- `Map`(用 key 来搜索的专家): 使用键值对(key-value)存储,类似于数学上的函数 y=f(x),"x" 代表 key,"y" 代表 value,key 是无序的、不可重复的,value 是无序的、可重复的,每个键最多映射到一个值。 -### 1.1.3. 集合框架底层数据结构总结 +### 集合框架底层数据结构总结 先来看一下 `Collection` 接口下面的集合。 -#### 1.1.3.1. List +#### List -- `Arraylist`: `Object[]`数组 -- `Vector`:`Object[]`数组 +- `Arraylist`: `Object[]` 数组 +- `Vector`:`Object[]` 数组 - `LinkedList`: 双向链表(JDK1.6 之前为循环链表,JDK1.7 取消了循环) -#### 1.1.3.2. Set +#### Set + +- `HashSet`(无序,唯一): 基于 `HashMap` 实现的,底层采用 `HashMap` 来保存元素 +- `LinkedHashSet`: `LinkedHashSet` 是 `HashSet` 的子类,并且其内部是通过 `LinkedHashMap` 来实现的。有点类似于我们之前说的 `LinkedHashMap` 其内部是基于 `HashMap` 实现一样,不过还是有一点点区别的 +- `TreeSet`(有序,唯一): 红黑树(自平衡的排序二叉树) -- `HashSet`(无序,唯一): 基于 `HashMap` 实现的,底层采用 `HashMap` 来保存元素 -- `LinkedHashSet`:`LinkedHashSet` 是 `HashSet` 的子类,并且其内部是通过 `LinkedHashMap` 来实现的。有点类似于我们之前说的 `LinkedHashMap` 其内部是基于 `HashMap` 实现一样,不过还是有一点点区别的 -- `TreeSet`(有序,唯一): 红黑树(自平衡的排序二叉树) +#### Queue +- `PriorityQueue`: `Object[]` 数组来实现二叉堆 +- `ArrayQueue`: `Object[]` 数组 + 双指针 再来看看 `Map` 接口下面的集合。 -#### 1.1.3.3. Map +#### Map - `HashMap`: JDK1.8 之前 `HashMap` 由数组+链表组成的,数组是 `HashMap` 的主体,链表则是主要为了解决哈希冲突而存在的(“拉链法”解决冲突)。JDK1.8 以后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为 8)(将链表转换成红黑树前会判断,如果当前数组的长度小于 64,那么会选择先进行数组扩容,而不是转换为红黑树)时,将链表转化为红黑树,以减少搜索时间 - `LinkedHashMap`: `LinkedHashMap` 继承自 `HashMap`,所以它的底层仍然是基于拉链式散列结构即由数组和链表或红黑树组成。另外,`LinkedHashMap` 在上面结构的基础上,增加了一条双向链表,使得上面的结构可以保持键值对的插入顺序。同时通过对链表进行相应的操作,实现了访问顺序相关逻辑。详细可以查看:[《LinkedHashMap 源码详细分析(JDK1.8)》](https://www.imooc.com/article/22931) - `Hashtable`: 数组+链表组成的,数组是 `Hashtable` 的主体,链表则是主要为了解决哈希冲突而存在的 - `TreeMap`: 红黑树(自平衡的排序二叉树) -### 1.1.4. 如何选用集合? +### 如何选用集合? 主要根据集合的特点来选用,比如我们需要根据键值获取到元素值时就选用 `Map` 接口下的集合,需要排序时选择 `TreeMap`,不需要排序时就选择 `HashMap`,需要保证线程安全就选用 `ConcurrentHashMap`。 当我们只需要存放元素值时,就选择实现`Collection` 接口的集合,需要保证元素唯一时选择实现 `Set` 接口的集合比如 `TreeSet` 或 `HashSet`,不需要就选择实现 `List` 接口的比如 `ArrayList` 或 `LinkedList`,然后再根据实现这些接口的集合的特点来选用。 -### 1.1.5. 为什么要使用集合? +### 为什么要使用集合? 当我们需要保存一组类型相同的数据的时候,我们应该是用一个容器来保存,这个容器就是数组,但是,使用数组存储对象具有一定的弊端, 因为我们在实际开发中,存储的数据的类型是多种多样的,于是,就出现了“集合”,集合同样也是用来存储多个数据的。 @@ -103,14 +69,14 @@ 数组的缺点是一旦声明之后,长度就不可变了;同时,声明数组时的数据类型也决定了该数组存储的数据的类型;而且,数组存储的数据是有序的、可重复的,特点单一。 但是集合提高了数据存储的灵活性,Java 集合不仅可以用来存储不同类型不同数量的对象,还可以保存具有映射关系的数据。 -## 1.2. Collection 子接口之 List +## Collection 子接口之 List -### 1.2.1. Arraylist 和 Vector 的区别? +### Arraylist 和 Vector 的区别? - `ArrayList` 是 `List` 的主要实现类,底层使用 `Object[ ]`存储,适用于频繁的查找工作,线程不安全 ; - `Vector` 是 `List` 的古老实现类,底层使用`Object[ ]` 存储,线程安全的。 -### 1.2.2. Arraylist 与 LinkedList 区别? +### Arraylist 与 LinkedList 区别? 1. **是否保证线程安全:** `ArrayList` 和 `LinkedList` 都是不同步的,也就是不保证线程安全; 2. **底层数据结构:** `Arraylist` 底层使用的是 **`Object` 数组**;`LinkedList` 底层使用的是 **双向链表** 数据结构(JDK1.6 之前为循环链表,JDK1.7 取消了循环。注意双向链表和双向循环链表的区别,下面有介绍到!) @@ -120,11 +86,11 @@ 4. **是否支持快速随机访问:** `LinkedList` 不支持高效的随机元素访问,而 `ArrayList` 支持。快速随机访问就是通过元素的序号快速获取元素对象(对应于`get(int index)`方法)。 5. **内存空间占用:** ArrayList 的空 间浪费主要体现在在 list 列表的结尾会预留一定的容量空间,而 LinkedList 的空间花费则体现在它的每一个元素都需要消耗比 ArrayList 更多的空间(因为要存放直接后继和直接前驱以及数据)。 -#### 1.2.2.1. 补充内容:双向链表和双向循环链表 +#### 补充内容:双向链表和双向循环链表 **双向链表:** 包含两个指针,一个 prev 指向前一个节点,一个 next 指向后一个节点。 -> 另外推荐一篇把双向链表讲清楚的文章:[https://juejin.im/post/5b5d1a9af265da0f47352f14](https://juejin.im/post/5b5d1a9af265da0f47352f14) +> 另外推荐一篇把双向链表讲清楚的文章:[https://juejin.cn/post/6844903648154271757](https://juejin.cn/post/6844903648154271757) ![双向链表](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-6/双向链表.png) @@ -132,7 +98,7 @@ ![双向循环链表](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-6/双向循环链表.png) -#### 1.2.2.2. 补充内容:RandomAccess 接口 +#### 补充内容:RandomAccess 接口 ```java public interface RandomAccess { @@ -155,20 +121,20 @@ public interface RandomAccess { `ArrayList` 实现了 `RandomAccess` 接口, 而 `LinkedList` 没有实现。为什么呢?我觉得还是和底层数据结构有关!`ArrayList` 底层是数组,而 `LinkedList` 底层是链表。数组天然支持随机访问,时间复杂度为 O(1),所以称为快速随机访问。链表需要遍历到特定位置才能访问特定位置的元素,时间复杂度为 O(n),所以不支持快速随机访问。,`ArrayList` 实现了 `RandomAccess` 接口,就表明了他具有快速随机访问功能。 `RandomAccess` 接口只是标识,并不是说 `ArrayList` 实现 `RandomAccess` 接口才具有快速随机访问功能的! -### 1.2.3. 说一说 ArrayList 的扩容机制吧 +### 说一说 ArrayList 的扩容机制吧 详见笔主的这篇文章:[通过源码一步一步分析 ArrayList 扩容机制](https://snailclimb.gitee.io/javaguide/#/docs/java/collection/ArrayList%E6%BA%90%E7%A0%81+%E6%89%A9%E5%AE%B9%E6%9C%BA%E5%88%B6%E5%88%86%E6%9E%90) -## 1.3. Collection 子接口之 Set +## Collection 子接口之 Set -### 1.3.1. comparable 和 Comparator 的区别 +### comparable 和 Comparator 的区别 - `comparable` 接口实际上是出自`java.lang`包 它有一个 `compareTo(Object obj)`方法用来排序 - `comparator`接口实际上是出自 java.util 包它有一个`compare(Object obj1, Object obj2)`方法用来排序 一般我们需要对一个集合使用自定义排序时,我们就要重写`compareTo()`方法或`compare()`方法,当我们需要对某一个集合实现两种排序方式,比如一个 song 对象中的歌名和歌手名分别采用一种排序方法的话,我们可以重写`compareTo()`方法和使用自制的`Comparator`方法或者以两个 Comparator 来实现歌名排序和歌星名排序,第二种代表我们只能使用两个参数版的 `Collections.sort()`. -#### 1.3.1.1. Comparator 定制排序 +#### Comparator 定制排序 ```java ArrayList arrayList = new ArrayList(); @@ -216,7 +182,7 @@ Collections.sort(arrayList): [7, 4, 3, 3, -1, -5, -7, -9] ``` -#### 1.3.1.2. 重写 compareTo 方法实现按年龄来排序 +#### 重写 compareTo 方法实现按年龄来排序 ```java // person对象没有实现Comparable接口,所以必须实现,这样才不会出错,才可以使treemap中的数据按顺序排列 @@ -290,27 +256,82 @@ Output: 30-张三 ``` -### 1.3.2. 无序性和不可重复性的含义是什么 +### 无序性和不可重复性的含义是什么 1、什么是无序性?无序性不等于随机性 ,无序性是指存储的数据在底层数组中并非按照数组索引的顺序添加 ,而是根据数据的哈希值决定的。 2、什么是不可重复性?不可重复性是指添加的元素按照 equals()判断时 ,返回 false,需要同时重写 equals()方法和 HashCode()方法。 -### 1.3.3. 比较 HashSet、LinkedHashSet 和 TreeSet 三者的异同 +### 比较 HashSet、LinkedHashSet 和 TreeSet 三者的异同 + +- `HashSet`、`LinkedHashSet` 和 `TreeSet` 都是 `Set` 接口的实现类,都能保证元素唯一,并且都不是线程安全的。 +- `HashSet`、`LinkedHashSet` 和 `TreeSet` 的主要区别在于底层数据结构不同。`HashSet` 的底层数据结构是哈希表(基于 `HashMap` 实现)。`LinkedHashSet` 的底层数据结构是链表和哈希表,元素的插入和取出顺序满足 FIFO。`TreeSet` 底层数据结构是红黑树,元素是有序的,排序的方式有自然排序和定制排序。 +- 底层数据结构不同又导致这三者的应用场景不同。`HashSet` 用于不需要保证元素插入和取出顺序的场景,`LinkHashSet` 用于保证元素的插入和取出顺序满足 FIFO 的场景,`TreeSet` 用于支持对元素自定义排序规则的场景。 + +## Collection 子接口之 Queue + +### Queue 与 Deque 的区别 + +`Queue` 是单端队列,只能从一端插入元素,另一端删除元素,实现上一般遵循 **先进先出(FIFO)** 规则。 + +`Queue` 扩展了 `Collection` 的接口,根据 **因为容量问题而导致操作失败后处理方式的不同** 可以分为两类方法: 一种在操作失败后会抛出异常,另一种则会返回特殊值。 + +| `Queue` 接口| 抛出异常 | 返回特殊值 | +| ------------ | --------- | ---------- | +| 插入队尾 | add(E e) | offer(E e) | +| 删除队首 | remove() | poll() | +| 查询队首元素 | element() | peek() | + +`Deque` 是双端队列,在队列的两端均可以插入或删除元素。 + +`Deque` 扩展了 `Queue` 的接口, 增加了在队首和队尾进行插入和删除的方法,同样根据失败后处理方式的不同分为两类: + +| `Deque` 接口 | 抛出异常 | 返回特殊值 | +| ------------ | ------------- | --------------- | +| 插入队首 | addFirst(E e) | offerFirst(E e) | +| 插入队尾 | addLast(E e) | offerLast(E e) | +| 删除队首 | removeFirst() | pollFirst() | +| 删除队尾 | removeLast() | pollLast() | +| 查询队首元素 | getFirst() | peekFirst() | +| 查询队尾元素 | getLast() | peekLast() | + +事实上,`Deque` 还提供有 `push()` 和 `pop()` 等其他方法,可用于模拟栈。 -`HashSet` 是 `Set` 接口的主要实现类 ,`HashSet` 的底层是 `HashMap`,线程不安全的,可以存储 null 值; -`LinkedHashSet` 是 `HashSet` 的子类,能够按照添加的顺序遍历; +### ArrayDeque 与 LinkedList 的区别 -`TreeSet` 底层使用红黑树,能够按照添加元素的顺序进行遍历,排序的方式有自然排序和定制排序。 +`ArrayDeque` 和 `LinkedList` 都实现了 `Deque` 接口,两者都具有队列的功能,但两者有什么区别呢? -## 1.4. Map 接口 +- `ArrayDeque` 是基于可变长的数组和双指针来实现,而 `LinkedList` 则通过链表来实现。 -### 1.4.1. HashMap 和 Hashtable 的区别 +- `ArrayDeque` 不支持存储 `NULL` 数据,但 `LinkedList` 支持。 -1. **线程是否安全:** `HashMap` 是非线程安全的,`HashTable` 是线程安全的,因为 `HashTable` 内部的方法基本都经过`synchronized` 修饰。(如果你要保证线程安全的话就使用 `ConcurrentHashMap` 吧!); -2. **效率:** 因为线程安全的问题,`HashMap` 要比 `HashTable` 效率高一点。另外,`HashTable` 基本被淘汰,不要在代码中使用它; -3. **对 Null key 和 Null value 的支持:** `HashMap` 可以存储 null 的 key 和 value,但 null 作为键只能有一个,null 作为值可以有多个;HashTable 不允许有 null 键和 null 值,否则会抛出 `NullPointerException`。 +- `ArrayDeque` 是在 JDK1.6 才被引入的,而`LinkedList` 早在 JDK1.2 时就已经存在。 + +- `ArrayDeque` 插入时可能存在扩容过程, 不过均摊后的插入操作依然为 O(1)。虽然 `LinkedList` 不需要扩容,但是每次插入数据时均需要申请新的堆空间,均摊性能相比更慢。 + +从性能的角度上,选用 `ArrayDeque` 来实现队列要比 `LinkedList` 更好。此外,`ArrayDeque` 也可以用于实现栈。 + +### 说一说 PriorityQueue + +`PriorityQueue` 是在 JDK1.5 中被引入的, 其与 `Queue` 的区别在于元素出队顺序是与优先级相关的,即总是优先级最高的元素先出队。 + +这里列举其相关的一些要点: + +- `PriorityQueue` 利用了二叉堆的数据结构来实现的,底层使用可变长的数组来存储数据 +- `PriorityQueue` 通过堆元素的上浮和下沉,实现了在 O(logn) 的时间复杂度内插入元素和删除堆顶元素。 +- `PriorityQueue` 是非线程安全的,且不支持存储 `NULL` 和 `non-comparable` 的对象。 +- `PriorityQueue` 默认是小顶堆,但可以接收一个 `Comparator` 作为构造参数,从而来自定义元素优先级的先后。 + +`PriorityQueue` 在面试中可能更多的会出现在手撕算法的时候,典型例题包括堆排序、求第K大的数、带权图的遍历等,所以需要会熟练使用才行。 + +## Map 接口 + +### HashMap 和 Hashtable 的区别 + +1. **线程是否安全:** `HashMap` 是非线程安全的,`Hashtable` 是线程安全的,因为 `Hashtable` 内部的方法基本都经过`synchronized` 修饰。(如果你要保证线程安全的话就使用 `ConcurrentHashMap` 吧!); +2. **效率:** 因为线程安全的问题,`HashMap` 要比 `Hashtable` 效率高一点。另外,`Hashtable` 基本被淘汰,不要在代码中使用它; +3. **对 Null key 和 Null value 的支持:** `HashMap` 可以存储 null 的 key 和 value,但 null 作为键只能有一个,null 作为值可以有多个;Hashtable 不允许有 null 键和 null 值,否则会抛出 `NullPointerException`。 4. **初始容量大小和每次扩充容量大小的不同 :** ① 创建时如果不指定容量初始值,`Hashtable` 默认的初始大小为 11,之后每次扩充,容量变为原来的 2n+1。`HashMap` 默认的初始化大小为 16。之后每次扩充,容量变为原来的 2 倍。② 创建时如果给定了容量初始值,那么 Hashtable 会直接使用你给定的大小,而 `HashMap` 会将其扩充为 2 的幂次方大小(`HashMap` 中的`tableSizeFor()`方法保证,下面给出了源代码)。也就是说 `HashMap` 总是使用 2 的幂作为哈希表的大小,后面会介绍到为什么是 2 的幂次方。 5. **底层数据结构:** JDK1.8 以后的 `HashMap` 在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为 8)(将链表转换成红黑树前会判断,如果当前数组的长度小于 64,那么会选择先进行数组扩容,而不是转换为红黑树)时,将链表转化为红黑树,以减少搜索时间。Hashtable 没有这样的机制。 @@ -351,7 +372,7 @@ Output: } ``` -### 1.4.2. HashMap 和 HashSet 区别 +### HashMap 和 HashSet 区别 如果你看过 `HashSet` 源码的话就应该知道:`HashSet` 底层就是基于 `HashMap` 实现的。(`HashSet` 的源码非常非常少,因为除了 `clone()`、`writeObject()`、`readObject()`是 `HashSet` 自己不得不实现之外,其他方法都是直接调用 `HashMap` 中的方法。 @@ -362,7 +383,7 @@ Output: | 调用 `put()`向 map 中添加元素 | 调用 `add()`方法向 `Set` 中添加元素 | | `HashMap` 使用键(Key)计算 `hashcode` | `HashSet` 使用成员对象来计算 `hashcode` 值,对于两个对象来说 `hashcode` 可能相同,所以`equals()`方法用来判断对象的相等性 | -### 1.4.3. HashMap 和 TreeMap 区别 +### HashMap 和 TreeMap 区别 `TreeMap` 和`HashMap` 都继承自`AbstractMap` ,但是需要注意的是`TreeMap`它还实现了`NavigableMap`接口和`SortedMap` 接口。 @@ -370,7 +391,7 @@ Output: 实现 `NavigableMap` 接口让 `TreeMap` 有了对集合内元素的搜索的能力。 -实现`SortMap`接口让 `TreeMap` 有了对集合中的元素根据键排序的能力。默认是按 key 的升序排序,不过我们也可以指定排序的比较器。示例代码如下: +实现`SortedMap`接口让 `TreeMap` 有了对集合中的元素根据键排序的能力。默认是按 key 的升序排序,不过我们也可以指定排序的比较器。示例代码如下: ```java /** @@ -430,12 +451,33 @@ TreeMap treeMap = new TreeMap<>((person1, person2) -> { **综上,相比于`HashMap`来说 `TreeMap` 主要多了对集合中的元素根据键排序的能力以及对集合内元素的搜索的能力。** -### 1.4.4. HashSet 如何检查重复 +### HashSet 如何检查重复 -以下内容摘自我的 Java 启蒙书《Head fist java》第二版: +以下内容摘自我的 Java 启蒙书《Head first java》第二版: 当你把对象加入`HashSet`时,`HashSet` 会先计算对象的`hashcode`值来判断对象加入的位置,同时也会与其他加入的对象的 `hashcode` 值作比较,如果没有相符的 `hashcode`,`HashSet` 会假设对象没有重复出现。但是如果发现有相同 `hashcode` 值的对象,这时会调用`equals()`方法来检查 `hashcode` 相等的对象是否真的相同。如果两者相同,`HashSet` 就不会让加入操作成功。 +在openjdk8中,`HashSet`的`add()`方法只是简单的调用了`HashMap`的`put()`方法,并且判断了一下返回值以确保是否有重复元素。直接看一下`HashSet`中的源码: +```java +// Returns: true if this set did not already contain the specified element +// 返回值:当set中没有包含add的元素时返回真 +public boolean add(E e) { + return map.put(e, PRESENT)==null; +} +``` + +而在`HashMap`的`putVal()`方法中也能看到如下说明: +```java +// Returns : previous value, or null if none +// 返回值:如果插入位置没有元素返回null,否则返回上一个元素 +final V putVal(int hash, K key, V value, boolean onlyIfAbsent, + boolean evict) { +... +} +``` + +也就是说,在openjdk8中,实际上无论`HashSet`中是否已经存在了某元素,`HashSet`都会直接插入,只是会在`add()`方法的返回值处告诉我们插入前是否存在相同元素。 + **`hashCode()`与 `equals()` 的相关规定:** 1. 如果两个对象相等,则 `hashcode` 一定也是相同的 @@ -452,9 +494,9 @@ TreeMap treeMap = new TreeMap<>((person1, person2) -> { 对于引用类型(包括包装类型)来说,equals 如果没有被重写,对比它们的地址是否相等;如果 equals()方法被重写(例如 String),则比较的是地址里的内容。 -### 1.4.5. HashMap 的底层实现 +### HashMap 的底层实现 -#### 1.4.5.1. JDK1.8 之前 +#### JDK1.8 之前 JDK1.8 之前 `HashMap` 底层是 **数组和链表** 结合在一起使用也就是 **链表散列**。**HashMap 通过 key 的 hashCode 经过扰动函数处理过后得到 hash 值,然后通过 (n - 1) & hash 判断当前元素存放的位置(这里的 n 指的是数组的长度),如果当前位置存在元素的话,就判断该元素与要存入的元素的 hash 值以及 key 是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突。** @@ -493,7 +535,7 @@ static int hash(int h) { ![jdk1.8之前的内部结构-HashMap](images/jdk1.8之前的内部结构-HashMap.png) -#### 1.4.5.2. JDK1.8 之后 +#### JDK1.8 之后 相比于之前的版本, JDK1.8 之后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为 8)(将链表转换成红黑树前会判断,如果当前数组的长度小于 64,那么会选择先进行数组扩容,而不是转换为红黑树)时,将链表转化为红黑树,以减少搜索时间。 @@ -501,7 +543,7 @@ static int hash(int h) { > TreeMap、TreeSet 以及 JDK1.8 之后的 HashMap 底层都用到了红黑树。红黑树就是为了解决二叉查找树的缺陷,因为二叉查找树在某些情况下会退化成一个线性结构。 -### 1.4.6. HashMap 的长度为什么是 2 的幂次方 +### HashMap 的长度为什么是 2 的幂次方 为了能让 HashMap 存取高效,尽量较少碰撞,也就是要尽量把数据分配均匀。我们上面也讲到了过了,Hash 值的范围值-2147483648 到 2147483647,前后加起来大概 40 亿的映射空间,只要哈希函数映射得比较均匀松散,一般应用是很难出现碰撞的。但问题是一个 40 亿长度的数组,内存是放不下的。所以这个散列值是不能直接拿来用的。用之前还要先做对数组的长度取模运算,得到的余数才能用来要存放的位置也就是对应的数组下标。这个数组下标的计算方法是“ `(n - 1) & hash`”。(n 代表数组长度)。这也就解释了 HashMap 的长度为什么是 2 的幂次方。 @@ -509,17 +551,17 @@ static int hash(int h) { 我们首先可能会想到采用%取余的操作来实现。但是,重点来了:**“取余(%)操作中如果除数是 2 的幂次则等价于与其除数减一的与(&)操作(也就是说 hash%length==hash&(length-1)的前提是 length 是 2 的 n 次方;)。”** 并且 **采用二进制位操作 &,相对于%能够提高运算效率,这就解释了 HashMap 的长度为什么是 2 的幂次方。** -### 1.4.7. HashMap 多线程操作导致死循环问题 +### HashMap 多线程操作导致死循环问题 主要原因在于并发下的 Rehash 会造成元素之间会形成一个循环链表。不过,jdk 1.8 后解决了这个问题,但是还是不建议在多线程下使用 HashMap,因为多线程下使用 HashMap 还是会存在其他问题比如数据丢失。并发环境下推荐使用 ConcurrentHashMap 。 详情请查看: -### 1.4.8. HashMap 有哪几种常见的遍历方式? +### HashMap 有哪几种常见的遍历方式? [HashMap 的 7 种遍历方式与性能分析!](https://mp.weixin.qq.com/s/zQBN3UvJDhRTKP6SzcZFKw) -### 1.4.9. ConcurrentHashMap 和 Hashtable 的区别 +### ConcurrentHashMap 和 Hashtable 的区别 `ConcurrentHashMap` 和 `Hashtable` 的区别主要体现在实现线程安全的方式上不同。 @@ -528,9 +570,9 @@ static int hash(int h) { **两者的对比图:** -**HashTable:** +**Hashtable:** -![HashTable全表锁](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-6/HashTable全表锁.png) +![Hashtable全表锁](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-6/HashTable全表锁.png)

https://www.cnblogs.com/chengxiao/p/6842045.html>

@@ -544,11 +586,11 @@ static int hash(int h) { ![Java8 ConcurrentHashMap 存储结构(图片来自 javadoop)](./images/java8_concurrenthashmap.png) -JDK1.8 的 `ConcurrentHashMap` 不在是 **Segment 数组 + HashEntry 数组 + 链表**,而是 **Node 数组 + 链表 / 红黑树**。不过,Node 只能用于链表的情况,红黑树的情况需要使用 **`TreeNode`**。当冲突链表达到一定长度时,链表会转换成红黑树。 +JDK1.8 的 `ConcurrentHashMap` 不再是 **Segment 数组 + HashEntry 数组 + 链表**,而是 **Node 数组 + 链表 / 红黑树**。不过,Node 只能用于链表的情况,红黑树的情况需要使用 **`TreeNode`**。当冲突链表达到一定长度时,链表会转换成红黑树。 -### 1.4.10. ConcurrentHashMap 线程安全的具体实现方式/底层具体实现 +### ConcurrentHashMap 线程安全的具体实现方式/底层具体实现 -#### 1.4.10.1. JDK1.7(上面有示意图) +#### JDK1.7(上面有示意图) 首先将数据分为一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据时,其他段的数据也能被其他线程访问。 @@ -563,13 +605,13 @@ static class Segment extends ReentrantLock implements Serializable { 一个 `ConcurrentHashMap` 里包含一个 `Segment` 数组。`Segment` 的结构和 `HashMap` 类似,是一种数组和链表结构,一个 `Segment` 包含一个 `HashEntry` 数组,每个 `HashEntry` 是一个链表结构的元素,每个 `Segment` 守护着一个 `HashEntry` 数组里的元素,当对 `HashEntry` 数组的数据进行修改时,必须首先获得对应的 `Segment` 的锁。 -#### 1.4.10.2. JDK1.8 (上面有示意图) +#### JDK1.8 (上面有示意图) `ConcurrentHashMap` 取消了 `Segment` 分段锁,采用 CAS 和 `synchronized` 来保证并发安全。数据结构跟 HashMap1.8 的结构类似,数组+链表/红黑二叉树。Java 8 在链表长度超过一定阈值(8)时将链表(寻址时间复杂度为 O(N))转换为红黑树(寻址时间复杂度为 O(log(N))) `synchronized` 只锁定当前链表或红黑二叉树的首节点,这样只要 hash 不冲突,就不会产生并发,效率又提升 N 倍。 -## 1.5. Collections 工具类 +## Collections 工具类 Collections 工具类常用方法: @@ -577,7 +619,7 @@ Collections 工具类常用方法: 2. 查找,替换操作 3. 同步控制(不推荐,需要线程安全的集合类型时请考虑使用 JUC 包下的并发集合) -### 1.5.1. 排序操作 +### 排序操作 ```java void reverse(List list)//反转 @@ -588,7 +630,7 @@ void swap(List list, int i , int j)//交换两个索引位置的元素 void rotate(List list, int distance)//旋转。当distance为正数时,将list后distance个元素整体移到前面。当distance为负数时,将 list的前distance个元素整体移到后面 ``` -### 1.5.2. 查找,替换操作 +### 查找,替换操作 ```java int binarySearch(List list, Object key)//对List进行二分查找,返回索引,注意List必须是有序的 @@ -600,7 +642,7 @@ int indexOfSubList(List list, List target)//统计target在list中第一次出 boolean replaceAll(List list, Object oldVal, Object newVal)//用新元素替换旧元素 ``` -### 1.5.3. 同步控制 +### 同步控制 `Collections` 提供了多个`synchronizedXxx()`方法·,该方法可以将指定集合包装成线程同步的集合,从而解决多线程并发访问集合时的线程安全问题。 @@ -616,7 +658,3 @@ synchronizedList(List list)//返回指定列表支持的同步(线程安全 synchronizedMap(Map m) //返回由指定映射支持的同步(线程安全的)Map。 synchronizedSet(Set s) //返回指定 set 支持的同步(线程安全的)set。 ``` - -**《Java 面试突击》:** Java 程序员面试必备的《Java 面试突击》V3.0 PDF 版本扫码关注下面的公众号,在后台回复 **"面试突击"** 即可免费领取! - -![我的公众号](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-11/format,png.jpeg) diff --git "a/docs/java/multi-thread/AQS\345\216\237\347\220\206\344\273\245\345\217\212AQS\345\220\214\346\255\245\347\273\204\344\273\266\346\200\273\347\273\223.md" "b/docs/java/concurrent/aqs\345\216\237\347\220\206\344\273\245\345\217\212aqs\345\220\214\346\255\245\347\273\204\344\273\266\346\200\273\347\273\223.md" similarity index 72% rename from "docs/java/multi-thread/AQS\345\216\237\347\220\206\344\273\245\345\217\212AQS\345\220\214\346\255\245\347\273\204\344\273\266\346\200\273\347\273\223.md" rename to "docs/java/concurrent/aqs\345\216\237\347\220\206\344\273\245\345\217\212aqs\345\220\214\346\255\245\347\273\204\344\273\266\346\200\273\347\273\223.md" index 936809f5d2f..43e59b4abb9 100644 --- "a/docs/java/multi-thread/AQS\345\216\237\347\220\206\344\273\245\345\217\212AQS\345\220\214\346\255\245\347\273\204\344\273\266\346\200\273\347\273\223.md" +++ "b/docs/java/concurrent/aqs\345\216\237\347\220\206\344\273\245\345\217\212aqs\345\220\214\346\255\245\347\273\204\344\273\266\346\200\273\347\273\223.md" @@ -1,48 +1,42 @@ -点击关注[公众号](#公众号 "公众号")及时获取笔主最新更新文章,并可免费领取本文档配套的《Java 面试突击》以及 Java 工程师必备学习资源。 - - - -- [1 AQS 简单介绍](#1-aqs-简单介绍) -- [2 AQS 原理](#2-aqs-原理) - - [2.1 AQS 原理概览](#21-aqs-原理概览) - - [2.2 AQS 对资源的共享方式](#22-aqs-对资源的共享方式) - - [2.3 AQS 底层使用了模板方法模式](#23-aqs-底层使用了模板方法模式) -- [3 Semaphore(信号量)-允许多个线程同时访问](#3-semaphore信号量-允许多个线程同时访问) -- [4 CountDownLatch (倒计时器)](#4-countdownlatch-倒计时器) - - [4.1 CountDownLatch 的三种典型用法](#41-countdownlatch-的三种典型用法) - - [4.2 CountDownLatch 的使用示例](#42-countdownlatch-的使用示例) - - [4.3 CountDownLatch 的不足](#43-countdownlatch-的不足) - - [4.4 CountDownLatch 常见面试题](#44-countdownlatch-相常见面试题) -- [5 CyclicBarrier(循环栅栏)](#5-cyclicbarrier循环栅栏) - - [5.1 CyclicBarrier 的应用场景](#51-cyclicbarrier-的应用场景) - - [5.2 CyclicBarrier 的使用示例](#52-cyclicbarrier-的使用示例) - - [5.3 `CyclicBarrier`源码分析](#53-cyclicbarrier源码分析) - - [5.4 CyclicBarrier 和 CountDownLatch 的区别](#54-cyclicbarrier-和-countdownlatch-的区别) -- [6 ReentrantLock 和 ReentrantReadWriteLock](#6-reentrantlock-和-reentrantreadwritelock) -- [参考](#参考) -- [公众号](#公众号) - - - -> 常见问题:AQS 原理?;CountDownLatch 和 CyclicBarrier 了解吗,两者的区别是什么?用过 Semaphore 吗? - -### 1 AQS 简单介绍 - -AQS 的全称为(`AbstractQueuedSynchronizer`),这个类在 `java.util.concurrent.locks` 包下面。 +--- +title: AQS 原理以及 AQS 同步组件总结 +category: Java +tag: + - Java并发 +--- + + +开始之前,先来看几道常见的面试题!建议你带着这些问题来看这篇文章: + +- 何为 AQS?AQS 原理了解吗? +- `CountDownLatch` 和 `CyclicBarrier` 了解吗?两者的区别是什么? +- 用过 `Semaphore` 吗?应用场景了解吗? +- ...... + +## AQS 简单介绍 + +AQS 的全称为 `AbstractQueuedSynchronizer` ,翻译过来的意思就是抽象队列同步器。这个类在 `java.util.concurrent.locks` 包下面。 ![enter image description here](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/Java%20%E7%A8%8B%E5%BA%8F%E5%91%98%E5%BF%85%E5%A4%87%EF%BC%9A%E5%B9%B6%E5%8F%91%E7%9F%A5%E8%AF%86%E7%B3%BB%E7%BB%9F%E6%80%BB%E7%BB%93/AQS.png) -AQS 是一个用来构建锁和同步器的框架,使用 AQS 能简单且高效地构造出应用广泛的大量的同步器,比如我们提到的 `ReentrantLock`,`Semaphore`,其他的诸如 `ReentrantReadWriteLock`,`SynchronousQueue`,`FutureTask`(jdk1.7) 等等皆是基于 AQS 的。当然,我们自己也能利用 AQS 非常轻松容易地构造出符合我们自己需求的同步器。 +AQS 就是一个抽象类,主要用来构建锁和同步器。 + +```java +public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable { +} +``` -### 2 AQS 原理 +AQS 为构建锁和同步器提供了一些通用功能的是实现,因此,使用 AQS 能简单且高效地构造出应用广泛的大量的同步器,比如我们提到的 `ReentrantLock`,`Semaphore`,其他的诸如 `ReentrantReadWriteLock`,`SynchronousQueue`,`FutureTask`(jdk1.7) 等等皆是基于 AQS 的。 + +## AQS 原理 > 在面试中被问到并发知识的时候,大多都会被问到“请你说一下自己对于 AQS 原理的理解”。下面给大家一个示例供大家参考,面试不是背题,大家一定要加入自己的思想,即使加入不了自己的思想也要保证自己能够通俗的讲出来而不是背出来。 下面大部分内容其实在 AQS 类注释上已经给出了,不过是英语看着比较吃力一点,感兴趣的话可以看看源码。 -#### 2.1 AQS 原理概览 +### AQS 原理概览 -**AQS 核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制 AQS 是用 CLH 队列锁实现的,即将暂时获取不到锁的线程加入到队列中。** +AQS 核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制 AQS 是用 **CLH 队列锁**实现的,即将暂时获取不到锁的线程加入到队列中。 > CLH(Craig,Landin,and Hagersten)队列是一个虚拟的双向队列(虚拟的双向队列即不存在队列实例,仅存在结点之间的关联关系)。AQS 是将每条请求共享资源的线程封装成一个 CLH 锁队列的一个结点(Node)来实现锁的分配。 @@ -56,7 +50,7 @@ AQS 使用一个 int 成员变量来表示同步状态,通过内置的 FIFO private volatile int state;//共享变量,使用volatile修饰保证线程可见性 ``` -状态信息通过 protected 类型的`getState`,`setState`,`compareAndSetState`进行操作 +状态信息通过 `protected` 类型的`getState()`,`setState()`,`compareAndSetState()` 进行操作 ```java //返回同步状态的当前值 @@ -73,16 +67,16 @@ protected final boolean compareAndSetState(int expect, int update) { } ``` -#### 2.2 AQS 对资源的共享方式 +### AQS 对资源的共享方式 -**AQS 定义两种资源共享方式** +AQS 定义两种资源共享方式 **1)Exclusive**(独占) -只有一个线程能执行,如 `ReentrantLock`。又可分为公平锁和非公平锁,`ReentrantLock` 同时支持两种锁,下面以 `ReentrantLock` 对这两种锁的定义做介绍: +只有一个线程能执行,如 `ReentrantLock`。又可分为公平锁和非公平锁,`ReentrantLock` 同时支持两种锁,下面以 `ReentrantLock` 对这两种锁的定义做介绍: -- 公平锁:按照线程在队列中的排队顺序,先到者先拿到锁 -- 非公平锁:当线程要获取锁时,先通过两次 CAS 操作去抢锁,如果没抢到,当前线程再加入到队列中等待唤醒。 +- **公平锁** :按照线程在队列中的排队顺序,先到者先拿到锁 +- **非公平锁** :当线程要获取锁时,先通过两次 CAS 操作去抢锁,如果没抢到,当前线程再加入到队列中等待唤醒。 > 说明:下面这部分关于 `ReentrantLock` 源代码内容节选自:https://www.javadoop.com/post/AbstractQueuedSynchronizer-2 ,这是一篇很不错文章,推荐阅读。 @@ -138,7 +132,7 @@ static final class FairSync extends Sync { } ``` -非公平锁的 lock 方法: +非公平锁的 `lock` 方法: ```java static final class NonfairSync extends Sync { @@ -201,7 +195,7 @@ final boolean nonfairTryAcquire(int acquires) { 不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源 state 的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),AQS 已经在上层已经帮我们实现好了。 -#### 2.3 AQS 底层使用了模板方法模式 +### AQS 底层使用了模板方法模式 同步器的设计是基于模板方法模式的,如果需要自定义同步器一般的方式是这样(模板方法模式很经典的一个应用): @@ -210,7 +204,9 @@ final boolean nonfairTryAcquire(int acquires) { 这和我们以往通过实现接口的方式有很大区别,这是模板方法模式很经典的一个运用,下面简单的给大家介绍一下模板方法模式,模板方法模式是一个很容易理解的设计模式之一。 -> 模板方法模式是基于”继承“的,主要是为了在不改变模板结构的前提下在子类中重新定义模板中的内容以实现复用代码。举个很简单的例子假如我们要去一个地方的步骤是:购票`buyTicket()`->安检`securityCheck()`->乘坐某某工具回家`ride()`->到达目的地`arrive()`。我们可能乘坐不同的交通工具回家比如飞机或者火车,所以除了`ride()`方法,其他方法的实现几乎相同。我们可以定义一个包含了这些方法的抽象类,然后用户根据自己的需要继承该抽象类然后修改 `ride()`方法。 +> 模板方法模式是基于”继承“的,主要是为了在不改变模板结构的前提下在子类中重新定义模板中的内容以实现复用代码。 +> +> 举个很简单的例子假如我们要去一个地方的步骤是:购票 `buyTicket()`->安检 `securityCheck()`->乘坐某某工具回家 `ride()` ->到达目的地 `arrive()`。我们可能乘坐不同的交通工具回家比如飞机或者火车,所以除了`ride()`方法,其他方法的实现几乎相同。我们可以定义一个包含了这些方法的抽象类,然后用户根据自己的需要继承该抽象类然后修改 `ride()`方法。 **AQS 使用了模板方法模式,自定义同步器时需要重写下面几个 AQS 提供的模板方法:** @@ -220,25 +216,26 @@ tryAcquire(int)//独占方式。尝试获取资源,成功则返回true,失 tryRelease(int)//独占方式。尝试释放资源,成功则返回true,失败则返回false。 tryAcquireShared(int)//共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。 tryReleaseShared(int)//共享方式。尝试释放资源,成功则返回true,失败则返回false。 - ``` 默认情况下,每个方法都抛出 `UnsupportedOperationException`。 这些方法的实现必须是内部线程安全的,并且通常应该简短而不是阻塞。AQS 类中的其他方法都是 final ,所以无法被其他类使用,只有这几个方法可以被其他类使用。 以 `ReentrantLock` 为例,state 初始化为 0,表示未锁定状态。A 线程 `lock()` 时,会调用 `tryAcquire()`独占该锁并将 state+1。此后,其他线程再 `tryAcquire()` 时就会失败,直到 A 线程 unlock()到 state=0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A 线程自己是可以重复获取此锁的(state 会累加),这就是可重入的概念。但要注意,获取多少次就要释放多么次,这样才能保证 state 是能回到零态的。 -再以 `CountDownLatch` 以例,任务分为 N 个子线程去执行,state 也初始化为 N(注意 N 要与线程个数一致)。这 N 个子线程是并行执行的,每个子线程执行完后 `countDown()` 一次,state 会 CAS(Compare and Swap)减 1。等到所有子线程都执行完后(即 state=0),会 unpark()主调用线程,然后主调用线程就会从 `await()` 函数返回,继续后余动作。 +再以 `CountDownLatch` 以例,任务分为 N 个子线程去执行,state 也初始化为 N(也可以不初始化为 N,不初始化为 N,state 减到 0 也会从 await()返回)。这 N 个子线程是并行执行的,每个子线程执行完后 `countDown()` 一次,state 会 CAS(Compare and Swap)减 1。等到 `state=0`,会 `unpark()` 主调用线程,然后主调用线程就会从 `await()` 函数返回,继续后余动作。 + +所以 `CountDownLatch` 可以做倒计数器,减到 0 后唤醒的线程可以对线程池进行处理,比如关闭线程池。 一般来说,自定义同步器要么是独占方法,要么是共享方式,他们也只需实现`tryAcquire-tryRelease`、`tryAcquireShared-tryReleaseShared`中的一种即可。但 AQS 也支持自定义同步器同时实现独占和共享两种方式,如`ReentrantReadWriteLock`。 推荐两篇 AQS 原理和相关源码分析的文章: -- https://www.cnblogs.com/waterystone/p/4920797.html -- https://www.cnblogs.com/chengxiao/archive/2017/07/24/7141160.html +- [Java 并发之 AQS 详解](https://www.cnblogs.com/waterystone/p/4920797.html) +- [Java 并发包基石-AQS 详解](https://www.cnblogs.com/chengxiao/p/7141160.html) -### 3 Semaphore(信号量)-允许多个线程同时访问 +## Semaphore(信号量) -**`synchronized` 和 `ReentrantLock` 都是一次只允许一个线程访问某个资源,`Semaphore`(信号量)可以指定多个线程同时访问某个资源。** +`synchronized` 和 `ReentrantLock` 都是一次只允许一个线程访问某个资源,`Semaphore`(信号量)可以指定多个线程同时访问某个资源。 示例代码如下: @@ -285,24 +282,24 @@ public class SemaphoreExample1 { } ``` -执行 `acquire` 方法阻塞,直到有一个许可证可以获得然后拿走一个许可证;每个 `release` 方法增加一个许可证,这可能会释放一个阻塞的 acquire 方法。然而,其实并没有实际的许可证这个对象,`Semaphore` 只是维持了一个可获得许可证的数量。 `Semaphore` 经常用于限制获取某种资源的线程数量。 +执行 `acquire()` 方法阻塞,直到有一个许可证可以获得然后拿走一个许可证;每个 `release` 方法增加一个许可证,这可能会释放一个阻塞的 `acquire()` 方法。然而,其实并没有实际的许可证这个对象,`Semaphore` 只是维持了一个可获得许可证的数量。 `Semaphore` 经常用于限制获取某种资源的线程数量。 当然一次也可以一次拿取和释放多个许可,不过一般没有必要这样做: ```java semaphore.acquire(5);// 获取5个许可,所以可运行线程数量为20/5=4 test(threadnum); -semaphore.release(5);// 获取5个许可,所以可运行线程数量为20/5=4 +semaphore.release(5);// 释放5个许可 ``` -除了 `acquire`方法之外,另一个比较常用的与之对应的方法是`tryAcquire`方法,该方法如果获取不到许可就立即返回 false。 +除了 `acquire()` 方法之外,另一个比较常用的与之对应的方法是 `tryAcquire()` 方法,该方法如果获取不到许可就立即返回 false。 `Semaphore` 有两种模式,公平模式和非公平模式。 -- **公平模式:** 调用 acquire 的顺序就是获取许可证的顺序,遵循 FIFO; +- **公平模式:** 调用 `acquire()` 方法的顺序就是获取许可证的顺序,遵循 FIFO; - **非公平模式:** 抢占式的。 -**`Semaphore` 对应的两个构造方法如下:** +`Semaphore` 对应的两个构造方法如下: ```java public Semaphore(int permits) { @@ -319,20 +316,23 @@ semaphore.release(5);// 获取5个许可,所以可运行线程数量为20/5=4 [issue645 补充内容](https://github.com/Snailclimb/JavaGuide/issues/645) :`Semaphore` 与 `CountDownLatch` 一样,也是共享锁的一种实现。它默认构造 AQS 的 state 为 `permits`。当执行任务的线程数量超出 `permits`,那么多余的线程将会被放入阻塞队列 Park,并自旋判断 state 是否大于 0。只有当 state 大于 0 的时候,阻塞的线程才能继续执行,此时先前执行任务的线程继续执行 `release()` 方法,`release()` 方法使得 state 的变量会加 1,那么自旋的线程便会判断成功。 如此,每次只有最多不超过 `permits` 数量的线程能自旋成功,便限制了执行任务线程的数量。 -由于篇幅问题,如果对 `Semaphore` 源码感兴趣的朋友可以看下这篇文章:https://juejin.im/post/5ae755366fb9a07ab508adc6 - -### 4 CountDownLatch (倒计时器) +## CountDownLatch (倒计时器) `CountDownLatch` 允许 `count` 个线程阻塞在一个地方,直至所有线程的任务都执行完毕。 `CountDownLatch` 是共享锁的一种实现,它默认构造 AQS 的 `state` 值为 `count`。当线程使用 `countDown()` 方法时,其实使用了`tryReleaseShared`方法以 CAS 的操作来减少 `state`,直至 `state` 为 0 。当调用 `await()` 方法的时候,如果 `state` 不为 0,那就证明任务还没有执行完毕,`await()` 方法就会一直阻塞,也就是说 `await()` 方法之后的语句不会被执行。然后,`CountDownLatch` 会自旋 CAS 判断 `state == 0`,如果 `state == 0` 的话,就会释放所有等待的线程,`await()` 方法之后的语句得到执行。 -#### 4.1 CountDownLatch 的两种典型用法 +### CountDownLatch 的两种典型用法 -1. 某一线程在开始运行前等待 n 个线程执行完毕。将 `CountDownLatch` 的计数器初始化为 n :`new CountDownLatch(n)`,每当一个任务线程执行完毕,就将计数器减 1 `countdownlatch.countDown()`,当计数器的值变为 0 时,在`CountDownLatch上 await()` 的线程就会被唤醒。一个典型应用场景就是启动一个服务时,主线程需要等待多个组件加载完毕,之后再继续执行。 -2. 实现多个线程开始执行任务的最大并行性。注意是并行性,不是并发,强调的是多个线程在某一时刻同时开始执行。类似于赛跑,将多个线程放到起点,等待发令枪响,然后同时开跑。做法是初始化一个共享的 `CountDownLatch` 对象,将其计数器初始化为 1 :`new CountDownLatch(1)`,多个线程在开始执行任务前首先 `coundownlatch.await()`,当主线程调用 `countDown()` 时,计数器变为 0,多个线程同时被唤醒。 +**1、某一线程在开始运行前等待 n 个线程执行完毕。** -#### 4.2 CountDownLatch 的使用示例 +将 `CountDownLatch` 的计数器初始化为 n (`new CountDownLatch(n)`),每当一个任务线程执行完毕,就将计数器减 1 (`countdownlatch.countDown()`),当计数器的值变为 0 时,在 `CountDownLatch 上 await()` 的线程就会被唤醒。一个典型应用场景就是启动一个服务时,主线程需要等待多个组件加载完毕,之后再继续执行。 + +**2、实现多个线程开始执行任务的最大并行性。** + +注意是并行性,不是并发,强调的是多个线程在某一时刻同时开始执行。类似于赛跑,将多个线程放到起点,等待发令枪响,然后同时开跑。做法是初始化一个共享的 `CountDownLatch` 对象,将其计数器初始化为 1 (`new CountDownLatch(1)`),多个线程在开始执行任务前首先 `coundownlatch.await()`,当主线程调用 `countDown()` 时,计数器变为 0,多个线程同时被唤醒。 + +### CountDownLatch 的使用示例 ```java /** @@ -379,7 +379,7 @@ public class CountDownLatchExample1 { 上面的代码中,我们定义了请求的数量为 550,当这 550 个请求被处理完成之后,才会执行`System.out.println("finish");`。 -与 CountDownLatch 的第一次交互是主线程等待其他线程。主线程必须在启动其他线程后立即调用 `CountDownLatch.await()` 方法。这样主线程的操作就会在这个方法上阻塞,直到其他线程完成各自的任务。 +与 `CountDownLatch` 的第一次交互是主线程等待其他线程。主线程必须在启动其他线程后立即调用 `CountDownLatch.await()` 方法。这样主线程的操作就会在这个方法上阻塞,直到其他线程完成各自的任务。 其他 N 个线程必须引用闭锁对象,因为他们需要通知 `CountDownLatch` 对象,他们已经完成了各自的任务。这种通知机制是通过 `CountDownLatch.countDown()`方法来完成的;每调用一次这个方法,在构造函数中初始化的 count 值就减 1。所以当 N 个线程都调 用了这个方法,count 的值等于 0,然后主线程就能通过 `await()`方法,恢复执行自己的任务。 @@ -393,29 +393,25 @@ for (int i = 0; i < threadCount-1; i++) { 这样就导致 `count` 的值没办法等于 0,然后就会导致一直等待。 -如果对 `CountDownLatch` 源码感兴趣的朋友,可以查看: [【JUC】JDK1.8 源码分析之 CountDownLatch(五)](https://www.cnblogs.com/leesf456/p/5406191.html) - -#### 4.3 CountDownLatch 的不足 +### CountDownLatch 的不足 `CountDownLatch` 是一次性的,计数器的值只能在构造方法中初始化一次,之后没有任何机制再次对其设置值,当 `CountDownLatch` 使用完毕后,它不能再次被使用。 -#### 4.4 CountDownLatch 相常见面试题 +### CountDownLatch 相常见面试题 -解释一下 `CountDownLatch` 概念? +- `CountDownLatch` 怎么用?应用场景是什么? +- `CountDownLatch` 和 `CyclicBarrier` 的不同之处? +- `CountDownLatch` 类中主要的方法? -`CountDownLatch` 和 `CyclicBarrier` 的不同之处? - -给出一些 `CountDownLatch` 使用的例子? - -`CountDownLatch` 类中主要的方法? - -### 5 CyclicBarrier(循环栅栏) +## CyclicBarrier(循环栅栏) `CyclicBarrier` 和 `CountDownLatch` 非常类似,它也可以实现线程间的技术等待,但是它的功能比 `CountDownLatch` 更加复杂和强大。主要应用场景和 `CountDownLatch` 类似。 -> `CountDownLatch` 的实现是基于 AQS 的,而 `CycliBarrier` 是基于 `ReentrantLock`(`ReentrantLock` 也属于 AQS 同步器)和 `Condition` 的. +> `CountDownLatch` 的实现是基于 AQS 的,而 `CycliBarrier` 是基于 `ReentrantLock`(`ReentrantLock` 也属于 AQS 同步器)和 `Condition` 的。 + +`CyclicBarrier` 的字面意思是可循环使用(Cyclic)的屏障(Barrier)。它要做的事情是:让一组线程到达一个屏障(也可以叫同步点)时被阻塞,直到最后一个线程到达屏障时,屏障才会开门,所有被屏障拦截的线程才会继续干活。 -CyclicBarrier 的字面意思是可循环使用(Cyclic)的屏障(Barrier)。它要做的事情是,让一组线程到达一个屏障(也可以叫同步点)时被阻塞,直到最后一个线程到达屏障时,屏障才会开门,所有被屏障拦截的线程才会继续干活。CyclicBarrier 默认的构造方法是 `CyclicBarrier(int parties)`,其参数表示屏障拦截的线程数量,每个线程调用`await`方法告诉 CyclicBarrier 我已经到达了屏障,然后当前线程被阻塞。 +`CyclicBarrier` 默认的构造方法是 `CyclicBarrier(int parties)`,其参数表示屏障拦截的线程数量,每个线程调用 `await()` 方法告诉 `CyclicBarrier` 我已经到达了屏障,然后当前线程被阻塞。 再来看一下它的构造函数: @@ -434,11 +430,11 @@ public CyclicBarrier(int parties, Runnable barrierAction) { 其中,parties 就代表了有拦截的线程的数量,当拦截的线程数量达到这个值的时候就打开栅栏,让所有线程通过。 -#### 5.1 CyclicBarrier 的应用场景 +### CyclicBarrier 的应用场景 `CyclicBarrier` 可以用于多线程计算数据,最后合并计算结果的应用场景。比如我们用一个 Excel 保存了用户所有银行流水,每个 Sheet 保存一个帐户近一年的每笔银行流水,现在需要统计用户的日均银行流水,先用多线程处理每个 sheet 里的银行流水,都执行完之后,得到每个 sheet 的日均银行流水,最后,再用 barrierAction 用这些线程的计算结果,计算出整个 Excel 的日均银行流水。 -#### 5.2 CyclicBarrier 的使用示例 +### CyclicBarrier 的使用示例 示例 1: @@ -517,9 +513,9 @@ threadnum:6is finish ...... ``` -可以看到当线程数量也就是请求数量达到我们定义的 5 个的时候, `await`方法之后的方法才被执行。 +可以看到当线程数量也就是请求数量达到我们定义的 5 个的时候, `await()` 方法之后的方法才被执行。 -另外,`CyclicBarrier` 还提供一个更高级的构造函数`CyclicBarrier(int parties, Runnable barrierAction)`,用于在线程到达屏障时,优先执行`barrierAction`,方便处理更复杂的业务场景。示例代码如下: +另外,`CyclicBarrier` 还提供一个更高级的构造函数 `CyclicBarrier(int parties, Runnable barrierAction)`,用于在线程到达屏障时,优先执行 `barrierAction`,方便处理更复杂的业务场景。示例代码如下: ```java /** @@ -595,18 +591,18 @@ threadnum:7is finish ...... ``` -#### 5.3 `CyclicBarrier`源码分析 +### CyclicBarrier 源码分析 -当调用 `CyclicBarrier` 对象调用 `await()` 方法时,实际上调用的是`dowait(false, 0L)`方法。 `await()` 方法就像树立起一个栅栏的行为一样,将线程挡住了,当拦住的线程数量达到 `parties` 的值时,栅栏才会打开,线程才得以通过执行。 +当调用 `CyclicBarrier` 对象调用 `await()` 方法时,实际上调用的是 `dowait(false, 0L)`方法。 `await()` 方法就像树立起一个栅栏的行为一样,将线程挡住了,当拦住的线程数量达到 `parties` 的值时,栅栏才会打开,线程才得以通过执行。 ```java - public int await() throws InterruptedException, BrokenBarrierException { - try { - return dowait(false, 0L); - } catch (TimeoutException toe) { - throw new Error(toe); // cannot happen - } - } +public int await() throws InterruptedException, BrokenBarrierException { + try { + return dowait(false, 0L); + } catch (TimeoutException toe) { + throw new Error(toe); // cannot happen + } +} ``` `dowait(false, 0L)`: @@ -692,11 +688,11 @@ threadnum:7is finish ``` -总结:`CyclicBarrier` 内部通过一个 count 变量作为计数器,cout 的初始值为 parties 属性的初始化值,每当一个线程到了栅栏这里了,那么就将计数器减一。如果 count 值为 0 了,表示这是这一代最后一个线程到达栅栏,就尝试执行我们构造方法中输入的任务。 +总结:`CyclicBarrier` 内部通过一个 count 变量作为计数器,count 的初始值为 parties 属性的初始化值,每当一个线程到了栅栏这里了,那么就将计数器减一。如果 count 值为 0 了,表示这是这一代最后一个线程到达栅栏,就尝试执行我们构造方法中输入的任务。 -#### 5.4 CyclicBarrier 和 CountDownLatch 的区别 +### CyclicBarrier 和 CountDownLatch 的区别 -**下面这个是国外一个大佬的回答:** +下面这个是国外一个大佬的回答: `CountDownLatch` 是计数器,只能使用一次,而 `CyclicBarrier` 的计数器提供 `reset` 功能,可以多次使用。但是我不那么认为它们之间的区别仅仅就是这么简单的一点。我们来从 jdk 作者设计的目的来看,javadoc 是这么描述它们的: @@ -707,22 +703,6 @@ threadnum:7is finish `CountDownLatch` 是计数器,线程完成一个记录一个,只不过计数不是递增而是递减,而 `CyclicBarrier` 更像是一个阀门,需要所有线程都到达,阀门才能打开,然后继续执行。 -### 6 ReentrantLock 和 ReentrantReadWriteLock +### ReentrantLock 和 ReentrantReadWriteLock `ReentrantLock` 和 `synchronized` 的区别在上面已经讲过了这里就不多做讲解。另外,需要注意的是:读写锁 `ReentrantReadWriteLock` 可以保证多个线程可以同时读,所以在读操作远大于写操作的时候,读写锁就非常有用了。 - -### 参考 - -- https://juejin.im/post/5ae755256fb9a07ac3634067 -- https://blog.csdn.net/u010185262/article/details/54692886 -- https://blog.csdn.net/tolcf/article/details/50925145?utm_source=blogxgwz0 - -### 公众号 - -如果大家想要实时关注我更新的文章以及分享的干货的话,可以关注我的公众号。 - -**《Java 面试突击》:** 由本文档衍生的专为面试而生的《Java 面试突击》V2.0 PDF 版本[公众号](#公众号 "公众号")后台回复 **"面试突击"** 即可免费领取! - -**Java 工程师必备学习资源:** 一些 Java 工程师常用学习资源公众号后台回复关键字 **“1”** 即可免费无套路获取。 - -![我的公众号](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-6/167598cd2e17b8ec.png) \ No newline at end of file diff --git "a/docs/java/multi-thread/Atomic\345\216\237\345\255\220\347\261\273\346\200\273\347\273\223.md" "b/docs/java/concurrent/atomic\345\216\237\345\255\220\347\261\273\346\200\273\347\273\223.md" similarity index 84% rename from "docs/java/multi-thread/Atomic\345\216\237\345\255\220\347\261\273\346\200\273\347\273\223.md" rename to "docs/java/concurrent/atomic\345\216\237\345\255\220\347\261\273\346\200\273\347\273\223.md" index 6140b5b031c..7628e1fe7d2 100644 --- "a/docs/java/multi-thread/Atomic\345\216\237\345\255\220\347\261\273\346\200\273\347\273\223.md" +++ "b/docs/java/concurrent/atomic\345\216\237\345\255\220\347\261\273\346\200\273\347\273\223.md" @@ -1,30 +1,12 @@ -点击关注[公众号](#公众号)及时获取笔主最新更新文章,并可免费领取本文档配套的《Java面试突击》以及Java工程师必备学习资源。 - -> 个人觉得这一节掌握基本的使用即可! - - - -- [1 Atomic 原子类介绍](#1-atomic-原子类介绍) -- [2 基本类型原子类](#2-基本类型原子类) - - [2.1 基本类型原子类介绍](#21-基本类型原子类介绍) - - [2.2 AtomicInteger 常见方法使用](#22-atomicinteger-常见方法使用) - - [2.3 基本数据类型原子类的优势](#23-基本数据类型原子类的优势) - - [2.4 AtomicInteger 线程安全原理简单分析](#24-atomicinteger-线程安全原理简单分析) -- [3 数组类型原子类](#3-数组类型原子类) - - [3.1 数组类型原子类介绍](#31-数组类型原子类介绍) - - [3.2 AtomicIntegerArray 常见方法使用](#32-atomicintegerarray-常见方法使用) -- [4 引用类型原子类](#4-引用类型原子类) - - [4.1 引用类型原子类介绍](#41--引用类型原子类介绍) - - [4.2 AtomicReference 类使用示例](#42-atomicreference-类使用示例) - - [4.3 AtomicStampedReference 类使用示例](#43-atomicstampedreference-类使用示例) - - [4.4 AtomicMarkableReference 类使用示例](#44-atomicmarkablereference-类使用示例) -- [5 对象的属性修改类型原子类](#5-对象的属性修改类型原子类) - - [5.1 对象的属性修改类型原子类介绍](#51-对象的属性修改类型原子类介绍) - - [5.2 AtomicIntegerFieldUpdater 类使用示例](#52-atomicintegerfieldupdater-类使用示例) - - - -### 1 Atomic 原子类介绍 +--- +title: Atomic 原子类总结 +category: Java +tag: + - Java并发 +--- + + +## Atomic 原子类介绍 Atomic 翻译成中文是原子的意思。在化学上,我们知道原子是构成一般物质的最小单位,在化学反应中是不可分割的。在我们这里 Atomic 是指一个操作是不可中断的。即使是在多个线程一起执行的时候,一个操作一旦开始,就不会被其他线程干扰。 @@ -34,21 +16,20 @@ Atomic 翻译成中文是原子的意思。在化学上,我们知道原子是 ![JUC原子类概览](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-6/JUC原子类概览.png) -根据操作的数据类型,可以将JUC包中的原子类分为4类 +根据操作的数据类型,可以将 JUC 包中的原子类分为 4 类 -**基本类型** +**基本类型** 使用原子的方式更新基本类型 - AtomicInteger:整型原子类 - AtomicLong:长整型原子类 -- AtomicBoolean :布尔型原子类 +- AtomicBoolean :布尔型原子类 **数组类型** 使用原子的方式更新数组里的某个元素 - - AtomicIntegerArray:整型数组原子类 - AtomicLongArray:长整型数组原子类 - AtomicReferenceArray :引用类型数组原子类 @@ -65,7 +46,7 @@ Atomic 翻译成中文是原子的意思。在化学上,我们知道原子是 - AtomicLongFieldUpdater:原子更新长整型字段的更新器 - AtomicReferenceFieldUpdater:原子更新引用类型里的字段 -> **🐛 修正(参见:[issue#626](https://github.com/Snailclimb/JavaGuide/issues/626))** : `AtomicMarkableReference` 不能解决ABA问题。 +> **🐛 修正(参见:[issue#626](https://github.com/Snailclimb/JavaGuide/issues/626))** : `AtomicMarkableReference` 不能解决 ABA 问题。 ```java /** @@ -80,7 +61,7 @@ AtomicMarkableReference是将一个boolean值作是否有更改的标记,本 */ public class SolveABAByAtomicMarkableReference { - + private static AtomicMarkableReference atomicMarkableReference = new AtomicMarkableReference(100, false); public static void main(String[] args) { @@ -113,9 +94,10 @@ public class SolveABAByAtomicMarkableReference { ``` **CAS ABA 问题** + - 描述: 第一个线程取到了变量 x 的值 A,然后巴拉巴拉干别的事,总之就是只拿到了变量 x 的值 A。这段时间内第二个线程也取到了变量 x 的值 A,然后把变量 x 的值改为 B,然后巴拉巴拉干别的事,最后又把变量 x 的值变为 A (相当于还原了)。在这之后第一个线程终于进行了变量 x 的操作,但是此时变量 x 的值还是 A,所以 compareAndSet 操作是成功。 - 例子描述(可能不太合适,但好理解): 年初,现金为零,然后通过正常劳动赚了三百万,之后正常消费了(比如买房子)三百万。年末,虽然现金零收入(可能变成其他形式了),但是赚了钱是事实,还是得交税的! -- 代码例子(以``` AtomicInteger ```为例) +- 代码例子(以`AtomicInteger`为例) ```java import java.util.concurrent.atomic.AtomicInteger; @@ -189,19 +171,19 @@ Thread-0 ------ currentValue=1, finalValue=2, compareAndSet Result=true 下面我们来详细介绍一下这些原子类。 -### 2 基本类型原子类 +## 基本类型原子类 -#### 2.1 基本类型原子类介绍 +### 基本类型原子类介绍 使用原子的方式更新基本类型 - AtomicInteger:整型原子类 - AtomicLong:长整型原子类 -- AtomicBoolean :布尔型原子类 +- AtomicBoolean :布尔型原子类 上面三个类提供的方法几乎相同,所以我们这里以 AtomicInteger 为例子来介绍。 - **AtomicInteger 类常用方法** +**AtomicInteger 类常用方法** ```java public final int get() //获取当前的值 @@ -213,7 +195,7 @@ boolean compareAndSet(int expect, int update) //如果输入的数值等于预 public final void lazySet(int newValue)//最终设置为newValue,使用 lazySet 设置之后可能导致其他线程在之后的一小段时间内还是可以读到旧的值。 ``` -#### 2.2 AtomicInteger 常见方法使用 +### AtomicInteger 常见方法使用 ```java import java.util.concurrent.atomic.AtomicInteger; @@ -235,18 +217,18 @@ public class AtomicIntegerTest { } ``` -#### 2.3 基本数据类型原子类的优势 +### 基本数据类型原子类的优势 通过一个简单例子带大家看一下基本数据类型原子类的优势 -**①多线程环境不使用原子类保证线程安全(基本数据类型)** +**① 多线程环境不使用原子类保证线程安全(基本数据类型)** ```java class Test { private volatile int count = 0; //若要线程安全执行执行count++,需要加锁 public synchronized void increment() { - count++; + count++; } public int getCount() { @@ -254,7 +236,8 @@ class Test { } } ``` -**②多线程环境使用原子类保证线程安全(基本数据类型)** + +**② 多线程环境使用原子类保证线程安全(基本数据类型)** ```java class Test2 { @@ -270,7 +253,8 @@ class Test2 { } ``` -#### 2.4 AtomicInteger 线程安全原理简单分析 + +### AtomicInteger 线程安全原理简单分析 AtomicInteger 类的部分源码: @@ -291,16 +275,14 @@ AtomicInteger 类的部分源码: AtomicInteger 类主要利用 CAS (compare and swap) + volatile 和 native 方法来保证原子操作,从而避免 synchronized 的高开销,执行效率大为提升。 -CAS的原理是拿期望的值和原本的一个值作比较,如果相同则更新成新的值。UnSafe 类的 objectFieldOffset() 方法是一个本地方法,这个方法是用来拿到“原来的值”的内存地址。另外 value 是一个volatile变量,在内存中可见,因此 JVM 可以保证任何时刻任何线程总能拿到该变量的最新值。 - +CAS 的原理是拿期望的值和原本的一个值作比较,如果相同则更新成新的值。UnSafe 类的 objectFieldOffset() 方法是一个本地方法,这个方法是用来拿到“原来的值”的内存地址。另外 value 是一个 volatile 变量,在内存中可见,因此 JVM 可以保证任何时刻任何线程总能拿到该变量的最新值。 -### 3 数组类型原子类 +## 数组类型原子类 -#### 3.1 数组类型原子类介绍 +### 数组类型原子类介绍 使用原子的方式更新数组里的某个元素 - - AtomicIntegerArray:整形数组原子类 - AtomicLongArray:长整形数组原子类 - AtomicReferenceArray :引用类型数组原子类 @@ -318,7 +300,8 @@ public final int getAndAdd(int i, int delta) //获取 index=i 位置元素的值 boolean compareAndSet(int i, int expect, int update) //如果输入的数值等于预期值,则以原子方式将 index=i 位置的元素值设置为输入值(update) public final void lazySet(int i, int newValue)//最终 将index=i 位置的元素设置为newValue,使用 lazySet 设置之后可能导致其他线程在之后的一小段时间内还是可以读到旧的值。 ``` -#### 3.2 AtomicIntegerArray 常见方法使用 + +### AtomicIntegerArray 常见方法使用 ```java @@ -345,9 +328,9 @@ public class AtomicIntegerArrayTest { } ``` -### 4 引用类型原子类 +## 引用类型原子类 -#### 4.1 引用类型原子类介绍 +### 引用类型原子类介绍 基本类型原子类只能更新一个变量,如果需要原子更新多个变量,需要使用 引用类型原子类。 @@ -357,7 +340,7 @@ public class AtomicIntegerArrayTest { 上面三个类提供的方法几乎相同,所以我们这里以 AtomicReference 为例子来介绍。 -#### 4.2 AtomicReference 类使用示例 +### AtomicReference 类使用示例 ```java import java.util.concurrent.atomic.AtomicReference; @@ -404,13 +387,15 @@ class Person { } ``` + 上述代码首先创建了一个 Person 对象,然后把 Person 对象设置进 AtomicReference 对象中,然后调用 compareAndSet 方法,该方法就是通过 CAS 操作设置 ar。如果 ar 的值为 person 的话,则将其设置为 updatePerson。实现原理与 AtomicInteger 类中的 compareAndSet 方法相同。运行上面的代码后的输出结果如下: ``` Daisy 20 ``` -#### 4.3 AtomicStampedReference 类使用示例 + +### AtomicStampedReference 类使用示例 ```java import java.util.concurrent.atomic.AtomicStampedReference; @@ -459,6 +444,7 @@ public class AtomicStampedReferenceDemo { ``` 输出结果如下: + ``` currentValue=0, currentStamp=0 currentValue=666, currentStamp=999, casResult=true @@ -468,9 +454,9 @@ currentValue=0, currentStamp=0 currentValue=666, currentStamp=999, wCasResult=true ``` -#### 4.4 AtomicMarkableReference 类使用示例 +### AtomicMarkableReference 类使用示例 -``` java +```java import java.util.concurrent.atomic.AtomicMarkableReference; public class AtomicMarkableReferenceDemo { @@ -517,6 +503,7 @@ public class AtomicMarkableReferenceDemo { ``` 输出结果如下: + ``` currentValue=null, currentMark=false currentValue=true, currentMark=true, casResult=true @@ -526,9 +513,9 @@ currentValue=null, currentMark=false currentValue=true, currentMark=true, wCasResult=true ``` -### 5 对象的属性修改类型原子类 +## 对象的属性修改类型原子类 -#### 5.1 对象的属性修改类型原子类介绍 +### 对象的属性修改类型原子类介绍 如果需要原子更新某个类里的某个字段时,需要用到对象的属性修改类型原子类。 @@ -540,7 +527,7 @@ currentValue=true, currentMark=true, wCasResult=true 上面三个类提供的方法几乎相同,所以我们这里以 `AtomicIntegerFieldUpdater`为例子来介绍。 -#### 5.2 AtomicIntegerFieldUpdater 类使用示例 +### AtomicIntegerFieldUpdater 类使用示例 ```java import java.util.concurrent.atomic.AtomicIntegerFieldUpdater; @@ -593,14 +580,4 @@ class User { ## Reference -- 《Java并发编程的艺术》 - -## 公众号 - -如果大家想要实时关注我更新的文章以及分享的干货的话,可以关注我的公众号。 - -**《Java面试突击》:** 由本文档衍生的专为面试而生的《Java面试突击》V2.0 PDF 版本[公众号](#公众号)后台回复 **"面试突击"** 即可免费领取! - -**Java工程师必备学习资源:** 一些Java工程师常用学习资源公众号后台回复关键字 **“1”** 即可免费无套路获取。 - -![我的公众号](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-6/167598cd2e17b8ec.png) \ No newline at end of file +- 《Java 并发编程的艺术》 diff --git a/docs/java/concurrent/completablefuture-intro.md b/docs/java/concurrent/completablefuture-intro.md new file mode 100644 index 00000000000..810d5a61708 --- /dev/null +++ b/docs/java/concurrent/completablefuture-intro.md @@ -0,0 +1,526 @@ +--- +title: CompletableFuture入门 +category: Java +tag: + - Java并发 +--- + + +自己在项目中使用 `CompletableFuture` 比较多,看到很多开源框架中也大量使用到了 `CompletableFuture` 。 + +因此,专门写一篇文章来介绍这个 Java 8 才被引入的一个非常有用的用于异步编程的类。 + +## 简单介绍 + +`CompletableFuture` 同时实现了 `Future` 和 `CompletionStage` 接口。 + +```java +public class CompletableFuture implements Future, CompletionStage { +} +``` + +`CompletableFuture` 除了提供了更为好用和强大的 `Future` 特性之外,还提供了函数式编程的能力。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/javaguide/image-20210902092441434.png) + +`Future` 接口有 5 个方法: + +- `boolean cancel(boolean mayInterruptIfRunning)` :尝试取消执行任务。 +- `boolean isCancelled()` :判断任务是否被取消。 +- `boolean isDone()` : 判断任务是否已经被执行完成。 +- `get()` :等待任务执行完成并获取运算结果。 +- `get(long timeout, TimeUnit unit)` :多了一个超时时间。 + +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/javaguide/image-20210902093026059.png) + +`CompletionStage` 接口中的方法比较多,`CompletableFuture` 的函数式能力就是这个接口赋予的。从这个接口的方法参数你就可以发现其大量使用了 Java8 引入的函数式编程。 + +由于方法众多,所以这里不能一一讲解,下文中我会介绍大部分常见方法的使用。 + +## 常见操作 + +### 创建 CompletableFuture + +常见的创建 `CompletableFuture` 对象的方法如下: + +1. 通过 new 关键字。 +2. 基于 `CompletableFuture` 自带的静态工厂方法:`runAsync()` 、`supplyAsync()` 。 + +#### new 关键字 + +通过 new 关键字创建 `CompletableFuture` 对象这种使用方式可以看作是将 `CompletableFuture` 当做 `Future` 来使用。 + +我在我的开源项目 [guide-rpc-framework](https://github.com/Snailclimb/guide-rpc-framework) 中就是这种方式创建的 `CompletableFuture` 对象。 + +下面咱们来看一个简单的案例。 + +我们通过创建了一个结果值类型为 `RpcResponse` 的 `CompletableFuture`,你可以把 `resultFuture` 看作是异步运算结果的载体。 + +```java +CompletableFuture> resultFuture = new CompletableFuture<>(); +``` + +假设在未来的某个时刻,我们得到了最终的结果。这时,我们可以调用 `complete()` 方法为其传入结果,这表示 `resultFuture` 已经被完成了。 + +```java +// complete() 方法只能调用一次,后续调用将被忽略。 +resultFuture.complete(rpcResponse); +``` + +你可以通过 `isDone()` 方法来检查是否已经完成。 + +```java +public boolean isDone() { + return result != null; +} +``` + +获取异步计算的结果也非常简单,直接调用 `get()` 方法即可! + +```java +rpcResponse = completableFuture.get(); +``` + +注意 : `get()` 方法并不会阻塞,因为我们已经知道异步运算的结果了。 + +如果你已经知道计算的结果的话,可以使用静态方法 `completedFuture()` 来创建 `CompletableFuture` 。 + +```java +CompletableFuture future = CompletableFuture.completedFuture("hello!"); +assertEquals("hello!", future.get()); +``` + +`completedFuture()` 方法底层调用的是带参数的 new 方法,只不过,这个方法不对外暴露。 + +```java +public static CompletableFuture completedFuture(U value) { + return new CompletableFuture((value == null) ? NIL : value); +} +``` + +#### 静态工厂方法 + +这两个方法可以帮助我们封装计算逻辑。 + +```java +static CompletableFuture supplyAsync(Supplier supplier); +// 使用自定义线程池(推荐) +static CompletableFuture supplyAsync(Supplier supplier, Executor executor); +static CompletableFuture runAsync(Runnable runnable); +// 使用自定义线程池(推荐) +static CompletableFuture runAsync(Runnable runnable, Executor executor); +``` + +`runAsync()` 方法接受的参数是 `Runnable` ,这是一个函数式接口,不允许返回值。当你需要异步操作且不关心返回结果的时候可以使用 `runAsync()` 方法。 + +```java +@FunctionalInterface +public interface Runnable { + public abstract void run(); +} +``` + +`supplyAsync()` 方法接受的参数是 `Supplier` ,这也是一个函数式接口,`U` 是返回结果值的类型。 + +```java +@FunctionalInterface +public interface Supplier { + + /** + * Gets a result. + * + * @return a result + */ + T get(); +} +``` + +当你需要异步操作且关心返回结果的时候,可以使用 `supplyAsync()` 方法。 + +```java +CompletableFuture future = CompletableFuture.runAsync(() -> System.out.println("hello!")); +future.get();// 输出 "hello!" +CompletableFuture future2 = CompletableFuture.supplyAsync(() -> "hello!"); +assertEquals("hello!", future2.get()); +``` + +### 处理异步结算的结果 + +当我们获取到异步计算的结果之后,还可以对其进行进一步的处理,比较常用的方法有下面几个: + +- `thenApply()` +- `thenAccept()` +- `thenRun()` +- `whenComplete()` + +`thenApply()` 方法接受一个 `Function` 实例,用它来处理结果。 + +```java +// 沿用上一个任务的线程池 +public CompletableFuture thenApply( + Function fn) { + return uniApplyStage(null, fn); +} + +//使用默认的 ForkJoinPool 线程池(不推荐) +public CompletableFuture thenApplyAsync( + Function fn) { + return uniApplyStage(defaultExecutor(), fn); +} +// 使用自定义线程池(推荐) +public CompletableFuture thenApplyAsync( + Function fn, Executor executor) { + return uniApplyStage(screenExecutor(executor), fn); +} +``` + +`thenApply()` 方法使用示例如下: + +```java +CompletableFuture future = CompletableFuture.completedFuture("hello!") + .thenApply(s -> s + "world!"); +assertEquals("hello!world!", future.get()); +// 这次调用将被忽略。 +future.thenApply(s -> s + "nice!"); +assertEquals("hello!world!", future.get()); +``` + +你还可以进行 **流式调用**: + +```java +CompletableFuture future = CompletableFuture.completedFuture("hello!") + .thenApply(s -> s + "world!").thenApply(s -> s + "nice!"); +assertEquals("hello!world!nice!", future.get()); +``` + +**如果你不需要从回调函数中获取返回结果,可以使用 `thenAccept()` 或者 `thenRun()`。这两个方法的区别在于 `thenRun()` 不能访问异步计算的结果。** + +`thenAccept()` 方法的参数是 `Consumer` 。 + +```java +public CompletableFuture thenAccept(Consumer action) { + return uniAcceptStage(null, action); +} + +public CompletableFuture thenAcceptAsync(Consumer action) { + return uniAcceptStage(defaultExecutor(), action); +} + +public CompletableFuture thenAcceptAsync(Consumer action, + Executor executor) { + return uniAcceptStage(screenExecutor(executor), action); +} +``` + +顾名思义,`Consumer` 属于消费型接口,它可以接收 1 个输入对象然后进行“消费”。 + +```java +@FunctionalInterface +public interface Consumer { + + void accept(T t); + + default Consumer andThen(Consumer after) { + Objects.requireNonNull(after); + return (T t) -> { accept(t); after.accept(t); }; + } +} +``` + +`thenRun()` 的方法是的参数是 `Runnable` 。 + +```java +public CompletableFuture thenRun(Runnable action) { + return uniRunStage(null, action); +} + +public CompletableFuture thenRunAsync(Runnable action) { + return uniRunStage(defaultExecutor(), action); +} + +public CompletableFuture thenRunAsync(Runnable action, + Executor executor) { + return uniRunStage(screenExecutor(executor), action); +} +``` + +`thenAccept()` 和 `thenRun()` 使用示例如下: + +```java +CompletableFuture.completedFuture("hello!") + .thenApply(s -> s + "world!").thenApply(s -> s + "nice!").thenAccept(System.out::println);//hello!world!nice! + +CompletableFuture.completedFuture("hello!") + .thenApply(s -> s + "world!").thenApply(s -> s + "nice!").thenRun(() -> System.out.println("hello!"));//hello! +``` + +`whenComplete()` 的方法的参数是 `BiConsumer` 。 + +```java +public CompletableFuture whenComplete( + BiConsumer action) { + return uniWhenCompleteStage(null, action); +} + + +public CompletableFuture whenCompleteAsync( + BiConsumer action) { + return uniWhenCompleteStage(defaultExecutor(), action); +} +// 使用自定义线程池(推荐) +public CompletableFuture whenCompleteAsync( + BiConsumer action, Executor executor) { + return uniWhenCompleteStage(screenExecutor(executor), action); +} +``` + +相对于 `Consumer` , `BiConsumer` 可以接收 2 个输入对象然后进行“消费”。 + +```java +@FunctionalInterface +public interface BiConsumer { + void accept(T t, U u); + + default BiConsumer andThen(BiConsumer after) { + Objects.requireNonNull(after); + + return (l, r) -> { + accept(l, r); + after.accept(l, r); + }; + } +} +``` + +`whenComplete()` 使用示例如下: + +```java +CompletableFuture future = CompletableFuture.supplyAsync(() -> "hello!") + .whenComplete((res, ex) -> { + // res 代表返回的结果 + // ex 的类型为 Throwable ,代表抛出的异常 + System.out.println(res); + // 这里没有抛出异常所有为 null + assertNull(ex); + }); +assertEquals("hello!", future.get()); +``` + +### 异常处理 + +你可以通过 `handle()` 方法来处理任务执行过程中可能出现的抛出异常的情况。 + +```java +public CompletableFuture handle( + BiFunction fn) { + return uniHandleStage(null, fn); +} + +public CompletableFuture handleAsync( + BiFunction fn) { + return uniHandleStage(defaultExecutor(), fn); +} + +public CompletableFuture handleAsync( + BiFunction fn, Executor executor) { + return uniHandleStage(screenExecutor(executor), fn); +} +``` + +示例代码如下: + +```java +CompletableFuture future + = CompletableFuture.supplyAsync(() -> { + if (true) { + throw new RuntimeException("Computation error!"); + } + return "hello!"; +}).handle((res, ex) -> { + // res 代表返回的结果 + // ex 的类型为 Throwable ,代表抛出的异常 + return res != null ? res : "world!"; +}); +assertEquals("world!", future.get()); +``` + +你还可以通过 `exceptionally()` 方法来处理异常情况。 + +```java +CompletableFuture future + = CompletableFuture.supplyAsync(() -> { + if (true) { + throw new RuntimeException("Computation error!"); + } + return "hello!"; +}).exceptionally(ex -> { + System.out.println(ex.toString());// CompletionException + return "world!"; +}); +assertEquals("world!", future.get()); +``` + +如果你想让 `CompletableFuture` 的结果就是异常的话,可以使用 `completeExceptionally()` 方法为其赋值。 + +```java +CompletableFuture completableFuture = new CompletableFuture<>(); +// ... +completableFuture.completeExceptionally( + new RuntimeException("Calculation failed!")); +// ... +completableFuture.get(); // ExecutionException +``` + +### 组合 CompletableFuture + +你可以使用 `thenCompose()` 按顺序链接两个 `CompletableFuture` 对象。 + +```java +public CompletableFuture thenCompose( + Function> fn) { + return uniComposeStage(null, fn); +} + +public CompletableFuture thenComposeAsync( + Function> fn) { + return uniComposeStage(defaultExecutor(), fn); +} + +public CompletableFuture thenComposeAsync( + Function> fn, + Executor executor) { + return uniComposeStage(screenExecutor(executor), fn); +} +``` + +`thenCompose()` 方法会使用示例如下: + +```java +CompletableFuture future + = CompletableFuture.supplyAsync(() -> "hello!") + .thenCompose(s -> CompletableFuture.supplyAsync(() -> s + "world!")); +assertEquals("hello!world!", future.get()); +``` + +在实际开发中,这个方法还是非常有用的。比如说,我们先要获取用户信息然后再用用户信息去做其他事情。 + +和 `thenCompose()` 方法类似的还有 `thenCombine()` 方法, `thenCombine()` 同样可以组合两个 `CompletableFuture` 对象。 + +```java +CompletableFuture completableFuture + = CompletableFuture.supplyAsync(() -> "hello!") + .thenCombine(CompletableFuture.supplyAsync( + () -> "world!"), (s1, s2) -> s1 + s2) + .thenCompose(s -> CompletableFuture.supplyAsync(() -> s + "nice!")); +assertEquals("hello!world!nice!", completableFuture.get()); +``` + +**那 `thenCompose()` 和 `thenCombine()` 有什么区别呢?** + +- `thenCompose()` 可以两个 `CompletableFuture` 对象,并将前一个任务的返回结果作为下一个任务的参数,它们之间存在着先后顺序。 +- `thenCombine()` 会在两个任务都执行完成后,把两个任务的结果合并。两个任务是并行执行的,它们之间并没有先后依赖顺序。 + +### 并行运行多个 CompletableFuture + +你可以通过 `CompletableFuture` 的 `allOf()`这个静态方法来并行运行多个 `CompletableFuture` 。 + +实际项目中,我们经常需要并行运行多个互不相关的任务,这些任务之间没有依赖关系,可以互相独立地运行。 + +比说我们要读取处理 6 个文件,这 6 个任务都是没有执行顺序依赖的任务,但是我们需要返回给用户的时候将这几个文件的处理的结果进行统计整理。像这种情况我们就可以使用并行运行多个 `CompletableFuture` 来处理。 + +示例代码如下: + +```java +CompletableFuture task1 = + CompletableFuture.supplyAsync(()->{ + //自定义业务操作 + }); +...... +CompletableFuture task6 = + CompletableFuture.supplyAsync(()->{ + //自定义业务操作 + }); +...... + CompletableFuture headerFuture=CompletableFuture.allOf(task1,.....,task6); + + try { + headerFuture.join(); + } catch (Exception ex) { + ...... + } +System.out.println("all done. "); +``` + +经常和 `allOf()` 方法拿来对比的是 `anyOf()` 方法。 + +**`allOf()` 方法会等到所有的 `CompletableFuture` 都运行完成之后再返回** + +```java +Random rand = new Random(); +CompletableFuture future1 = CompletableFuture.supplyAsync(() -> { + try { + Thread.sleep(1000 + rand.nextInt(1000)); + } catch (InterruptedException e) { + e.printStackTrace(); + } finally { + System.out.println("future1 done..."); + } + return "abc"; +}); +CompletableFuture future2 = CompletableFuture.supplyAsync(() -> { + try { + Thread.sleep(1000 + rand.nextInt(1000)); + } catch (InterruptedException e) { + e.printStackTrace(); + } finally { + System.out.println("future2 done..."); + } + return "efg"; +}); +``` + +调用 `join()` 可以让程序等`future1` 和 `future2` 都运行完了之后再继续执行。 + +```java +CompletableFuture completableFuture = CompletableFuture.allOf(future1, future2); +completableFuture.join(); +assertTrue(completableFuture.isDone()); +System.out.println("all futures done..."); +``` + +输出: + +```java +future1 done... +future2 done... +all futures done... +``` + +**`anyOf()` 方法不会等待所有的 `CompletableFuture` 都运行完成之后再返回,只要有一个执行完成即可!** + +```java +CompletableFuture f = CompletableFuture.anyOf(future1, future2); +System.out.println(f.get()); +``` + +输出结果可能是: + +```java +future2 done... +efg +``` + +也可能是: + +``` +future1 done... +abc +``` + +## 后记 + +这篇文章只是简单介绍了 `CompletableFuture` 比较常用的一些 API 。 + +如果想要深入学习的话,可以多找一些书籍和博客看。 + +另外,建议G友们可以看看京东的 [asyncTool](https://gitee.com/jd-platform-opensource/asyncTool) 这个并发框架,里面大量使用到了 `CompletableFuture` 。 diff --git "a/docs/java/multi-thread/images/ThreadLocal\345\206\205\351\203\250\347\261\273.png" "b/docs/java/concurrent/images/ThreadLocal\345\206\205\351\203\250\347\261\273.png" similarity index 100% rename from "docs/java/multi-thread/images/ThreadLocal\345\206\205\351\203\250\347\261\273.png" rename to "docs/java/concurrent/images/ThreadLocal\345\206\205\351\203\250\347\261\273.png" diff --git "a/docs/java/multi-thread/images/interview-questions/synchronized\345\205\263\351\224\256\345\255\227.png" "b/docs/java/concurrent/images/interview-questions/synchronized\345\205\263\351\224\256\345\255\227.png" similarity index 100% rename from "docs/java/multi-thread/images/interview-questions/synchronized\345\205\263\351\224\256\345\255\227.png" rename to "docs/java/concurrent/images/interview-questions/synchronized\345\205\263\351\224\256\345\255\227.png" diff --git "a/docs/java/multi-thread/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/CachedThreadPool-execute.png" "b/docs/java/concurrent/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/CachedThreadPool-execute.png" similarity index 100% rename from "docs/java/multi-thread/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/CachedThreadPool-execute.png" rename to "docs/java/concurrent/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/CachedThreadPool-execute.png" diff --git "a/docs/java/multi-thread/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/Executors\345\267\245\345\205\267\347\261\273.png" "b/docs/java/concurrent/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/Executors\345\267\245\345\205\267\347\261\273.png" similarity index 100% rename from "docs/java/multi-thread/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/Executors\345\267\245\345\205\267\347\261\273.png" rename to "docs/java/concurrent/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/Executors\345\267\245\345\205\267\347\261\273.png" diff --git "a/docs/java/multi-thread/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/Executor\346\241\206\346\236\266\347\232\204\344\275\277\347\224\250\347\244\272\346\204\217\345\233\276.png" "b/docs/java/concurrent/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/Executor\346\241\206\346\236\266\347\232\204\344\275\277\347\224\250\347\244\272\346\204\217\345\233\276.png" similarity index 100% rename from "docs/java/multi-thread/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/Executor\346\241\206\346\236\266\347\232\204\344\275\277\347\224\250\347\244\272\346\204\217\345\233\276.png" rename to "docs/java/concurrent/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/Executor\346\241\206\346\236\266\347\232\204\344\275\277\347\224\250\347\244\272\346\204\217\345\233\276.png" diff --git "a/docs/java/multi-thread/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/FixedThreadPool.png" "b/docs/java/concurrent/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/FixedThreadPool.png" similarity index 100% rename from "docs/java/multi-thread/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/FixedThreadPool.png" rename to "docs/java/concurrent/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/FixedThreadPool.png" diff --git "a/docs/java/multi-thread/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/ScheduledThreadPoolExecutor\346\211\247\350\241\214\345\221\250\346\234\237\344\273\273\345\212\241\346\255\245\351\252\244.png" "b/docs/java/concurrent/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/ScheduledThreadPoolExecutor\346\211\247\350\241\214\345\221\250\346\234\237\344\273\273\345\212\241\346\255\245\351\252\244.png" similarity index 100% rename from "docs/java/multi-thread/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/ScheduledThreadPoolExecutor\346\211\247\350\241\214\345\221\250\346\234\237\344\273\273\345\212\241\346\255\245\351\252\244.png" rename to "docs/java/concurrent/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/ScheduledThreadPoolExecutor\346\211\247\350\241\214\345\221\250\346\234\237\344\273\273\345\212\241\346\255\245\351\252\244.png" diff --git "a/docs/java/multi-thread/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/ScheduledThreadPoolExecutor\346\234\272\345\210\266.png" "b/docs/java/concurrent/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/ScheduledThreadPoolExecutor\346\234\272\345\210\266.png" similarity index 100% rename from "docs/java/multi-thread/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/ScheduledThreadPoolExecutor\346\234\272\345\210\266.png" rename to "docs/java/concurrent/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/ScheduledThreadPoolExecutor\346\234\272\345\210\266.png" diff --git "a/docs/java/multi-thread/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/SingleThreadExecutor.png" "b/docs/java/concurrent/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/SingleThreadExecutor.png" similarity index 100% rename from "docs/java/multi-thread/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/SingleThreadExecutor.png" rename to "docs/java/concurrent/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/SingleThreadExecutor.png" diff --git "a/docs/java/multi-thread/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/threadpoolexecutor\346\236\204\351\200\240\345\207\275\346\225\260.png" "b/docs/java/concurrent/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/threadpoolexecutor\346\236\204\351\200\240\345\207\275\346\225\260.png" similarity index 100% rename from "docs/java/multi-thread/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/threadpoolexecutor\346\236\204\351\200\240\345\207\275\346\225\260.png" rename to "docs/java/concurrent/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/threadpoolexecutor\346\236\204\351\200\240\345\207\275\346\225\260.png" diff --git "a/docs/java/multi-thread/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/\344\273\273\345\212\241\347\232\204\346\211\247\350\241\214\347\233\270\345\205\263\346\216\245\345\217\243.png" "b/docs/java/concurrent/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/\344\273\273\345\212\241\347\232\204\346\211\247\350\241\214\347\233\270\345\205\263\346\216\245\345\217\243.png" similarity index 100% rename from "docs/java/multi-thread/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/\344\273\273\345\212\241\347\232\204\346\211\247\350\241\214\347\233\270\345\205\263\346\216\245\345\217\243.png" rename to "docs/java/concurrent/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/\344\273\273\345\212\241\347\232\204\346\211\247\350\241\214\347\233\270\345\205\263\346\216\245\345\217\243.png" diff --git "a/docs/java/multi-thread/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/\345\233\276\350\247\243\347\272\277\347\250\213\346\261\240\345\256\236\347\216\260\345\216\237\347\220\206.png" "b/docs/java/concurrent/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/\345\233\276\350\247\243\347\272\277\347\250\213\346\261\240\345\256\236\347\216\260\345\216\237\347\220\206.png" similarity index 100% rename from "docs/java/multi-thread/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/\345\233\276\350\247\243\347\272\277\347\250\213\346\261\240\345\256\236\347\216\260\345\216\237\347\220\206.png" rename to "docs/java/concurrent/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/\345\233\276\350\247\243\347\272\277\347\250\213\346\261\240\345\256\236\347\216\260\345\216\237\347\220\206.png" diff --git "a/docs/java/multi-thread/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/\347\272\277\347\250\213\346\261\240\345\220\204\344\270\252\345\217\202\346\225\260\344\271\213\351\227\264\347\232\204\345\205\263\347\263\273.png" "b/docs/java/concurrent/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/\347\272\277\347\250\213\346\261\240\345\220\204\344\270\252\345\217\202\346\225\260\344\271\213\351\227\264\347\232\204\345\205\263\347\263\273.png" similarity index 100% rename from "docs/java/multi-thread/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/\347\272\277\347\250\213\346\261\240\345\220\204\344\270\252\345\217\202\346\225\260\344\271\213\351\227\264\347\232\204\345\205\263\347\263\273.png" rename to "docs/java/concurrent/images/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223/\347\272\277\347\250\213\346\261\240\345\220\204\344\270\252\345\217\202\346\225\260\344\271\213\351\227\264\347\232\204\345\205\263\347\263\273.png" diff --git a/docs/java/multi-thread/images/thread-local/1.png b/docs/java/concurrent/images/thread-local/1.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/1.png rename to docs/java/concurrent/images/thread-local/1.png diff --git a/docs/java/multi-thread/images/thread-local/10.png b/docs/java/concurrent/images/thread-local/10.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/10.png rename to docs/java/concurrent/images/thread-local/10.png diff --git a/docs/java/multi-thread/images/thread-local/11.png b/docs/java/concurrent/images/thread-local/11.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/11.png rename to docs/java/concurrent/images/thread-local/11.png diff --git a/docs/java/multi-thread/images/thread-local/12.png b/docs/java/concurrent/images/thread-local/12.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/12.png rename to docs/java/concurrent/images/thread-local/12.png diff --git a/docs/java/multi-thread/images/thread-local/13.png b/docs/java/concurrent/images/thread-local/13.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/13.png rename to docs/java/concurrent/images/thread-local/13.png diff --git a/docs/java/multi-thread/images/thread-local/14.png b/docs/java/concurrent/images/thread-local/14.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/14.png rename to docs/java/concurrent/images/thread-local/14.png diff --git a/docs/java/multi-thread/images/thread-local/15.png b/docs/java/concurrent/images/thread-local/15.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/15.png rename to docs/java/concurrent/images/thread-local/15.png diff --git a/docs/java/multi-thread/images/thread-local/16.png b/docs/java/concurrent/images/thread-local/16.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/16.png rename to docs/java/concurrent/images/thread-local/16.png diff --git a/docs/java/multi-thread/images/thread-local/17.png b/docs/java/concurrent/images/thread-local/17.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/17.png rename to docs/java/concurrent/images/thread-local/17.png diff --git a/docs/java/multi-thread/images/thread-local/18.png b/docs/java/concurrent/images/thread-local/18.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/18.png rename to docs/java/concurrent/images/thread-local/18.png diff --git a/docs/java/multi-thread/images/thread-local/19.png b/docs/java/concurrent/images/thread-local/19.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/19.png rename to docs/java/concurrent/images/thread-local/19.png diff --git a/docs/java/multi-thread/images/thread-local/2.png b/docs/java/concurrent/images/thread-local/2.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/2.png rename to docs/java/concurrent/images/thread-local/2.png diff --git a/docs/java/multi-thread/images/thread-local/20.png b/docs/java/concurrent/images/thread-local/20.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/20.png rename to docs/java/concurrent/images/thread-local/20.png diff --git a/docs/java/multi-thread/images/thread-local/21.png b/docs/java/concurrent/images/thread-local/21.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/21.png rename to docs/java/concurrent/images/thread-local/21.png diff --git a/docs/java/multi-thread/images/thread-local/22.png b/docs/java/concurrent/images/thread-local/22.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/22.png rename to docs/java/concurrent/images/thread-local/22.png diff --git a/docs/java/multi-thread/images/thread-local/23.png b/docs/java/concurrent/images/thread-local/23.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/23.png rename to docs/java/concurrent/images/thread-local/23.png diff --git a/docs/java/multi-thread/images/thread-local/24.png b/docs/java/concurrent/images/thread-local/24.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/24.png rename to docs/java/concurrent/images/thread-local/24.png diff --git a/docs/java/multi-thread/images/thread-local/25.png b/docs/java/concurrent/images/thread-local/25.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/25.png rename to docs/java/concurrent/images/thread-local/25.png diff --git a/docs/java/multi-thread/images/thread-local/26.png b/docs/java/concurrent/images/thread-local/26.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/26.png rename to docs/java/concurrent/images/thread-local/26.png diff --git a/docs/java/multi-thread/images/thread-local/27.png b/docs/java/concurrent/images/thread-local/27.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/27.png rename to docs/java/concurrent/images/thread-local/27.png diff --git a/docs/java/multi-thread/images/thread-local/28.png b/docs/java/concurrent/images/thread-local/28.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/28.png rename to docs/java/concurrent/images/thread-local/28.png diff --git a/docs/java/multi-thread/images/thread-local/29.png b/docs/java/concurrent/images/thread-local/29.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/29.png rename to docs/java/concurrent/images/thread-local/29.png diff --git a/docs/java/multi-thread/images/thread-local/3.png b/docs/java/concurrent/images/thread-local/3.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/3.png rename to docs/java/concurrent/images/thread-local/3.png diff --git a/docs/java/multi-thread/images/thread-local/30.png b/docs/java/concurrent/images/thread-local/30.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/30.png rename to docs/java/concurrent/images/thread-local/30.png diff --git a/docs/java/multi-thread/images/thread-local/31.png b/docs/java/concurrent/images/thread-local/31.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/31.png rename to docs/java/concurrent/images/thread-local/31.png diff --git a/docs/java/multi-thread/images/thread-local/4.png b/docs/java/concurrent/images/thread-local/4.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/4.png rename to docs/java/concurrent/images/thread-local/4.png diff --git a/docs/java/multi-thread/images/thread-local/5.png b/docs/java/concurrent/images/thread-local/5.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/5.png rename to docs/java/concurrent/images/thread-local/5.png diff --git a/docs/java/multi-thread/images/thread-local/6.png b/docs/java/concurrent/images/thread-local/6.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/6.png rename to docs/java/concurrent/images/thread-local/6.png diff --git a/docs/java/multi-thread/images/thread-local/7.png b/docs/java/concurrent/images/thread-local/7.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/7.png rename to docs/java/concurrent/images/thread-local/7.png diff --git a/docs/java/multi-thread/images/thread-local/8.png b/docs/java/concurrent/images/thread-local/8.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/8.png rename to docs/java/concurrent/images/thread-local/8.png diff --git a/docs/java/multi-thread/images/thread-local/9.png b/docs/java/concurrent/images/thread-local/9.png similarity index 100% rename from docs/java/multi-thread/images/thread-local/9.png rename to docs/java/concurrent/images/thread-local/9.png diff --git a/docs/java/multi-thread/images/thread-pool/19a0255a-6ef3-4835-98d1-a839d1983332.png b/docs/java/concurrent/images/thread-pool/19a0255a-6ef3-4835-98d1-a839d1983332.png similarity index 100% rename from docs/java/multi-thread/images/thread-pool/19a0255a-6ef3-4835-98d1-a839d1983332.png rename to docs/java/concurrent/images/thread-pool/19a0255a-6ef3-4835-98d1-a839d1983332.png diff --git a/docs/java/multi-thread/images/thread-pool/1bc44c67-26ba-42ab-bcb8-4e29e6fd99b9.png b/docs/java/concurrent/images/thread-pool/1bc44c67-26ba-42ab-bcb8-4e29e6fd99b9.png similarity index 100% rename from docs/java/multi-thread/images/thread-pool/1bc44c67-26ba-42ab-bcb8-4e29e6fd99b9.png rename to docs/java/concurrent/images/thread-pool/1bc44c67-26ba-42ab-bcb8-4e29e6fd99b9.png diff --git a/docs/java/multi-thread/images/thread-pool/5b9b814d-722a-4116-b066-43dc80fc1dc4.png b/docs/java/concurrent/images/thread-pool/5b9b814d-722a-4116-b066-43dc80fc1dc4.png similarity index 100% rename from docs/java/multi-thread/images/thread-pool/5b9b814d-722a-4116-b066-43dc80fc1dc4.png rename to docs/java/concurrent/images/thread-pool/5b9b814d-722a-4116-b066-43dc80fc1dc4.png diff --git a/docs/java/multi-thread/images/thread-pool/b6fd95a7-4c9d-4fc6-ad26-890adb3f6c4c.png b/docs/java/concurrent/images/thread-pool/b6fd95a7-4c9d-4fc6-ad26-890adb3f6c4c.png similarity index 100% rename from docs/java/multi-thread/images/thread-pool/b6fd95a7-4c9d-4fc6-ad26-890adb3f6c4c.png rename to docs/java/concurrent/images/thread-pool/b6fd95a7-4c9d-4fc6-ad26-890adb3f6c4c.png diff --git a/docs/java/multi-thread/images/thread-pool/ddf22709-bff5-45b4-acb7-a3f2e6798608.png b/docs/java/concurrent/images/thread-pool/ddf22709-bff5-45b4-acb7-a3f2e6798608.png similarity index 100% rename from docs/java/multi-thread/images/thread-pool/ddf22709-bff5-45b4-acb7-a3f2e6798608.png rename to docs/java/concurrent/images/thread-pool/ddf22709-bff5-45b4-acb7-a3f2e6798608.png diff --git "a/docs/java/concurrent/images/thread-pool/\347\272\277\347\250\213\346\261\240\344\275\277\347\224\250\344\270\215\345\275\223\345\257\274\350\207\264\346\255\273\351\224\201.drawio" "b/docs/java/concurrent/images/thread-pool/\347\272\277\347\250\213\346\261\240\344\275\277\347\224\250\344\270\215\345\275\223\345\257\274\350\207\264\346\255\273\351\224\201.drawio" new file mode 100644 index 00000000000..3a2c775adc7 --- /dev/null +++ "b/docs/java/concurrent/images/thread-pool/\347\272\277\347\250\213\346\261\240\344\275\277\347\224\250\344\270\215\345\275\223\345\257\274\350\207\264\346\255\273\351\224\201.drawio" @@ -0,0 +1 @@ +7Vpbj5s4GP01fkwFBgw8QkLaSl2p0qzU3acVA+ayJTglziTpr18bTLg5WaYThrQdaTRjf75gn/Md+7M9QFtuju8Lf5v8QUKcAaiER6CtAISqqiD2h1tOlcWyYWWIizQUlRrDQ/odC6MirPs0xLtORUpIRtNt1xiQPMcB7dj8oiCHbrWIZN2vbv0YDwwPgZ8NrV/SkCZiFtBs7B9wGif1l1VkVyUbv64sZrJL/JAcWibNA9qyIIRWqc1xiTMOXo1L1W59ofQ8sALndEyDKF4s0OLpz4do5cF/PirF8tNuoVW9PPnZXkxYDJaeagQKss9DzDtRgeYekpTih60f8NID45zZErrJRHGUZtmSZKQo22qhj60oYPYdLchX3CpBgYUfI1YynIaY2RMuKD62TGJa7zHZYFqcWBVRaguEhYsZInto+FJrEpIWV0jYfOEi8bnjBkWWEEA+A1R9WlCjCKNACmpo2o+KMgmoqj43qsaNUb09RlCbGyM0xMgzgGsClyXYbxdYa+BZwPK4kRWxrI24xWVpHXgIuA5g02KVbae06LwV++GVHeCoA9AZVrSLbNcvc5LjnhMLk5+lcc6yAWMAM7vLkU/Z2uuIgk0ahvwzUiobsrnHRySnYvdQ0W3YPe9Bgl5Twq4pYRdOxa45il0ELBs4JieVsWUteR3HKxNvpA5IVdHcrFoSVhGwl8Bx3qT6g6xKY4BXZdWW7FYo4+jvtn7eoQV92/MYsMRlsSuBcVgFBsmxKWSpuPzLhe4Ad80TDnMPt/QEFTiKzDfWwF0Cy+IWVsG1ygVjDSxN3o/NSpXSkVhXTl63t+uxMyiq4YvB9B2MAcMC80tu0A5pej7QjxsNbIW6LMSx4KOGbuQ1RtdpdDh0GmgZQ6dR7am8RhLT4JCdR0SWFDQhMcn9zGusPXU1dT4RshVw/4spPQm8/T0lXTIYgsXpL9G+zPzNM++MOrs6tgtXp+cKeUf2RYCvzFutj3Z+EWN6raKgg6NyleICZz5Nn7qnuNvzpb3xdZ0vdFd81ePubLYmXyBdNNw/hxvoxGfhCXZGo78zyuKdVz2jQP031QwcqxnrrjQDjTn4mgN3+65wr8f9ghBSRZdCyAsrHhwb6N3/pWB/4dNnvxaE6Ddd+LSRAqzZuBMB1nf8b3xdAki9K75U2WPGxAtm/usumGj2SFEd8ZCC89Dhz3zgfFUV+rvkDHQLVG7/7FOKi7y0QEU7Q1o/7cGukKBxDdr/dfsWcIYEt9o2Wh3iC59JykbS8Ibsd0aXuf6tViV50a4hZdiV2XUBQ+91VC0Jg45Kds8TfwHhsjeeSl+clVEK1pmCS+kORGwAZ1Veig3OeQu1JePqSxPIeMS7XXsR128ja1PpHQCV2WUteaV67jqty9fpKxRPE9pOQJCmzk6Q5EliaoJgR4OTbaWv83bep1SfX3Mvf4/4AUp/Gs0Zs2uu/thrEpT/yppD81MquWyentKfRnOm5LntVgSxbPOPdVV02vx7oub9Bw== \ No newline at end of file diff --git "a/docs/java/concurrent/images/thread-pool/\347\272\277\347\250\213\346\261\240\344\275\277\347\224\250\344\270\215\345\275\223\345\257\274\350\207\264\346\255\273\351\224\201.png" "b/docs/java/concurrent/images/thread-pool/\347\272\277\347\250\213\346\261\240\344\275\277\347\224\250\344\270\215\345\275\223\345\257\274\350\207\264\346\255\273\351\224\201.png" new file mode 100644 index 00000000000..1ad4f811ac8 Binary files /dev/null and "b/docs/java/concurrent/images/thread-pool/\347\272\277\347\250\213\346\261\240\344\275\277\347\224\250\344\270\215\345\275\223\345\257\274\350\207\264\346\255\273\351\224\201.png" differ diff --git "a/docs/java/multi-thread/images/threadlocal\346\225\260\346\215\256\347\273\223\346\236\204.png" "b/docs/java/concurrent/images/threadlocal\346\225\260\346\215\256\347\273\223\346\236\204.png" similarity index 100% rename from "docs/java/multi-thread/images/threadlocal\346\225\260\346\215\256\347\273\223\346\236\204.png" rename to "docs/java/concurrent/images/threadlocal\346\225\260\346\215\256\347\273\223\346\236\204.png" diff --git "a/docs/java/multi-thread/images/\345\244\232\347\272\277\347\250\213\345\255\246\344\271\240\346\214\207\345\215\227/Java\345\271\266\345\217\221\347\274\226\347\250\213\347\232\204\350\211\272\346\234\257.png" "b/docs/java/concurrent/images/\345\244\232\347\272\277\347\250\213\345\255\246\344\271\240\346\214\207\345\215\227/Java\345\271\266\345\217\221\347\274\226\347\250\213\347\232\204\350\211\272\346\234\257.png" similarity index 100% rename from "docs/java/multi-thread/images/\345\244\232\347\272\277\347\250\213\345\255\246\344\271\240\346\214\207\345\215\227/Java\345\271\266\345\217\221\347\274\226\347\250\213\347\232\204\350\211\272\346\234\257.png" rename to "docs/java/concurrent/images/\345\244\232\347\272\277\347\250\213\345\255\246\344\271\240\346\214\207\345\215\227/Java\345\271\266\345\217\221\347\274\226\347\250\213\347\232\204\350\211\272\346\234\257.png" diff --git "a/docs/java/multi-thread/images/\345\244\232\347\272\277\347\250\213\345\255\246\344\271\240\346\214\207\345\215\227/javaguide-\345\271\266\345\217\221.png" "b/docs/java/concurrent/images/\345\244\232\347\272\277\347\250\213\345\255\246\344\271\240\346\214\207\345\215\227/javaguide-\345\271\266\345\217\221.png" similarity index 100% rename from "docs/java/multi-thread/images/\345\244\232\347\272\277\347\250\213\345\255\246\344\271\240\346\214\207\345\215\227/javaguide-\345\271\266\345\217\221.png" rename to "docs/java/concurrent/images/\345\244\232\347\272\277\347\250\213\345\255\246\344\271\240\346\214\207\345\215\227/javaguide-\345\271\266\345\217\221.png" diff --git "a/docs/java/multi-thread/images/\345\244\232\347\272\277\347\250\213\345\255\246\344\271\240\346\214\207\345\215\227/java\345\271\266\345\217\221\347\274\226\347\250\213\344\271\213\347\276\216.png" "b/docs/java/concurrent/images/\345\244\232\347\272\277\347\250\213\345\255\246\344\271\240\346\214\207\345\215\227/java\345\271\266\345\217\221\347\274\226\347\250\213\344\271\213\347\276\216.png" similarity index 100% rename from "docs/java/multi-thread/images/\345\244\232\347\272\277\347\250\213\345\255\246\344\271\240\346\214\207\345\215\227/java\345\271\266\345\217\221\347\274\226\347\250\213\344\271\213\347\276\216.png" rename to "docs/java/concurrent/images/\345\244\232\347\272\277\347\250\213\345\255\246\344\271\240\346\214\207\345\215\227/java\345\271\266\345\217\221\347\274\226\347\250\213\344\271\213\347\276\216.png" diff --git "a/docs/java/multi-thread/images/\345\244\232\347\272\277\347\250\213\345\255\246\344\271\240\346\214\207\345\215\227/\345\256\236\346\210\230Java\351\253\230\345\271\266\345\217\221\347\250\213\345\272\217\350\256\276\350\256\241.png" "b/docs/java/concurrent/images/\345\244\232\347\272\277\347\250\213\345\255\246\344\271\240\346\214\207\345\215\227/\345\256\236\346\210\230Java\351\253\230\345\271\266\345\217\221\347\250\213\345\272\217\350\256\276\350\256\241.png" similarity index 100% rename from "docs/java/multi-thread/images/\345\244\232\347\272\277\347\250\213\345\255\246\344\271\240\346\214\207\345\215\227/\345\256\236\346\210\230Java\351\253\230\345\271\266\345\217\221\347\250\213\345\272\217\350\256\276\350\256\241.png" rename to "docs/java/concurrent/images/\345\244\232\347\272\277\347\250\213\345\255\246\344\271\240\346\214\207\345\215\227/\345\256\236\346\210\230Java\351\253\230\345\271\266\345\217\221\347\250\213\345\272\217\350\256\276\350\256\241.png" diff --git "a/docs/java/multi-thread/images/\345\244\232\347\272\277\347\250\213\345\255\246\344\271\240\346\214\207\345\215\227/\346\267\261\345\205\245\346\265\205\345\207\272Java\345\244\232\347\272\277\347\250\213.png" "b/docs/java/concurrent/images/\345\244\232\347\272\277\347\250\213\345\255\246\344\271\240\346\214\207\345\215\227/\346\267\261\345\205\245\346\265\205\345\207\272Java\345\244\232\347\272\277\347\250\213.png" similarity index 100% rename from "docs/java/multi-thread/images/\345\244\232\347\272\277\347\250\213\345\255\246\344\271\240\346\214\207\345\215\227/\346\267\261\345\205\245\346\265\205\345\207\272Java\345\244\232\347\272\277\347\250\213.png" rename to "docs/java/concurrent/images/\345\244\232\347\272\277\347\250\213\345\255\246\344\271\240\346\214\207\345\215\227/\346\267\261\345\205\245\346\265\205\345\207\272Java\345\244\232\347\272\277\347\250\213.png" diff --git "a/docs/java/multi-thread/2020\346\234\200\346\226\260Java\345\271\266\345\217\221\345\237\272\347\241\200\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" "b/docs/java/concurrent/java\345\271\266\345\217\221\345\237\272\347\241\200\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" similarity index 78% rename from "docs/java/multi-thread/2020\346\234\200\346\226\260Java\345\271\266\345\217\221\345\237\272\347\241\200\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" rename to "docs/java/concurrent/java\345\271\266\345\217\221\345\237\272\347\241\200\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" index b5f2e57d082..2cf5c7cf22e 100644 --- "a/docs/java/multi-thread/2020\346\234\200\346\226\260Java\345\271\266\345\217\221\345\237\272\347\241\200\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" +++ "b/docs/java/concurrent/java\345\271\266\345\217\221\345\237\272\347\241\200\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" @@ -1,33 +1,13 @@ - - -- [Java 并发基础常见面试题总结](#Java-并发基础常见面试题总结) - - [1. 什么是线程和进程?](#1-什么是线程和进程) - - [1.1. 何为进程?](#11-何为进程) - - [1.2. 何为线程?](#12-何为线程) - - [2. 请简要描述线程与进程的关系,区别及优缺点?](#2-请简要描述线程与进程的关系区别及优缺点) - - [2.1. 图解进程和线程的关系](#21-图解进程和线程的关系) - - [2.2. 程序计数器为什么是私有的?](#22-程序计数器为什么是私有的) - - [2.3. 虚拟机栈和本地方法栈为什么是私有的?](#23-虚拟机栈和本地方法栈为什么是私有的) - - [2.4. 一句话简单了解堆和方法区](#24-一句话简单了解堆和方法区) - - [3. 说说并发与并行的区别?](#3-说说并发与并行的区别) - - [4. 为什么要使用多线程呢?](#4-为什么要使用多线程呢) - - [5. 使用多线程可能带来什么问题?](#5-使用多线程可能带来什么问题) - - [6. 说说线程的生命周期和状态?](#6-说说线程的生命周期和状态) - - [7. 什么是上下文切换?](#7-什么是上下文切换) - - [8. 什么是线程死锁?如何避免死锁?](#8-什么是线程死锁如何避免死锁) - - [8.1. 认识线程死锁](#81-认识线程死锁) - - [8.2. 如何避免线程死锁?](#82-如何避免线程死锁) - - [9. 说说 sleep() 方法和 wait() 方法区别和共同点?](#9-说说-sleep-方法和-wait-方法区别和共同点) - - [10. 为什么我们调用 start() 方法时会执行 run() 方法,为什么我们不能直接调用 run() 方法?](#10-为什么我们调用-start-方法时会执行-run-方法为什么我们不能直接调用-run-方法) - - [公众号](#公众号) - - - -# Java 并发基础常见面试题总结 - -## 1. 什么是线程和进程? - -### 1.1. 何为进程? +--- +title: Java 并发常见知识点&面试题总结(基础篇) +category: Java +tag: + - Java并发 +--- + +## 什么是线程和进程? + +### 何为进程? 进程是程序的一次执行过程,是系统运行程序的基本单位,因此进程是动态的。系统运行一个程序即是一个进程从创建,运行到消亡的过程。 @@ -37,7 +17,7 @@ ![进程示例图片-Windows](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-6/进程示例图片-Windows.png) -### 1.2. 何为线程? +### 何为线程? 线程与进程相似,但线程是一个比进程更小的执行单位。一个进程在其执行的过程中可以产生多个线程。与进程不同的是同类的多个线程共享进程的**堆**和**方法区**资源,但每个线程有自己的**程序计数器**、**虚拟机栈**和**本地方法栈**,所以系统在产生一个线程,或是在各个线程之间作切换工作时,负担要比进程小得多,也正因为如此,线程也被称为轻量级进程。 @@ -70,17 +50,15 @@ public class MultiThread { 从上面的输出内容可以看出:**一个 Java 程序的运行是 main 线程和多个其他线程同时运行**。 -## 2. 请简要描述线程与进程的关系,区别及优缺点? +## 请简要描述线程与进程的关系,区别及优缺点? **从 JVM 角度说进程和线程之间的关系** -### 2.1. 图解进程和线程的关系 +### 图解进程和线程的关系 -下图是 Java 内存区域,通过下图我们从 JVM 的角度来说一下线程和进程之间的关系。如果你对 Java 内存区域 (运行时数据区) 这部分知识不太了解的话可以阅读一下这篇文章:[《可能是把 Java 内存区域讲的最清楚的一篇文章》](https://github.com/Snailclimb/JavaGuide/blob/3965c02cc0f294b0bd3580df4868d5e396959e2e/Java%E7%9B%B8%E5%85%B3/%E5%8F%AF%E8%83%BD%E6%98%AF%E6%8A%8AJava%E5%86%85%E5%AD%98%E5%8C%BA%E5%9F%9F%E8%AE%B2%E7%9A%84%E6%9C%80%E6%B8%85%E6%A5%9A%E7%9A%84%E4%B8%80%E7%AF%87%E6%96%87%E7%AB%A0.md "《可能是把 Java 内存区域讲的最清楚的一篇文章》") +下图是 Java 内存区域,通过下图我们从 JVM 的角度来说一下线程和进程之间的关系。 -
- -
+![](../jvm/pictures/java内存区域/Java运行时数据区域JDK1.8.png) 从上图可以看出:一个进程中可以有多个线程,多个线程共享进程的**堆**和**方法区 (JDK1.8 之后的元空间)**资源,但是每个线程有自己的**程序计数器**、**虚拟机栈** 和 **本地方法栈**。 @@ -90,7 +68,7 @@ public class MultiThread { 下面来思考这样一个问题:为什么**程序计数器**、**虚拟机栈**和**本地方法栈**是线程私有的呢?为什么堆和方法区是线程共享的呢? -### 2.2. 程序计数器为什么是私有的? +### 程序计数器为什么是私有的? 程序计数器主要有下面两个作用: @@ -101,23 +79,23 @@ public class MultiThread { 所以,程序计数器私有主要是为了**线程切换后能恢复到正确的执行位置**。 -### 2.3. 虚拟机栈和本地方法栈为什么是私有的? +### 虚拟机栈和本地方法栈为什么是私有的? - **虚拟机栈:** 每个 Java 方法在执行的同时会创建一个栈帧用于存储局部变量表、操作数栈、常量池引用等信息。从方法调用直至执行完成的过程,就对应着一个栈帧在 Java 虚拟机栈中入栈和出栈的过程。 - **本地方法栈:** 和虚拟机栈所发挥的作用非常相似,区别是: **虚拟机栈为虚拟机执行 Java 方法 (也就是字节码)服务,而本地方法栈则为虚拟机使用到的 Native 方法服务。** 在 HotSpot 虚拟机中和 Java 虚拟机栈合二为一。 所以,为了**保证线程中的局部变量不被别的线程访问到**,虚拟机栈和本地方法栈是线程私有的。 -### 2.4. 一句话简单了解堆和方法区 +### 一句话简单了解堆和方法区 堆和方法区是所有线程共享的资源,其中堆是进程中最大的一块内存,主要用于存放新创建的对象 (几乎所有对象都在这里分配内存),方法区主要用于存放已被加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。 -## 3. 说说并发与并行的区别? +## 说说并发与并行的区别? - **并发:** 同一时间段,多个任务都在执行 (单位时间内不一定同时执行); - **并行:** 单位时间内,多个任务同时执行。 -## 4. 为什么要使用多线程呢? +## 为什么要使用多线程呢? 先从总体上来说: @@ -129,11 +107,11 @@ public class MultiThread { - **单核时代**: 在单核时代多线程主要是为了提高单进程利用 CPU 和 IO 系统的效率。 假设只运行了一个 Java 进程的情况,当我们请求 IO 的时候,如果 Java 进程中只有一个线程,此线程被 IO 阻塞则整个进程被阻塞。CPU 和 IO 设备只有一个在运行,那么可以简单地说系统整体效率只有 50%。当使用多线程的时候,一个线程被 IO 阻塞,其他线程还可以继续使用 CPU。从而提高了 Java 进程利用系统资源的整体效率。 - **多核时代**: 多核时代多线程主要是为了提高进程利用多核 CPU 的能力。举个例子:假如我们要计算一个复杂的任务,我们只用一个线程的话,不论系统有几个 CPU 核心,都只会有一个 CPU 核心被利用到。而创建多个线程,这些线程可以被映射到底层多个 CPU 上执行,在任务中的多个线程没有资源竞争的情况下,任务执行的效率会有显著性的提高,约等于(单核时执行时间/CPU 核心数)。 -## 5. 使用多线程可能带来什么问题? +## 使用多线程可能带来什么问题? 并发编程的目的就是为了能提高程序的执行效率提高程序运行速度,但是并发编程并不总是能提高程序运行速度的,而且并发编程可能会遇到很多问题,比如:内存泄漏、死锁、线程不安全等等。 -## 6. 说说线程的生命周期和状态? +## 说说线程的生命周期和状态? Java 线程在运行的生命周期中的指定时刻只可能处于下面 6 种不同状态的其中一个状态(图源《Java 并发编程艺术》4.1.4 节)。 @@ -153,11 +131,11 @@ Java 线程在运行的生命周期中的指定时刻只可能处于下面 6 种 ![RUNNABLE-VS-RUNNING](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-3/RUNNABLE-VS-RUNNING.png) -当线程执行 `wait()`方法之后,线程进入 **WAITING(等待)** 状态。进入等待状态的线程需要依靠其他线程的通知才能够返回到运行状态,而 **TIME_WAITING(超时等待)** 状态相当于在等待状态的基础上增加了超时限制,比如通过 `sleep(long millis)`方法或 `wait(long millis)`方法可以将 Java 线程置于 TIMED WAITING 状态。当超时时间到达后 Java 线程将会返回到 RUNNABLE 状态。当线程调用同步方法时,在没有获取到锁的情况下,线程将会进入到 **BLOCKED(阻塞)** 状态。线程在执行 Runnable 的`run()`方法之后将会进入到 **TERMINATED(终止)** 状态。 +当线程执行 `wait()`方法之后,线程进入 **WAITING(等待)** 状态。进入等待状态的线程需要依靠其他线程的通知才能够返回到运行状态,而 **TIMED_WAITING(超时等待)** 状态相当于在等待状态的基础上增加了超时限制,比如通过 `sleep(long millis)`方法或 `wait(long millis)`方法可以将 Java 线程置于 TIMED_WAITING 状态。当超时时间到达后 Java 线程将会返回到 RUNNABLE 状态。当线程调用同步方法时,在没有获取到锁的情况下,线程将会进入到 **BLOCKED(阻塞)** 状态。线程在执行 Runnable 的`run()`方法之后将会进入到 **TERMINATED(终止)** 状态。 相关阅读:[挑错 |《Java 并发编程的艺术》中关于线程状态的三处错误](https://mp.weixin.qq.com/s/UOrXql_LhOD8dhTq_EPI0w) 。 -## 7. 什么是上下文切换? +## 什么是上下文切换? 线程在执行过程中会有自己的运行条件和状态(也称上下文),比如上文所说到过的程序计数器,栈信息等。当出现如下情况的时候,线程会从占用 CPU 状态中退出。 - 主动让出 CPU,比如调用了 `sleep()`, `wait()` 等。 @@ -169,9 +147,9 @@ Java 线程在运行的生命周期中的指定时刻只可能处于下面 6 种 上下文切换是现代操作系统的基本功能,因其每次需要保存信息恢复信息,这将会占用 CPU,内存等系统资源进行处理,也就意味着效率会有一定损耗,如果频繁切换就会造成整体效率低下。 -## 8. 什么是线程死锁?如何避免死锁? +## 什么是线程死锁?如何避免死锁? -### 8.1. 认识线程死锁 +### 认识线程死锁 线程死锁描述的是这样一种情况:多个线程同时被阻塞,它们中的一个或者全部都在等待某个资源被释放。由于线程被无限期地阻塞,因此程序不可能正常终止。 @@ -238,7 +216,7 @@ Thread[线程 2,5,main]waiting get resource1 3. 不剥夺条件:线程已获得的资源在未使用完之前不能被其他线程强行剥夺,只有自己使用完毕后才释放资源。 4. 循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。 -### 8.2. 如何预防和避免线程死锁? +### 如何预防和避免线程死锁? **如何预防死锁?** 破坏死锁的产生的必要条件即可: @@ -250,7 +228,7 @@ Thread[线程 2,5,main]waiting get resource1 避免死锁就是在资源分配时,借助于算法(比如银行家算法)对资源分配进行计算评估,使其进入安全状态。 -**安全状态**指的是系统能够按照某种进行推进顺序(P1、P2、P3.....Pn)来为每个进程分配所需资源,直到满足每个进程对资源的最大需求,使每个进程都可顺利完成。称序列为安全序列。 +**安全状态** 指的是系统能够按照某种进程推进顺序(P1、P2、P3.....Pn)来为每个进程分配所需资源,直到满足每个进程对资源的最大需求,使每个进程都可顺利完成。称序列为安全序列。 我们对线程 2 的代码修改成下面这样就不会产生死锁了。 @@ -288,27 +266,17 @@ Process finished with exit code 0 线程 1 首先获得到 resource1 的监视器锁,这时候线程 2 就获取不到了。然后线程 1 再去获取 resource2 的监视器锁,可以获取到。然后线程 1 释放了对 resource1、resource2 的监视器锁的占用,线程 2 获取到就可以执行了。这样就破坏了破坏循环等待条件,因此避免了死锁。 -## 9. 说说 sleep() 方法和 wait() 方法区别和共同点? +## 说说 sleep() 方法和 wait() 方法区别和共同点? - 两者最主要的区别在于:**`sleep()` 方法没有释放锁,而 `wait()` 方法释放了锁** 。 - 两者都可以暂停线程的执行。 - `wait()` 通常被用于线程间交互/通信,`sleep() `通常被用于暂停执行。 - `wait()` 方法被调用后,线程不会自动苏醒,需要别的线程调用同一个对象上的 `notify() `或者 `notifyAll()` 方法。`sleep() `方法执行完成后,线程会自动苏醒。或者可以使用 `wait(long timeout)` 超时后线程会自动苏醒。 -## 10. 为什么我们调用 start() 方法时会执行 run() 方法,为什么我们不能直接调用 run() 方法? +## 为什么我们调用 start() 方法时会执行 run() 方法,为什么我们不能直接调用 run() 方法? 这是另一个非常经典的 Java 多线程面试问题,而且在面试中会经常被问到。很简单,但是很多人都会答不上来! new 一个 Thread,线程进入了新建状态。调用 `start()`方法,会启动一个线程并使线程进入了就绪状态,当分配到时间片后就可以开始运行了。 `start()` 会执行线程的相应准备工作,然后自动执行 `run()` 方法的内容,这是真正的多线程工作。 但是,直接执行 `run()` 方法,会把 `run()` 方法当成一个 main 线程下的普通方法去执行,并不会在某个线程中执行它,所以这并不是多线程工作。 **总结: 调用 `start()` 方法方可启动线程并使线程进入就绪状态,直接执行 `run()` 方法的话不会以多线程的方式执行。** - -## 公众号 - -如果大家想要实时关注我更新的文章以及分享的干货的话,可以关注我的公众号。 - -**《Java 面试突击》:** 由本文档衍生的专为面试而生的《Java 面试突击》V2.0 PDF 版本[公众号](#公众号 "公众号")后台回复 **"面试突击"** 即可免费领取! - -**Java 工程师必备学习资源:** 一些 Java 工程师常用学习资源公众号后台回复关键字 **“1”** 即可免费无套路获取。 - -![我的公众号](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-6/167598cd2e17b8ec.png) diff --git "a/docs/java/multi-thread/2020\346\234\200\346\226\260Java\345\271\266\345\217\221\350\277\233\351\230\266\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" "b/docs/java/concurrent/java\345\271\266\345\217\221\350\277\233\351\230\266\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" similarity index 86% rename from "docs/java/multi-thread/2020\346\234\200\346\226\260Java\345\271\266\345\217\221\350\277\233\351\230\266\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" rename to "docs/java/concurrent/java\345\271\266\345\217\221\350\277\233\351\230\266\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" index a817d041397..2278eaf1b08 100644 --- "a/docs/java/multi-thread/2020\346\234\200\346\226\260Java\345\271\266\345\217\221\350\277\233\351\230\266\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" +++ "b/docs/java/concurrent/java\345\271\266\345\217\221\350\277\233\351\230\266\345\270\270\350\247\201\351\235\242\350\257\225\351\242\230\346\200\273\347\273\223.md" @@ -1,64 +1,9 @@ -点击关注[公众号](#公众号)及时获取笔主最新更新文章,并可免费领取本文档配套的《Java 面试突击》以及 Java 工程师必备学习资源。 - - - - - - -- [Java 并发进阶常见面试题总结](#java-并发进阶常见面试题总结) - - [1.synchronized 关键字](#1synchronized-关键字) - - [1.1.说一说自己对于 synchronized 关键字的了解](#11说一说自己对于-synchronized-关键字的了解) - - [1.2. 说说自己是怎么使用 synchronized 关键字](#12-说说自己是怎么使用-synchronized-关键字) - - [1.3. 构造方法可以使用 synchronized 关键字修饰么?](#13-构造方法可以使用-synchronized-关键字修饰么) - - [1.3. 讲一下 synchronized 关键字的底层原理](#13-讲一下-synchronized-关键字的底层原理) - - [1.3.1. synchronized 同步语句块的情况](#131-synchronized-同步语句块的情况) - - [1.3.2. synchronized 修饰方法的的情况](#132-synchronized-修饰方法的的情况) - - [1.3.3.总结](#133总结) - - [1.4. 说说 JDK1.6 之后的 synchronized 关键字底层做了哪些优化,可以详细介绍一下这些优化吗](#14-说说-jdk16-之后的-synchronized-关键字底层做了哪些优化可以详细介绍一下这些优化吗) - - [1.5. 谈谈 synchronized 和 ReentrantLock 的区别](#15-谈谈-synchronized-和-reentrantlock-的区别) - - [1.5.1. 两者都是可重入锁](#151-两者都是可重入锁) - - [1.5.2.synchronized 依赖于 JVM 而 ReentrantLock 依赖于 API](#152synchronized-依赖于-jvm-而-reentrantlock-依赖于-api) - - [1.5.3.ReentrantLock 比 synchronized 增加了一些高级功能](#153reentrantlock-比-synchronized-增加了一些高级功能) - - [2. volatile 关键字](#2-volatile-关键字) - - [2.1. CPU 缓存模型](#21-cpu-缓存模型) - - [2.2. 讲一下 JMM(Java 内存模型)](#22-讲一下-jmmjava-内存模型) - - [2.3. 并发编程的三个重要特性](#23-并发编程的三个重要特性) - - [2.4. 说说 synchronized 关键字和 volatile 关键字的区别](#24-说说-synchronized-关键字和-volatile-关键字的区别) - - [3. ThreadLocal](#3-threadlocal) - - [3.1. ThreadLocal 简介](#31-threadlocal-简介) - - [3.2. ThreadLocal 示例](#32-threadlocal-示例) - - [3.3. ThreadLocal 原理](#33-threadlocal-原理) - - [3.4. ThreadLocal 内存泄露问题](#34-threadlocal-内存泄露问题) - - [4. 线程池](#4-线程池) - - [4.1. 为什么要用线程池?](#41-为什么要用线程池) - - [4.2. 实现 Runnable 接口和 Callable 接口的区别](#42-实现-runnable-接口和-callable-接口的区别) - - [4.3. 执行 execute()方法和 submit()方法的区别是什么呢?](#43-执行-execute方法和-submit方法的区别是什么呢) - - [4.4. 如何创建线程池](#44-如何创建线程池) - - [4.5 ThreadPoolExecutor 类分析](#45-threadpoolexecutor-类分析) - - [4.5.1 `ThreadPoolExecutor`构造函数重要参数分析](#451-threadpoolexecutor构造函数重要参数分析) - - [4.5.2 `ThreadPoolExecutor` 饱和策略](#452-threadpoolexecutor-饱和策略) - - [4.6 一个简单的线程池 Demo](#46-一个简单的线程池-demo) - - [4.7 线程池原理分析](#47-线程池原理分析) - - [5. Atomic 原子类](#5-atomic-原子类) - - [5.1. 介绍一下 Atomic 原子类](#51-介绍一下-atomic-原子类) - - [5.2. JUC 包中的原子类是哪 4 类?](#52-juc-包中的原子类是哪-4-类) - - [5.3. 讲讲 AtomicInteger 的使用](#53-讲讲-atomicinteger-的使用) - - [5.4. 能不能给我简单介绍一下 AtomicInteger 类的原理](#54-能不能给我简单介绍一下-atomicinteger-类的原理) - - [6. AQS](#6-aqs) - - [6.1. AQS 介绍](#61-aqs-介绍) - - [6.2. AQS 原理分析](#62-aqs-原理分析) - - [6.2.1. AQS 原理概览](#621-aqs-原理概览) - - [6.2.2. AQS 对资源的共享方式](#622-aqs-对资源的共享方式) - - [6.2.3. AQS 底层使用了模板方法模式](#623-aqs-底层使用了模板方法模式) - - [6.3. AQS 组件总结](#63-aqs-组件总结) - - [6.4. 用过 CountDownLatch 么?什么场景下用的?](#64-用过-countdownlatch-么什么场景下用的) - - [7 Reference](#7-reference) - - [公众号](#公众号) - - - - -# Java 并发进阶常见面试题总结 +--- +title: Java 并发常见知识点&面试题总结(进阶篇) +category: Java +tag: + - Java并发 +--- ## 1.synchronized 关键字 @@ -286,7 +231,7 @@ JDK1.6 对锁的实现引入了大量的优化,如偏向锁、轻量级锁、 ### 2.3. 并发编程的三个重要特性 1. **原子性** : 一个的操作或者多次操作,要么所有的操作全部都得到执行并且不会收到任何因素的干扰而中断,要么所有的操作都执行,要么都不执行。`synchronized` 可以保证代码片段的原子性。 -2. **可见性** :当一个变量对共享变量进行了修改,那么另外的线程都是立即可以看到修改后的最新值。`volatile` 关键字可以保证共享变量的可见性。 +2. **可见性** :当一个线程对共享变量进行了修改,那么另外的线程都是立即可以看到修改后的最新值。`volatile` 关键字可以保证共享变量的可见性。 3. **有序性** :代码在执行的过程中的先后顺序,Java 在编译器以及运行期间的优化,代码的执行顺序未必就是编写代码时候的顺序。`volatile` 关键字可以禁止指令进行重排序优化。 ### 2.4. 说说 synchronized 关键字和 volatile 关键字的区别 @@ -465,21 +410,21 @@ static class Entry extends WeakReference> { ### 4.1. 为什么要用线程池? -> **池化技术相比大家已经屡见不鲜了,线程池、数据库连接池、Http 连接池等等都是对这个思想的应用。池化技术的思想主要是为了减少每次获取资源的消耗,提高对资源的利用率。** +> **池化技术想必大家已经屡见不鲜了,线程池、数据库连接池、Http 连接池等等都是对这个思想的应用。池化技术的思想主要是为了减少每次获取资源的消耗,提高对资源的利用率。** **线程池**提供了一种限制和管理资源(包括执行一个任务)。 每个**线程池**还维护一些基本统计信息,例如已完成任务的数量。 这里借用《Java 并发编程的艺术》提到的来说一下**使用线程池的好处**: - **降低资源消耗**。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。 -- **提高响应速度**。当任务到达时,任务可以不需要的等到线程创建就能立即执行。 +- **提高响应速度**。当任务到达时,任务可以不需要等到线程创建就能立即执行。 - **提高线程的可管理性**。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。 ### 4.2. 实现 Runnable 接口和 Callable 接口的区别 `Runnable`自 Java 1.0 以来一直存在,但`Callable`仅在 Java 1.5 中引入,目的就是为了来处理`Runnable`不支持的用例。**`Runnable` 接口** 不会返回结果或抛出检查异常,但是 **`Callable` 接口** 可以。所以,如果任务不需要返回结果或抛出异常推荐使用 **`Runnable` 接口** ,这样代码看起来会更加简洁。 -工具类 `Executors` 可以实现 `Runnable` 对象和 `Callable` 对象之间的相互转换。(`Executors.callable(Runnable task`)或 `Executors.callable(Runnable task,Object resule)`)。 +工具类 `Executors` 可以实现将 `Runnable` 对象转换成 `Callable` 对象。(`Executors.callable(Runnable task)` 或 `Executors.callable(Runnable task, Object result)`)。 `Runnable.java` @@ -510,9 +455,9 @@ public interface Callable { ### 4.3. 执行 execute()方法和 submit()方法的区别是什么呢? 1. **`execute()`方法用于提交不需要返回值的任务,所以无法判断任务是否被线程池执行成功与否;** -2. **`submit()`方法用于提交需要返回值的任务。线程池会返回一个 `Future` 类型的对象,通过这个 `Future` 对象可以判断任务是否执行成功**,并且可以通过 `Future` 的 `get()`方法来获取返回值,`get()`方法会阻塞当前线程直到任务完成,而使用 `get(long timeout,TimeUnit unit)`方法则会阻塞当前线程一段时间后立即返回,这时候有可能任务没有执行完。 +2. **`submit()`方法用于提交需要返回值的任务。线程池会返回一个 `Future` 类型的对象,通过这个 `Future` 对象可以判断任务是否执行成功**,并且可以通过 `Future` 的 `get()`方法来获取返回值,`get()`方法会阻塞当前线程直到任务完成,而使用 `get(long timeout,TimeUnit unit)`方法则会阻塞当前线程一段时间后立即返回,这时候有可能任务没有执行完。 -我们以** `AbstractExecutorService` **接口中的一个 `submit` 方法为例子来看看源代码: +我们以 **`AbstractExecutorService` 接口** 中的一个 `submit` 方法为例子来看看源代码: ```java public Future submit(Runnable task) { @@ -601,7 +546,7 @@ public ThreadPoolExecutor(int corePoolSize, **`ThreadPoolExecutor` 3 个最重要的参数:** -- **`corePoolSize` :** 核心线程数线程数定义了最小可以同时运行的线程数量。 +- **`corePoolSize` :** 核心线程数定义了最小可以同时运行的线程数量。 - **`maximumPoolSize` :** 当队列中存放的任务达到队列容量的时候,当前可以同时运行的线程数量变为最大线程数。 - **`workQueue`:** 当新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。 @@ -616,11 +561,10 @@ public ThreadPoolExecutor(int corePoolSize, **`ThreadPoolExecutor` 饱和策略定义:** -如果当前同时运行的线程数量达到最大线程数量并且队列也已经被放满了任时,`ThreadPoolTaskExecutor` 定义一些策略: +如果当前同时运行的线程数量达到最大线程数量并且队列也已经被放满了任务时,`ThreadPoolTaskExecutor` 定义一些策略: - **`ThreadPoolExecutor.AbortPolicy`:** 抛出 `RejectedExecutionException`来拒绝新任务的处理。 -- **`ThreadPoolExecutor.CallerRunsPolicy`:** -调用执行自己的线程运行任务,也就是直接在调用`execute`方法的线程中运行(`run`)被拒绝的任务,如果执行程序已关闭,则会丢弃该任务。因此这种策略会降低对于新任务提交速度,影响程序的整体性能。如果您的应用程序可以承受此延迟并且你要求任何一个任务请求都要被执行的话,你可以选择这个策略。 +- **`ThreadPoolExecutor.CallerRunsPolicy`:** 调用执行自己的线程运行任务,也就是直接在调用`execute`方法的线程中运行(`run`)被拒绝的任务,如果执行程序已关闭,则会丢弃该任务。因此这种策略会降低对于新任务提交速度,影响程序的整体性能。如果您的应用程序可以承受此延迟并且你要求任何一个任务请求都要被执行的话,你可以选择这个策略。 - **`ThreadPoolExecutor.DiscardPolicy`:** 不处理新任务,直接丢弃掉。 - **`ThreadPoolExecutor.DiscardOldestPolicy`:** 此策略将丢弃最早的未处理的任务请求。 @@ -726,36 +670,36 @@ public class ThreadPoolExecutorDemo { **Output:** ``` -pool-1-thread-2 Start. Time = Tue Nov 12 20:59:44 CST 2019 -pool-1-thread-5 Start. Time = Tue Nov 12 20:59:44 CST 2019 -pool-1-thread-4 Start. Time = Tue Nov 12 20:59:44 CST 2019 -pool-1-thread-1 Start. Time = Tue Nov 12 20:59:44 CST 2019 -pool-1-thread-3 Start. Time = Tue Nov 12 20:59:44 CST 2019 -pool-1-thread-5 End. Time = Tue Nov 12 20:59:49 CST 2019 -pool-1-thread-3 End. Time = Tue Nov 12 20:59:49 CST 2019 -pool-1-thread-2 End. Time = Tue Nov 12 20:59:49 CST 2019 -pool-1-thread-4 End. Time = Tue Nov 12 20:59:49 CST 2019 -pool-1-thread-1 End. Time = Tue Nov 12 20:59:49 CST 2019 -pool-1-thread-2 Start. Time = Tue Nov 12 20:59:49 CST 2019 -pool-1-thread-1 Start. Time = Tue Nov 12 20:59:49 CST 2019 -pool-1-thread-4 Start. Time = Tue Nov 12 20:59:49 CST 2019 -pool-1-thread-3 Start. Time = Tue Nov 12 20:59:49 CST 2019 -pool-1-thread-5 Start. Time = Tue Nov 12 20:59:49 CST 2019 -pool-1-thread-2 End. Time = Tue Nov 12 20:59:54 CST 2019 -pool-1-thread-3 End. Time = Tue Nov 12 20:59:54 CST 2019 -pool-1-thread-4 End. Time = Tue Nov 12 20:59:54 CST 2019 -pool-1-thread-5 End. Time = Tue Nov 12 20:59:54 CST 2019 -pool-1-thread-1 End. Time = Tue Nov 12 20:59:54 CST 2019 +pool-1-thread-3 Start. Time = Sun Apr 12 11:14:37 CST 2020 +pool-1-thread-5 Start. Time = Sun Apr 12 11:14:37 CST 2020 +pool-1-thread-2 Start. Time = Sun Apr 12 11:14:37 CST 2020 +pool-1-thread-1 Start. Time = Sun Apr 12 11:14:37 CST 2020 +pool-1-thread-4 Start. Time = Sun Apr 12 11:14:37 CST 2020 +pool-1-thread-3 End. Time = Sun Apr 12 11:14:42 CST 2020 +pool-1-thread-4 End. Time = Sun Apr 12 11:14:42 CST 2020 +pool-1-thread-1 End. Time = Sun Apr 12 11:14:42 CST 2020 +pool-1-thread-5 End. Time = Sun Apr 12 11:14:42 CST 2020 +pool-1-thread-1 Start. Time = Sun Apr 12 11:14:42 CST 2020 +pool-1-thread-2 End. Time = Sun Apr 12 11:14:42 CST 2020 +pool-1-thread-5 Start. Time = Sun Apr 12 11:14:42 CST 2020 +pool-1-thread-4 Start. Time = Sun Apr 12 11:14:42 CST 2020 +pool-1-thread-3 Start. Time = Sun Apr 12 11:14:42 CST 2020 +pool-1-thread-2 Start. Time = Sun Apr 12 11:14:42 CST 2020 +pool-1-thread-1 End. Time = Sun Apr 12 11:14:47 CST 2020 +pool-1-thread-4 End. Time = Sun Apr 12 11:14:47 CST 2020 +pool-1-thread-5 End. Time = Sun Apr 12 11:14:47 CST 2020 +pool-1-thread-3 End. Time = Sun Apr 12 11:14:47 CST 2020 +pool-1-thread-2 End. Time = Sun Apr 12 11:14:47 CST 2020 ``` ### 4.7 线程池原理分析 -承接 4.6 节,我们通过代码输出结果可以看出:**线程池每次会同时执行 5 个任务,这 5 个任务执行完之后,剩余的 5 个任务才会被执行。** 大家可以先通过上面讲解的内容,分析一下到底是咋回事?(自己独立思考一会) +承接 4.6 节,我们通过代码输出结果可以看出:**线程池首先会先执行 5 个任务,然后这些任务有任务被执行完的话,就会去拿新的任务执行。** 大家可以先通过上面讲解的内容,分析一下到底是咋回事?(自己独立思考一会) 现在,我们就分析上面的输出内容来简单分析一下线程池原理。 - **为了搞懂线程池的原理,我们需要首先分析一下 `execute`方法。** 在 4.6 节中的 Demo 中我们使用 `executor.execute(worker)`来提交一个任务到线程池中去,这个方法非常重要,下面我们来看看它的源码: +**为了搞懂线程池的原理,我们需要首先分析一下 `execute`方法。** 在 4.6 节中的 Demo 中我们使用 `executor.execute(worker)`来提交一个任务到线程池中去,这个方法非常重要,下面我们来看看它的源码: ```java // 存放线程池的运行状态 (runState) 和线程池内有效线程的数量 (workerCount) @@ -802,13 +746,13 @@ public void execute(Runnable command) { 通过下图可以更好的对上面这 3 步做一个展示,下图是我为了省事直接从网上找到,原地址不明。 -![图解线程池实现原理](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-7/图解线程池实现原理.png) +![图解线程池实现原理](images/java线程池学习总结/图解线程池实现原理.png) -现在,让我们在回到 4.6 节我们写的 Demo, 现在应该是不是很容易就可以搞懂它的原理了呢? +现在,让我们在回到 4.6 节我们写的 Demo, 现在是不是很容易就可以搞懂它的原理了呢? 没搞懂的话,也没关系,可以看看我的分析: -> 我们在代码中模拟了 10 个任务,我们配置的核心线程数为 5 、等待队列容量为 100 ,所以每次只可能存在 5 个任务同时执行,剩下的 5 个任务会被放到等待队列中去。当前的 5 个任务执行完成后,才会执行剩下的 5 个任务。 +> 我们在代码中模拟了 10 个任务,我们配置的核心线程数为 5 、等待队列容量为 100 ,所以每次只可能存在 5 个任务同时执行,剩下的 5 个任务会被放到等待队列中去。当前的5个任务中如果有任务被执行完了,线程池就会去拿新的任务执行。 ## 5. Atomic 原子类 @@ -920,7 +864,7 @@ AQS 的全称为(`AbstractQueuedSynchronizer`),这个类在` java.util.con ![AQS类](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-6/AQS类.png) -AQS 是一个用来构建锁和同步器的框架,使用 AQS 能简单且高效地构造出应用广泛的大量的同步器,比如我们提到的 `ReentrantLock`,`Semaphore`,其他的诸如 `ReentrantReadWriteLock`,`SynchronousQueue`,`FutureTask` 等等皆是基于 AQS 的。当然,我们自己也能利用 AQS 非常轻松容易地构造出符合我们自己需求的同步器。 +AQS 是一个用来构建锁和同步器的框架,使用 AQS 能简单且高效地构造出大量应用广泛的同步器,比如我们提到的 `ReentrantLock`,`Semaphore`,其他的诸如 `ReentrantReadWriteLock`,`SynchronousQueue`,`FutureTask` 等等皆是基于 AQS 的。当然,我们自己也能利用 AQS 非常轻松容易地构造出符合我们自己需求的同步器。 ### 6.2. AQS 原理分析 @@ -934,7 +878,7 @@ AQS 原理这部分参考了部分博客,在 5.2 节末尾放了链接。 **AQS 核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制 AQS 是用 CLH 队列锁实现的,即将暂时获取不到锁的线程加入到队列中。** -> CLH(Craig,Landin,and Hagersten)队列是一个虚拟的双向队列(虚拟的双向队列即不存在队列实例,仅存在结点之间的关联关系)。AQS 是将每条请求共享资源的线程封装成一个 CLH 锁队列的一个结点(Node)来实现锁的分配。 +> CLH(Craig,Landin and Hagersten)队列是一个虚拟的双向队列(虚拟的双向队列即不存在队列实例,仅存在结点之间的关联关系)。AQS 是将每条请求共享资源的线程封装成一个 CLH 锁队列的一个结点(Node)来实现锁的分配。 看个 AQS(AbstractQueuedSynchronizer)原理图: @@ -999,7 +943,7 @@ tryReleaseShared(int)//共享方式。尝试释放资源,成功则返回true 默认情况下,每个方法都抛出 `UnsupportedOperationException`。 这些方法的实现必须是内部线程安全的,并且通常应该简短而不是阻塞。AQS 类中的其他方法都是 final ,所以无法被其他类使用,只有这几个方法可以被其他类使用。 -以 ReentrantLock 为例,state 初始化为 0,表示未锁定状态。A 线程 lock()时,会调用 tryAcquire()独占该锁并将 state+1。此后,其他线程再 tryAcquire()时就会失败,直到 A 线程 unlock()到 state=0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A 线程自己是可以重复获取此锁的(state 会累加),这就是可重入的概念。但要注意,获取多少次就要释放多么次,这样才能保证 state 是能回到零态的。 +以 ReentrantLock 为例,state 初始化为 0,表示未锁定状态。A 线程 lock()时,会调用 tryAcquire()独占该锁并将 state+1。此后,其他线程再 tryAcquire()时就会失败,直到 A 线程 unlock()到 state=0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A 线程自己是可以重复获取此锁的(state 会累加),这就是可重入的概念。但要注意,获取多少次就要释放多少次,这样才能保证 state 是能回到零态的。 再以 `CountDownLatch` 以例,任务分为 N 个子线程去执行,state 也初始化为 N(注意 N 要与线程个数一致)。这 N 个子线程是并行执行的,每个子线程执行完后` countDown()` 一次,state 会 CAS(Compare and Swap)减 1。等到所有子线程都执行完后(即 state=0),会 unpark()主调用线程,然后主调用线程就会从 `await()` 函数返回,继续后余动作。 @@ -1106,13 +1050,3 @@ CompletableFuture allFutures = CompletableFuture.allOf( - https://www.cnblogs.com/waterystone/p/4920797.html - https://www.cnblogs.com/chengxiao/archive/2017/07/24/7141160.html - - -## 公众号 - -如果大家想要实时关注我更新的文章以及分享的干货的话,可以关注我的公众号。 - -**《Java 面试突击》:** 由本文档衍生的专为面试而生的《Java 面试突击》V2.0 PDF 版本[公众号](#公众号)后台回复 **"面试突击"** 即可免费领取! - -**Java 工程师必备学习资源:** 一些 Java 工程师常用学习资源公众号后台回复关键字 **“1”** 即可免费无套路获取。 - -![我的公众号](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-6/167598cd2e17b8ec.png) diff --git "a/docs/java/multi-thread/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223.md" "b/docs/java/concurrent/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223.md" similarity index 80% rename from "docs/java/multi-thread/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223.md" rename to "docs/java/concurrent/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223.md" index 66d835fd73a..1140df91c48 100644 --- "a/docs/java/multi-thread/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223.md" +++ "b/docs/java/concurrent/java\347\272\277\347\250\213\346\261\240\345\255\246\344\271\240\346\200\273\347\273\223.md" @@ -1,71 +1,33 @@ +--- +title: Java线程池学习总结 +category: Java +tag: + - Java并发 +--- - - -- [一 使用线程池的好处](#一-使用线程池的好处) -- [二 Executor 框架](#二-executor-框架) - - [2.1 简介](#21-简介) - - [2.2 Executor 框架结构(主要由三大部分组成)](#22-executor-框架结构主要由三大部分组成) - - [1) 任务(`Runnable` /`Callable`)](#1-任务runnable-callable) - - [2) 任务的执行(`Executor`)](#2-任务的执行executor) - - [3) 异步计算的结果(`Future`)](#3-异步计算的结果future) - - [2.3 Executor 框架的使用示意图](#23-executor-框架的使用示意图) -- [三 (重要)ThreadPoolExecutor 类简单介绍](#三-重要threadpoolexecutor-类简单介绍) - - [3.1 ThreadPoolExecutor 类分析](#31-threadpoolexecutor-类分析) - - [3.2 推荐使用 `ThreadPoolExecutor` 构造函数创建线程池](#32-推荐使用-threadpoolexecutor-构造函数创建线程池) -- [四 (重要)ThreadPoolExecutor 使用示例](#四-重要threadpoolexecutor-使用示例) - - [4.1 示例代码:`Runnable`+`ThreadPoolExecutor`](#41-示例代码runnablethreadpoolexecutor) - - [4.2 线程池原理分析](#42-线程池原理分析) - - [4.3 几个常见的对比](#43-几个常见的对比) - - [4.3.1 `Runnable` vs `Callable`](#431-runnable-vs-callable) - - [4.3.2 `execute()` vs `submit()`](#432-execute-vs-submit) - - [4.3.3 `shutdown()`VS`shutdownNow()`](#433-shutdownvsshutdownnow) - - [4.3.2 `isTerminated()` VS `isShutdown()`](#432-isterminated-vs-isshutdown) - - [4.4 加餐:`Callable`+`ThreadPoolExecutor`示例代码](#44-加餐callablethreadpoolexecutor示例代码) -- [五 几种常见的线程池详解](#五-几种常见的线程池详解) - - [5.1 FixedThreadPool](#51-fixedthreadpool) - - [5.1.1 介绍](#511-介绍) - - [5.1.2 执行任务过程介绍](#512-执行任务过程介绍) - - [5.1.3 为什么不推荐使用`FixedThreadPool`?](#513-为什么不推荐使用fixedthreadpool) - - [5.2 SingleThreadExecutor 详解](#52-singlethreadexecutor-详解) - - [5.2.1 介绍](#521-介绍) - - [5.2.2 执行任务过程介绍](#522-执行任务过程介绍) - - [5.2.3 为什么不推荐使用`SingleThreadExecutor`?](#523-为什么不推荐使用singlethreadexecutor) - - [5.3 CachedThreadPool 详解](#53-cachedthreadpool-详解) - - [5.3.1 介绍](#531-介绍) - - [5.3.2 执行任务过程介绍](#532-执行任务过程介绍) - - [5.3.3 为什么不推荐使用`CachedThreadPool`?](#533-为什么不推荐使用cachedthreadpool) -- [六 ScheduledThreadPoolExecutor 详解](#六-scheduledthreadpoolexecutor-详解) - - [6.1 简介](#61-简介) - - [6.2 运行机制](#62-运行机制) - - [6.3 ScheduledThreadPoolExecutor 执行周期任务的步骤](#63-scheduledthreadpoolexecutor-执行周期任务的步骤) -- [七 线程池大小确定](#七-线程池大小确定) -- [八 参考](#八-参考) -- [九 其他推荐阅读](#九-其他推荐阅读) - - ## 一 使用线程池的好处 -> **池化技术相比大家已经屡见不鲜了,线程池、数据库连接池、Http 连接池等等都是对这个思想的应用。池化技术的思想主要是为了减少每次获取资源的消耗,提高对资源的利用率。** +> **池化技术想必大家已经屡见不鲜了,线程池、数据库连接池、Http 连接池等等都是对这个思想的应用。池化技术的思想主要是为了减少每次获取资源的消耗,提高对资源的利用率。** **线程池**提供了一种限制和管理资源(包括执行一个任务)。 每个**线程池**还维护一些基本统计信息,例如已完成任务的数量。 这里借用《Java 并发编程的艺术》提到的来说一下**使用线程池的好处**: - **降低资源消耗**。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。 -- **提高响应速度**。当任务到达时,任务可以不需要的等到线程创建就能立即执行。 +- **提高响应速度**。当任务到达时,任务可以不需要等到线程创建就能立即执行。 - **提高线程的可管理性**。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。 ## 二 Executor 框架 ### 2.1 简介 -Executor 框架是 Java5 之后引进的,在 Java 5 之后,通过 Executor 来启动线程比使用 Thread 的 start 方法更好,除了更易管理,效率更好(用线程池实现,节约开销)外,还有关键的一点:有助于避免 this 逃逸问题。 +`Executor` 框架是 Java5 之后引进的,在 Java 5 之后,通过 `Executor` 来启动线程比使用 `Thread` 的 `start` 方法更好,除了更易管理,效率更好(用线程池实现,节约开销)外,还有关键的一点:有助于避免 this 逃逸问题。 > 补充:this 逃逸是指在构造函数返回之前其他线程就持有该对象的引用. 调用尚未构造完全的对象的方法可能引发令人疑惑的错误。 -Executor 框架不仅包括了线程池的管理,还提供了线程工厂、队列以及拒绝策略等,Executor 框架让并发编程变得更加简单。 +`Executor` 框架不仅包括了线程池的管理,还提供了线程工厂、队列以及拒绝策略等,`Executor` 框架让并发编程变得更加简单。 ### 2.2 Executor 框架结构(主要由三大部分组成) @@ -120,7 +82,7 @@ public class ScheduledThreadPoolExecutor ### 3.1 ThreadPoolExecutor 类分析 -`ThreadPoolExecutor` 类中提供的四个构造方法。我们来看最长的那个,其余三个都是在这个构造方法的基础上产生(其他几个构造方法说白点都是给定某些默认参数的构造方法比如默认制定拒绝策略是什么),这里就不贴代码讲了,比较简单。 +`ThreadPoolExecutor` 类中提供的四个构造方法。我们来看最长的那个,其余三个都是在这个构造方法的基础上产生(其他几个构造方法说白点都是给定某些默认参数的构造方法比如默认制定拒绝策略是什么)。 ```java /** @@ -150,7 +112,7 @@ public class ScheduledThreadPoolExecutor } ``` -**下面这些对创建 非常重要,在后面使用线程池的过程中你一定会用到!所以,务必拿着小本本记清楚。** +下面这些对创建非常重要,在后面使用线程池的过程中你一定会用到!所以,务必拿着小本本记清楚。 **`ThreadPoolExecutor` 3 个最重要的参数:** @@ -158,7 +120,7 @@ public class ScheduledThreadPoolExecutor - **`maximumPoolSize` :** 当队列中存放的任务达到队列容量的时候,当前可以同时运行的线程数量变为最大线程数。 - **`workQueue`:** 当新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。 -`ThreadPoolExecutor`其他常见参数: +`ThreadPoolExecutor`其他常见参数 : 1. **`keepAliveTime`**:当线程池中的线程数量大于 `corePoolSize` 的时候,如果这时没有新的任务提交,核心线程外的线程不会立即销毁,而是会等待,直到等待的时间超过了 `keepAliveTime`才会被回收销毁; 2. **`unit`** : `keepAliveTime` 参数的时间单位。 @@ -173,10 +135,10 @@ public class ScheduledThreadPoolExecutor 如果当前同时运行的线程数量达到最大线程数量并且队列也已经被放满了任务时,`ThreadPoolTaskExecutor` 定义一些策略: -- **`ThreadPoolExecutor.AbortPolicy`**:抛出 `RejectedExecutionException`来拒绝新任务的处理。 -- **`ThreadPoolExecutor.CallerRunsPolicy`**:调用执行自己的线程运行任务,也就是直接在调用`execute`方法的线程中运行(`run`)被拒绝的任务,如果执行程序已关闭,则会丢弃该任务。因此这种策略会降低对于新任务提交速度,影响程序的整体性能。如果您的应用程序可以承受此延迟并且你要求任何一个任务请求都要被执行的话,你可以选择这个策略。 -- **`ThreadPoolExecutor.DiscardPolicy`:** 不处理新任务,直接丢弃掉。 -- **`ThreadPoolExecutor.DiscardOldestPolicy`:** 此策略将丢弃最早的未处理的任务请求。 +- **`ThreadPoolExecutor.AbortPolicy`** :抛出 `RejectedExecutionException`来拒绝新任务的处理。 +- **`ThreadPoolExecutor.CallerRunsPolicy`** :调用执行自己的线程运行任务,也就是直接在调用`execute`方法的线程中运行(`run`)被拒绝的任务,如果执行程序已关闭,则会丢弃该任务。因此这种策略会降低对于新任务提交速度,影响程序的整体性能。如果您的应用程序可以承受此延迟并且你要求任何一个任务请求都要被执行的话,你可以选择这个策略。 +- **`ThreadPoolExecutor.DiscardPolicy`** :不处理新任务,直接丢弃掉。 +- **`ThreadPoolExecutor.DiscardOldestPolicy`** : 此策略将丢弃最早的未处理的任务请求。 举个例子: @@ -184,32 +146,34 @@ public class ScheduledThreadPoolExecutor ### 3.2 推荐使用 `ThreadPoolExecutor` 构造函数创建线程池 -**在《阿里巴巴 Java 开发手册》“并发处理”这一章节,明确指出线程资源必须通过线程池提供,不允许在应用中自行显示创建线程。** +在《阿里巴巴 Java 开发手册》“并发处理”这一章节,明确指出线程资源必须通过线程池提供,不允许在应用中自行显式创建线程。 **为什么呢?** -> **使用线程池的好处是减少在创建和销毁线程上所消耗的时间以及系统资源开销,解决资源不足的问题。如果不使用线程池,有可能会造成系统创建大量同类线程而导致消耗完内存或者“过度切换”的问题。** +> 使用线程池的好处是减少在创建和销毁线程上所消耗的时间以及系统资源开销,解决资源不足的问题。如果不使用线程池,有可能会造成系统创建大量同类线程而导致消耗完内存或者“过度切换”的问题。 -**另外《阿里巴巴 Java 开发手册》中强制线程池不允许使用 Executors 去创建,而是通过 ThreadPoolExecutor 构造函数的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险** +另外,《阿里巴巴 Java 开发手册》中强制线程池不允许使用 `Executors` 去创建,而是通过 `ThreadPoolExecutor` 构造函数的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险 -> Executors 返回线程池对象的弊端如下: +> `Executors` 返回线程池对象的弊端如下(后文会详细介绍到): > -> - **`FixedThreadPool` 和 `SingleThreadExecutor`** : 允许请求的队列长度为 Integer.MAX_VALUE,可能堆积大量的请求,从而导致 OOM。 -> - **CachedThreadPool 和 ScheduledThreadPool** : 允许创建的线程数量为 Integer.MAX_VALUE ,可能会创建大量线程,从而导致 OOM。 +> - **`FixedThreadPool` 和 `SingleThreadExecutor`** : 允许请求的队列长度为 `Integer.MAX_VALUE`,可能堆积大量的请求,从而导致 OOM。 +> - **`CachedThreadPool` 和 `ScheduledThreadPool`** : 允许创建的线程数量为 `Integer.MAX_VALUE` ,可能会创建大量线程,从而导致 OOM。 **方式一:通过`ThreadPoolExecutor`构造函数实现(推荐)** ![通过构造方法实现](images/java线程池学习总结/threadpoolexecutor构造函数.png) -**方式二:通过 Executor 框架的工具类 Executors 来实现** -我们可以创建三种类型的 ThreadPoolExecutor: -- **FixedThreadPool** -- **SingleThreadExecutor** -- **CachedThreadPool** +**方式二:通过 `Executor` 框架的工具类 `Executors` 来实现** +我们可以创建三种类型的 `ThreadPoolExecutor`: + +- `FixedThreadPool` +- `SingleThreadExecutor` +- CachedThreadPool 对应 Executors 工具类中的方法如图所示: + ![通过Executor 框架的工具类Executors来实现](images/java线程池学习总结/Executors工具类.png) -## 四 (重要)ThreadPoolExecutor 使用示例 +## 四 ThreadPoolExecutor 使用+原理分析 我们上面讲解了 `Executor`框架以及 `ThreadPoolExecutor` 类,下面让我们实战一下,来通过写一个 `ThreadPoolExecutor` 的小 Demo 来回顾上面的内容。 @@ -337,7 +301,7 @@ pool-1-thread-2 End. Time = Sun Apr 12 11:14:47 CST 2020 ### 4.2 线程池原理分析 -承接 4.1 节,我们通过代码输出结果可以看出:**线程首先会先执行 5 个任务,然后这些任务有任务被执行完的话,就会去拿新的任务执行。** 大家可以先通过上面讲解的内容,分析一下到底是咋回事?(自己独立思考一会) +承接 4.1 节,我们通过代码输出结果可以看出:**线程池首先会先执行 5 个任务,然后这些任务有任务被执行完的话,就会去拿新的任务执行。** 大家可以先通过上面讲解的内容,分析一下到底是咋回事?(自己独立思考一会) 现在,我们就分析上面的输出内容来简单分析一下线程池原理。 @@ -346,7 +310,7 @@ pool-1-thread-2 End. Time = Sun Apr 12 11:14:47 CST 2020 ```java // 存放线程池的运行状态 (runState) 和线程池内有效线程的数量 (workerCount) private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); - + private static int workerCountOf(int c) { return c & CAPACITY; } @@ -388,11 +352,9 @@ pool-1-thread-2 End. Time = Sun Apr 12 11:14:47 CST 2020 通过下图可以更好的对上面这 3 步做一个展示,下图是我为了省事直接从网上找到,原地址不明。 -![图解线程池实现原理](images/java线程池学习总结/图解线程池实现原理.png) +![图解线程池实现原理](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/javaguide/%E5%9B%BE%E8%A7%A3%E7%BA%BF%E7%A8%8B%E6%B1%A0%E5%AE%9E%E7%8E%B0%E5%8E%9F%E7%90%86.png) - - -**`addWorker` 这个方法主要用来创建新的工作线程,如果返回true说明创建和启动工作线程成功,否则的话返回的就是false。** +**`addWorker` 这个方法主要用来创建新的工作线程,如果返回 true 说明创建和启动工作线程成功,否则的话返回的就是 false。** ```java // 全局锁,并发操作必备 @@ -432,7 +394,7 @@ pool-1-thread-2 End. Time = Sun Apr 12 11:14:47 CST 2020 for (;;) { //获取线程池中线程的数量 int wc = workerCountOf(c); - // core参数为true的话表明队列也满了,线程池大小变为 maximumPoolSize + // core参数为true的话表明队列也满了,线程池大小变为 maximumPoolSize if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) return false; @@ -440,7 +402,7 @@ pool-1-thread-2 End. Time = Sun Apr 12 11:14:47 CST 2020 if (compareAndIncrementWorkerCount(c)) break retry; // 如果线程的状态改变了就再次执行上述操作 - c = ctl.get(); + c = ctl.get(); if (runStateOf(c) != rs) continue retry; // else CAS failed due to workerCount change; retry inner loop @@ -452,7 +414,7 @@ pool-1-thread-2 End. Time = Sun Apr 12 11:14:47 CST 2020 boolean workerAdded = false; Worker w = null; try { - + w = new Worker(firstTask); final Thread t = w.thread; if (t != null) { @@ -497,21 +459,21 @@ pool-1-thread-2 End. Time = Sun Apr 12 11:14:47 CST 2020 } ``` -更多关于线程池源码分析的内容推荐这篇文章:《[JUC线程池ThreadPoolExecutor源码分析](http://www.throwable.club/2019/07/15/java-concurrency-thread-pool-executor/)》 +更多关于线程池源码分析的内容推荐这篇文章:《[JUC 线程池 ThreadPoolExecutor 源码分析](http://www.throwable.club/2019/07/15/java-concurrency-thread-pool-executor/)》 现在,让我们在回到 4.1 节我们写的 Demo, 现在应该是不是很容易就可以搞懂它的原理了呢? 没搞懂的话,也没关系,可以看看我的分析: -> 我们在代码中模拟了 10 个任务,我们配置的核心线程数为 5 、等待队列容量为 100 ,所以每次只可能存在 5 个任务同时执行,剩下的 5 个任务会被放到等待队列中去。当前的5个任务中如果有任务被执行完了,线程池就会去拿新的任务执行。 +> 我们在代码中模拟了 10 个任务,我们配置的核心线程数为 5 、等待队列容量为 100 ,所以每次只可能存在 5 个任务同时执行,剩下的 5 个任务会被放到等待队列中去。当前的 5 个任务中如果有任务被执行完了,线程池就会去拿新的任务执行。 ### 4.3 几个常见的对比 #### 4.3.1 `Runnable` vs `Callable` -`Runnable`自 Java 1.0 以来一直存在,但`Callable`仅在 Java 1.5 中引入,目的就是为了来处理`Runnable`不支持的用例。**`Runnable` 接口**不会返回结果或抛出检查异常,但是**`Callable` 接口**可以。所以,如果任务不需要返回结果或抛出异常推荐使用 **`Runnable` 接口**,这样代码看起来会更加简洁。 +`Runnable`自 Java 1.0 以来一直存在,但`Callable`仅在 Java 1.5 中引入,目的就是为了来处理`Runnable`不支持的用例。**`Runnable` 接口**不会返回结果或抛出检查异常,但是 **`Callable` 接口**可以。所以,如果任务不需要返回结果或抛出异常推荐使用 **`Runnable` 接口**,这样代码看起来会更加简洁。 -工具类 `Executors` 可以实现 `Runnable` 对象和 `Callable` 对象之间的相互转换。(`Executors.callable(Runnable task`)或 `Executors.callable(Runnable task,Object resule)`)。 +工具类 `Executors` 可以实现将 `Runnable` 对象转换成 `Callable` 对象。(`Executors.callable(Runnable task)` 或 `Executors.callable(Runnable task, Object result)`)。 `Runnable.java` @@ -542,10 +504,10 @@ public interface Callable { #### 4.3.2 `execute()` vs `submit()` -1. **`execute()`方法用于提交不需要返回值的任务,所以无法判断任务是否被线程池执行成功与否;** -2. **`submit()`方法用于提交需要返回值的任务。线程池会返回一个 `Future` 类型的对象,通过这个 `Future` 对象可以判断任务是否执行成功** ,并且可以通过 `Future` 的 `get()`方法来获取返回值,`get()`方法会阻塞当前线程直到任务完成,而使用 `get(long timeout,TimeUnit unit)`方法则会阻塞当前线程一段时间后立即返回,这时候有可能任务没有执行完。 +- `execute()`方法用于提交不需要返回值的任务,所以无法判断任务是否被线程池执行成功与否; +- `submit()`方法用于提交需要返回值的任务。线程池会返回一个 `Future` 类型的对象,通过这个 `Future` 对象可以判断任务是否执行成功,并且可以通过 `Future` 的 `get()`方法来获取返回值,`get()`方法会阻塞当前线程直到任务完成,而使用 `get(long timeout,TimeUnit unit)`方法则会阻塞当前线程一段时间后立即返回,这时候有可能任务没有执行完。 -我们以 **`AbstractExecutorService`** 接口中的一个 `submit()` 方法为例子来看看源代码: +我们以 `AbstractExecutorService` 接口中的一个 `submit()` 方法为例子来看看源代码: ```java public Future submit(Runnable task) { @@ -754,12 +716,12 @@ Wed Nov 13 13:40:43 CST 2019::pool-1-thread-5 #### 5.2.2 执行任务过程介绍 -**`SingleThreadExecutor` 的运行示意图(该图片来源:《Java 并发编程的艺术》):** +`SingleThreadExecutor` 的运行示意图(该图片来源:《Java 并发编程的艺术》): ![SingleThreadExecutor的运行示意图](images/java线程池学习总结/SingleThreadExecutor.png) -**上图说明;** +**上图说明** : -1. 如果当前运行的线程数少于 corePoolSize,则创建一个新的线程执行任务; +1. 如果当前运行的线程数少于 `corePoolSize`,则创建一个新的线程执行任务; 2. 当前线程池中有一个运行的线程后,将任务加入 `LinkedBlockingQueue` 3. 线程执行完当前的任务后,会在循环中反复从`LinkedBlockingQueue` 中获取任务来执行; @@ -794,11 +756,11 @@ Wed Nov 13 13:40:43 CST 2019::pool-1-thread-5 } ``` -`CachedThreadPool` 的`corePoolSize` 被设置为空(0),`maximumPoolSize`被设置为 Integer.MAX.VALUE,即它是无界的,这也就意味着如果主线程提交任务的速度高于 `maximumPool` 中线程处理任务的速度时,`CachedThreadPool` 会不断创建新的线程。极端情况下,这样会导致耗尽 cpu 和内存资源。 +`CachedThreadPool` 的`corePoolSize` 被设置为空(0),`maximumPoolSize`被设置为 `Integer.MAX.VALUE`,即它是无界的,这也就意味着如果主线程提交任务的速度高于 `maximumPool` 中线程处理任务的速度时,`CachedThreadPool` 会不断创建新的线程。极端情况下,这样会导致耗尽 cpu 和内存资源。 #### 5.3.2 执行任务过程介绍 -**CachedThreadPool 的 execute()方法的执行示意图(该图片来源:《Java 并发编程的艺术》):** +`CachedThreadPool` 的 `execute()` 方法的执行示意图(该图片来源:《Java 并发编程的艺术》): ![CachedThreadPool的execute()方法的执行示意图](images/java线程池学习总结/CachedThreadPool-execute.png) **上图说明:** @@ -808,15 +770,15 @@ Wed Nov 13 13:40:43 CST 2019::pool-1-thread-5 #### 5.3.3 为什么不推荐使用`CachedThreadPool`? -`CachedThreadPool`允许创建的线程数量为 Integer.MAX_VALUE ,可能会创建大量线程,从而导致 OOM。 +`CachedThreadPool`允许创建的线程数量为 `Integer.MAX_VALUE` ,可能会创建大量线程,从而导致 OOM。 ## 六 ScheduledThreadPoolExecutor 详解 -**`ScheduledThreadPoolExecutor` 主要用来在给定的延迟后运行任务,或者定期执行任务。** 这个在实际项目中基本不会被用到,因为有其他方案选择比如`quartz`。大家只需要简单了解一下它的思想。关于如何在 Spring Boot 中 实现定时任务,可以查看这篇文章[《5 分钟搞懂如何在 Spring Boot 中 Schedule Tasks》](https://github.com/Snailclimb/springboot-guide/blob/master/docs/advanced/SpringBoot-ScheduleTasks.md)。 +**`ScheduledThreadPoolExecutor` 主要用来在给定的延迟后运行任务,或者定期执行任务。** 这个在实际项目中基本不会被用到,也不推荐使用,大家只需要简单了解一下它的思想即可。 ### 6.1 简介 -**`ScheduledThreadPoolExecutor` 使用的任务队列 `DelayQueue` 封装了一个 `PriorityQueue`,`PriorityQueue` 会对队列中的任务进行排序,执行所需时间短的放在前面先被执行(`ScheduledFutureTask` 的 `time` 变量小的先执行),如果执行所需时间相同则先提交的任务将被先执行(`ScheduledFutureTask` 的 `squenceNumber` 变量小的先执行)。** +`ScheduledThreadPoolExecutor` 使用的任务队列 `DelayQueue` 封装了一个 `PriorityQueue`,`PriorityQueue` 会对队列中的任务进行排序,执行所需时间短的放在前面先被执行(`ScheduledFutureTask` 的 `time` 变量小的先执行),如果执行所需时间相同则先提交的任务将被先执行(`ScheduledFutureTask` 的 `squenceNumber` 变量小的先执行)。 **`ScheduledThreadPoolExecutor` 和 `Timer` 的比较:** @@ -826,7 +788,7 @@ Wed Nov 13 13:40:43 CST 2019::pool-1-thread-5 **综上,在 JDK1.5 之后,你没有理由再使用 Timer 进行任务调度了。** -> **备注:** Quartz 是一个由 java 编写的任务调度库,由 OpenSymphony 组织开源出来。在实际项目开发中使用 Quartz 的还是居多,比较推荐使用 Quartz。因为 Quartz 理论上能够同时对上万个任务进行调度,拥有丰富的功能特性,包括任务调度、任务持久化、可集群化、插件等等。 +> 关于定时任务的详细介绍,小伙伴们可以在 JavaGuide 的项目首页搜索“定时任务”找到对应的原创内容。 ### 6.2 运行机制 @@ -879,7 +841,7 @@ Wed Nov 13 13:40:43 CST 2019::pool-1-thread-5 **如何判断是 CPU 密集任务还是 IO 密集任务?** -CPU 密集型简单理解就是利用 CPU 计算能力的任务比如你在内存中对大量数据进行排序。单凡涉及到网络读取,文件读取这类都是 IO 密集型,这类任务的特点是 CPU 计算耗费时间相比于等待 IO 操作完成的时间来说很少,大部分时间都花在了等待 IO 操作完成上。 +CPU 密集型简单理解就是利用 CPU 计算能力的任务比如你在内存中对大量数据进行排序。但凡涉及到网络读取,文件读取这类都是 IO 密集型,这类任务的特点是 CPU 计算耗费时间相比于等待 IO 操作完成的时间来说很少,大部分时间都花在了等待 IO 操作完成上。 ## 八 参考 diff --git a/docs/java/concurrent/reentrantlock.md b/docs/java/concurrent/reentrantlock.md new file mode 100644 index 00000000000..fad97ff4dc7 --- /dev/null +++ b/docs/java/concurrent/reentrantlock.md @@ -0,0 +1,994 @@ +--- +title: 从ReentrantLock的实现看AQS的原理及应用 +category: Java +tag: + - Java并发 +--- + +> 本文转载自:https://tech.meituan.com/2019/12/05/aqs-theory-and-apply.html +> +> 作者:美团技术团队 + +## 前言 + +Java中的大部分同步类(Lock、Semaphore、ReentrantLock等)都是基于AbstractQueuedSynchronizer(简称为AQS)实现的。AQS是一种提供了原子式管理同步状态、阻塞和唤醒线程功能以及队列模型的简单框架。本文会从应用层逐渐深入到原理层,并通过ReentrantLock的基本特性和ReentrantLock与AQS的关联,来深入解读AQS相关独占锁的知识点,同时采取问答的模式来帮助大家理解AQS。由于篇幅原因,本篇文章主要阐述AQS中独占锁的逻辑和Sync Queue,不讲述包含共享锁和Condition Queue的部分(本篇文章核心为AQS原理剖析,只是简单介绍了ReentrantLock,感兴趣同学可以阅读一下ReentrantLock的源码)。 + +## 1 ReentrantLock + +### 1.1 ReentrantLock特性概览 + +ReentrantLock意思为可重入锁,指的是一个线程能够对一个临界资源重复加锁。为了帮助大家更好地理解ReentrantLock的特性,我们先将ReentrantLock跟常用的Synchronized进行比较,其特性如下(蓝色部分为本篇文章主要剖析的点): + +![img](https://p0.meituan.net/travelcube/412d294ff5535bbcddc0d979b2a339e6102264.png) + +下面通过伪代码,进行更加直观的比较: + +```java +// **************************Synchronized的使用方式************************** +// 1.用于代码块 +synchronized (this) {} +// 2.用于对象 +synchronized (object) {} +// 3.用于方法 +public synchronized void test () {} +// 4.可重入 +for (int i = 0; i < 100; i++) { + synchronized (this) {} +} +// **************************ReentrantLock的使用方式************************** +public void test () throw Exception { + // 1.初始化选择公平锁、非公平锁 + ReentrantLock lock = new ReentrantLock(true); + // 2.可用于代码块 + lock.lock(); + try { + try { + // 3.支持多种加锁方式,比较灵活; 具有可重入特性 + if(lock.tryLock(100, TimeUnit.MILLISECONDS)){ } + } finally { + // 4.手动释放锁 + lock.unlock() + } + } finally { + lock.unlock(); + } +} +``` + +### 1.2 ReentrantLock与AQS的关联 + +通过上文我们已经了解,ReentrantLock支持公平锁和非公平锁(关于公平锁和非公平锁的原理分析,可参考《[不可不说的Java“锁”事](https://mp.weixin.qq.com/s?__biz=MjM5NjQ5MTI5OA==&mid=2651749434&idx=3&sn=5ffa63ad47fe166f2f1a9f604ed10091&chksm=bd12a5778a652c61509d9e718ab086ff27ad8768586ea9b38c3dcf9e017a8e49bcae3df9bcc8&scene=38#wechat_redirect)》),并且ReentrantLock的底层就是由AQS来实现的。那么ReentrantLock是如何通过公平锁和非公平锁与AQS关联起来呢? 我们着重从这两者的加锁过程来理解一下它们与AQS之间的关系(加锁过程中与AQS的关联比较明显,解锁流程后续会介绍)。 + +非公平锁源码中的加锁流程如下: + +```java +// java.util.concurrent.locks.ReentrantLock#NonfairSync + +// 非公平锁 +static final class NonfairSync extends Sync { + ... + final void lock() { + if (compareAndSetState(0, 1)) + setExclusiveOwnerThread(Thread.currentThread()); + else + acquire(1); + } + ... +} +``` + +这块代码的含义为: + +- 若通过CAS设置变量State(同步状态)成功,也就是获取锁成功,则将当前线程设置为独占线程。 +- 若通过CAS设置变量State(同步状态)失败,也就是获取锁失败,则进入Acquire方法进行后续处理。 + +第一步很好理解,但第二步获取锁失败后,后续的处理策略是怎么样的呢?这块可能会有以下思考: + +- 某个线程获取锁失败的后续流程是什么呢?有以下两种可能: + +(1) 将当前线程获锁结果设置为失败,获取锁流程结束。这种设计会极大降低系统的并发度,并不满足我们实际的需求。所以就需要下面这种流程,也就是AQS框架的处理流程。 + +(2) 存在某种排队等候机制,线程继续等待,仍然保留获取锁的可能,获取锁流程仍在继续。 + +- 对于问题1的第二种情况,既然说到了排队等候机制,那么就一定会有某种队列形成,这样的队列是什么数据结构呢? +- 处于排队等候机制中的线程,什么时候可以有机会获取锁呢? +- 如果处于排队等候机制中的线程一直无法获取锁,还是需要一直等待吗,还是有别的策略来解决这一问题? + +带着非公平锁的这些问题,再看下公平锁源码中获锁的方式: + +``` +// java.util.concurrent.locks.ReentrantLock#FairSync + +static final class FairSync extends Sync { + ... + final void lock() { + acquire(1); + } + ... +} +``` + +看到这块代码,我们可能会存在这种疑问:Lock函数通过Acquire方法进行加锁,但是具体是如何加锁的呢? + +结合公平锁和非公平锁的加锁流程,虽然流程上有一定的不同,但是都调用了Acquire方法,而Acquire方法是FairSync和UnfairSync的父类AQS中的核心方法。 + +对于上边提到的问题,其实在ReentrantLock类源码中都无法解答,而这些问题的答案,都是位于Acquire方法所在的类AbstractQueuedSynchronizer中,也就是本文的核心——AQS。下面我们会对AQS以及ReentrantLock和AQS的关联做详细介绍(相关问题答案会在2.3.5小节中解答)。 + +## 2 AQS + +首先,我们通过下面的架构图来整体了解一下AQS框架: + +![](https://p1.meituan.net/travelcube/82077ccf14127a87b77cefd1ccf562d3253591.png) + +- 上图中有颜色的为Method,无颜色的为Attribution。 +- 总的来说,AQS框架共分为五层,自上而下由浅入深,从AQS对外暴露的API到底层基础数据。 +- 当有自定义同步器接入时,只需重写第一层所需要的部分方法即可,不需要关注底层具体的实现流程。当自定义同步器进行加锁或者解锁操作时,先经过第一层的API进入AQS内部方法,然后经过第二层进行锁的获取,接着对于获取锁失败的流程,进入第三层和第四层的等待队列处理,而这些处理方式均依赖于第五层的基础数据提供层。 + +下面我们会从整体到细节,从流程到方法逐一剖析AQS框架,主要分析过程如下: + +![](https://p1.meituan.net/travelcube/d2f7f7fffdc30d85d17b44266c3ab05323338.png) + +### 2.1 原理概览 + +AQS核心思想是,如果被请求的共享资源空闲,那么就将当前请求资源的线程设置为有效的工作线程,将共享资源设置为锁定状态;如果共享资源被占用,就需要一定的阻塞等待唤醒机制来保证锁分配。这个机制主要用的是CLH队列的变体实现的,将暂时获取不到锁的线程加入到队列中。 + +CLH:Craig、Landin and Hagersten队列,是单向链表,AQS中的队列是CLH变体的虚拟双向队列(FIFO),AQS是通过将每条请求共享资源的线程封装成一个节点来实现锁的分配。 + +主要原理图如下: + +![](https://p0.meituan.net/travelcube/7132e4cef44c26f62835b197b239147b18062.png) + +AQS使用一个Volatile的int类型的成员变量来表示同步状态,通过内置的FIFO队列来完成资源获取的排队工作,通过CAS完成对State值的修改。 + +#### 2.1.1 AQS数据结构 + +先来看下AQS中最基本的数据结构——Node,Node即为上面CLH变体队列中的节点。 + +![](https://p1.meituan.net/travelcube/960271cf2b5c8a185eed23e98b72c75538637.png) + +解释一下几个方法和属性值的含义: + +| 方法和属性值 | 含义 | +| :----------- | :----------------------------------------------------------- | +| waitStatus | 当前节点在队列中的状态 | +| thread | 表示处于该节点的线程 | +| prev | 前驱指针 | +| predecessor | 返回前驱节点,没有的话抛出npe | +| nextWaiter | 指向下一个处于CONDITION状态的节点(由于本篇文章不讲述Condition Queue队列,这个指针不多介绍) | +| next | 后继指针 | + +线程两种锁的模式: + +| 模式 | 含义 | +| :-------- | :----------------------------- | +| SHARED | 表示线程以共享的模式等待锁 | +| EXCLUSIVE | 表示线程正在以独占的方式等待锁 | + +waitStatus有下面几个枚举值: + +| 枚举 | 含义 | +| :-------- | :--------------------------------------------- | +| 0 | 当一个Node被初始化的时候的默认值 | +| CANCELLED | 为1,表示线程获取锁的请求已经取消了 | +| CONDITION | 为-2,表示节点在等待队列中,节点线程等待唤醒 | +| PROPAGATE | 为-3,当前线程处在SHARED情况下,该字段才会使用 | +| SIGNAL | 为-1,表示线程已经准备好了,就等资源释放了 | + +#### 2.1.2 同步状态State + +在了解数据结构后,接下来了解一下AQS的同步状态——State。AQS中维护了一个名为state的字段,意为同步状态,是由Volatile修饰的,用于展示当前临界资源的获锁情况。 + +```java +// java.util.concurrent.locks.AbstractQueuedSynchronizer + +private volatile int state; +``` + +下面提供了几个访问这个字段的方法: + +| 方法名 | 描述 | +| :----------------------------------------------------------- | :------------------- | +| protected final int getState() | 获取State的值 | +| protected final void setState(int newState) | 设置State的值 | +| protected final boolean compareAndSetState(int expect, int update) | 使用CAS方式更新State | + +这几个方法都是Final修饰的,说明子类中无法重写它们。我们可以通过修改State字段表示的同步状态来实现多线程的独占模式和共享模式(加锁过程)。 + +![](https://p0.meituan.net/travelcube/27605d483e8935da683a93be015713f331378.png) + +![](https://p0.meituan.net/travelcube/3f1e1a44f5b7d77000ba4f9476189b2e32806.png) + +对于我们自定义的同步工具,需要自定义获取同步状态和释放状态的方式,也就是AQS架构图中的第一层:API层。 + +## 2.2 AQS重要方法与ReentrantLock的关联 + +从架构图中可以得知,AQS提供了大量用于自定义同步器实现的Protected方法。自定义同步器实现的相关方法也只是为了通过修改State字段来实现多线程的独占模式或者共享模式。自定义同步器需要实现以下方法(ReentrantLock需要实现的方法如下,并不是全部): + +| 方法名 | 描述 | +| :------------------------------------------ | :----------------------------------------------------------- | +| protected boolean isHeldExclusively() | 该线程是否正在独占资源。只有用到Condition才需要去实现它。 | +| protected boolean tryAcquire(int arg) | 独占方式。arg为获取锁的次数,尝试获取资源,成功则返回True,失败则返回False。 | +| protected boolean tryRelease(int arg) | 独占方式。arg为释放锁的次数,尝试释放资源,成功则返回True,失败则返回False。 | +| protected int tryAcquireShared(int arg) | 共享方式。arg为获取锁的次数,尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。 | +| protected boolean tryReleaseShared(int arg) | 共享方式。arg为释放锁的次数,尝试释放资源,如果释放后允许唤醒后续等待结点返回True,否则返回False。 | + +一般来说,自定义同步器要么是独占方式,要么是共享方式,它们也只需实现tryAcquire-tryRelease、tryAcquireShared-tryReleaseShared中的一种即可。AQS也支持自定义同步器同时实现独占和共享两种方式,如ReentrantReadWriteLock。ReentrantLock是独占锁,所以实现了tryAcquire-tryRelease。 + +以非公平锁为例,这里主要阐述一下非公平锁与AQS之间方法的关联之处,具体每一处核心方法的作用会在文章后面详细进行阐述。 + +![](https://p1.meituan.net/travelcube/b8b53a70984668bc68653efe9531573e78636.png) + +为了帮助大家理解ReentrantLock和AQS之间方法的交互过程,以非公平锁为例,我们将加锁和解锁的交互流程单独拎出来强调一下,以便于对后续内容的理解。 + +![](https://p1.meituan.net/travelcube/7aadb272069d871bdee8bf3a218eed8136919.png) + +加锁: + +- 通过ReentrantLock的加锁方法Lock进行加锁操作。 +- 会调用到内部类Sync的Lock方法,由于Sync#lock是抽象方法,根据ReentrantLock初始化选择的公平锁和非公平锁,执行相关内部类的Lock方法,本质上都会执行AQS的Acquire方法。 +- AQS的Acquire方法会执行tryAcquire方法,但是由于tryAcquire需要自定义同步器实现,因此执行了ReentrantLock中的tryAcquire方法,由于ReentrantLock是通过公平锁和非公平锁内部类实现的tryAcquire方法,因此会根据锁类型不同,执行不同的tryAcquire。 +- tryAcquire是获取锁逻辑,获取失败后,会执行框架AQS的后续逻辑,跟ReentrantLock自定义同步器无关。 + +解锁: + +- 通过ReentrantLock的解锁方法Unlock进行解锁。 +- Unlock会调用内部类Sync的Release方法,该方法继承于AQS。 +- Release中会调用tryRelease方法,tryRelease需要自定义同步器实现,tryRelease只在ReentrantLock中的Sync实现,因此可以看出,释放锁的过程,并不区分是否为公平锁。 +- 释放成功后,所有处理由AQS框架完成,与自定义同步器无关。 + +通过上面的描述,大概可以总结出ReentrantLock加锁解锁时API层核心方法的映射关系。 + +![](https://p0.meituan.net/travelcube/f30c631c8ebbf820d3e8fcb6eee3c0ef18748.png) + +## 2.3 通过ReentrantLock理解AQS + +ReentrantLock中公平锁和非公平锁在底层是相同的,这里以非公平锁为例进行分析。 + +在非公平锁中,有一段这样的代码: + +```java +// java.util.concurrent.locks.ReentrantLock + +static final class NonfairSync extends Sync { + ... + final void lock() { + if (compareAndSetState(0, 1)) + setExclusiveOwnerThread(Thread.currentThread()); + else + acquire(1); + } + ... +} +``` + +看一下这个Acquire是怎么写的: + +```java +// java.util.concurrent.locks.AbstractQueuedSynchronizer + +public final void acquire(int arg) { + if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) + selfInterrupt(); +} +``` + +再看一下tryAcquire方法: + +```java +// java.util.concurrent.locks.AbstractQueuedSynchronizer + +protected boolean tryAcquire(int arg) { + throw new UnsupportedOperationException(); +} +``` + +可以看出,这里只是AQS的简单实现,具体获取锁的实现方法是由各自的公平锁和非公平锁单独实现的(以ReentrantLock为例)。如果该方法返回了True,则说明当前线程获取锁成功,就不用往后执行了;如果获取失败,就需要加入到等待队列中。下面会详细解释线程是何时以及怎样被加入进等待队列中的。 + +### 2.3.1 线程加入等待队列 + +#### 2.3.1.1 加入队列的时机 + +当执行Acquire(1)时,会通过tryAcquire获取锁。在这种情况下,如果获取锁失败,就会调用addWaiter加入到等待队列中去。 + +#### 2.3.1.2 如何加入队列 + +获取锁失败后,会执行addWaiter(Node.EXCLUSIVE)加入等待队列,具体实现方法如下: + +```java +// java.util.concurrent.locks.AbstractQueuedSynchronizer + +private Node addWaiter(Node mode) { + Node node = new Node(Thread.currentThread(), mode); + // Try the fast path of enq; backup to full enq on failure + Node pred = tail; + if (pred != null) { + node.prev = pred; + if (compareAndSetTail(pred, node)) { + pred.next = node; + return node; + } + } + enq(node); + return node; +} +private final boolean compareAndSetTail(Node expect, Node update) { + return unsafe.compareAndSwapObject(this, tailOffset, expect, update); +} +``` + +主要的流程如下: + +- 通过当前的线程和锁模式新建一个节点。 +- Pred指针指向尾节点Tail。 +- 将New中Node的Prev指针指向Pred。 +- 通过compareAndSetTail方法,完成尾节点的设置。这个方法主要是对tailOffset和Expect进行比较,如果tailOffset的Node和Expect的Node地址是相同的,那么设置Tail的值为Update的值。 + +```java +// java.util.concurrent.locks.AbstractQueuedSynchronizer + +static { + try { + stateOffset = unsafe.objectFieldOffset(AbstractQueuedSynchronizer.class.getDeclaredField("state")); + headOffset = unsafe.objectFieldOffset(AbstractQueuedSynchronizer.class.getDeclaredField("head")); + tailOffset = unsafe.objectFieldOffset(AbstractQueuedSynchronizer.class.getDeclaredField("tail")); + waitStatusOffset = unsafe.objectFieldOffset(Node.class.getDeclaredField("waitStatus")); + nextOffset = unsafe.objectFieldOffset(Node.class.getDeclaredField("next")); + } catch (Exception ex) { + throw new Error(ex); + } +} +``` + +从AQS的静态代码块可以看出,都是获取一个对象的属性相对于该对象在内存当中的偏移量,这样我们就可以根据这个偏移量在对象内存当中找到这个属性。tailOffset指的是tail对应的偏移量,所以这个时候会将new出来的Node置为当前队列的尾节点。同时,由于是双向链表,也需要将前一个节点指向尾节点。 + +- 如果Pred指针是Null(说明等待队列中没有元素),或者当前Pred指针和Tail指向的位置不同(说明被别的线程已经修改),就需要看一下Enq的方法。 + +```java +// java.util.concurrent.locks.AbstractQueuedSynchronizer + +private Node enq(final Node node) { + for (;;) { + Node t = tail; + if (t == null) { // Must initialize + if (compareAndSetHead(new Node())) + tail = head; + } else { + node.prev = t; + if (compareAndSetTail(t, node)) { + t.next = node; + return t; + } + } + } +} +``` + +如果没有被初始化,需要进行初始化一个头结点出来。但请注意,初始化的头结点并不是当前线程节点,而是调用了无参构造函数的节点。如果经历了初始化或者并发导致队列中有元素,则与之前的方法相同。其实,addWaiter就是一个在双端链表添加尾节点的操作,需要注意的是,双端链表的头结点是一个无参构造函数的头结点。 + +总结一下,线程获取锁的时候,过程大体如下: + +1. 当没有线程获取到锁时,线程1获取锁成功。 +2. 线程2申请锁,但是锁被线程1占有。 + +![img](https://p0.meituan.net/travelcube/e9e385c3c68f62c67c8d62ab0adb613921117.png) + +1. 如果再有线程要获取锁,依次在队列中往后排队即可。 + +回到上边的代码,hasQueuedPredecessors是公平锁加锁时判断等待队列中是否存在有效节点的方法。如果返回False,说明当前线程可以争取共享资源;如果返回True,说明队列中存在有效节点,当前线程必须加入到等待队列中。 + +```java +// java.util.concurrent.locks.ReentrantLock + +public final boolean hasQueuedPredecessors() { + // The correctness of this depends on head being initialized + // before tail and on head.next being accurate if the current + // thread is first in queue. + Node t = tail; // Read fields in reverse initialization order + Node h = head; + Node s; + return h != t && ((s = h.next) == null || s.thread != Thread.currentThread()); +} +``` + +看到这里,我们理解一下h != t && ((s = h.next) == null || s.thread != Thread.currentThread());为什么要判断的头结点的下一个节点?第一个节点储存的数据是什么? + +> 双向链表中,第一个节点为虚节点,其实并不存储任何信息,只是占位。真正的第一个有数据的节点,是在第二个节点开始的。当h != t时: 如果(s = h.next) == null,等待队列正在有线程进行初始化,但只是进行到了Tail指向Head,没有将Head指向Tail,此时队列中有元素,需要返回True(这块具体见下边代码分析)。 如果(s = h.next) != null,说明此时队列中至少有一个有效节点。如果此时s.thread == Thread.currentThread(),说明等待队列的第一个有效节点中的线程与当前线程相同,那么当前线程是可以获取资源的;如果s.thread != Thread.currentThread(),说明等待队列的第一个有效节点线程与当前线程不同,当前线程必须加入进等待队列。 + +```java +// java.util.concurrent.locks.AbstractQueuedSynchronizer#enq + +if (t == null) { // Must initialize + if (compareAndSetHead(new Node())) + tail = head; +} else { + node.prev = t; + if (compareAndSetTail(t, node)) { + t.next = node; + return t; + } +} +``` + +节点入队不是原子操作,所以会出现短暂的head != tail,此时Tail指向最后一个节点,而且Tail指向Head。如果Head没有指向Tail(可见5、6、7行),这种情况下也需要将相关线程加入队列中。所以这块代码是为了解决极端情况下的并发问题。 + +#### 2.3.1.3 等待队列中线程出队列时机 + +回到最初的源码: + +```java +// java.util.concurrent.locks.AbstractQueuedSynchronizer + +public final void acquire(int arg) { + if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) + selfInterrupt(); +} +``` + +上文解释了addWaiter方法,这个方法其实就是把对应的线程以Node的数据结构形式加入到双端队列里,返回的是一个包含该线程的Node。而这个Node会作为参数,进入到acquireQueued方法中。acquireQueued方法可以对排队中的线程进行“获锁”操作。 + +总的来说,一个线程获取锁失败了,被放入等待队列,acquireQueued会把放入队列中的线程不断去获取锁,直到获取成功或者不再需要获取(中断)。 + +下面我们从“何时出队列?”和“如何出队列?”两个方向来分析一下acquireQueued源码: + +```java +// java.util.concurrent.locks.AbstractQueuedSynchronizer + +final boolean acquireQueued(final Node node, int arg) { + // 标记是否成功拿到资源 + boolean failed = true; + try { + // 标记等待过程中是否中断过 + boolean interrupted = false; + // 开始自旋,要么获取锁,要么中断 + for (;;) { + // 获取当前节点的前驱节点 + final Node p = node.predecessor(); + // 如果p是头结点,说明当前节点在真实数据队列的首部,就尝试获取锁(别忘了头结点是虚节点) + if (p == head && tryAcquire(arg)) { + // 获取锁成功,头指针移动到当前node + setHead(node); + p.next = null; // help GC + failed = false; + return interrupted; + } + // 说明p为头节点且当前没有获取到锁(可能是非公平锁被抢占了)或者是p不为头结点,这个时候就要判断当前node是否要被阻塞(被阻塞条件:前驱节点的waitStatus为-1),防止无限循环浪费资源。具体两个方法下面细细分析 + if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) + interrupted = true; + } + } finally { + if (failed) + cancelAcquire(node); + } +} +``` + +注:setHead方法是把当前节点置为虚节点,但并没有修改waitStatus,因为它是一直需要用的数据。 + +```java +// java.util.concurrent.locks.AbstractQueuedSynchronizer + +private void setHead(Node node) { + head = node; + node.thread = null; + node.prev = null; +} + +// java.util.concurrent.locks.AbstractQueuedSynchronizer + +// 靠前驱节点判断当前线程是否应该被阻塞 +private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) { + // 获取头结点的节点状态 + int ws = pred.waitStatus; + // 说明头结点处于唤醒状态 + if (ws == Node.SIGNAL) + return true; + // 通过枚举值我们知道waitStatus>0是取消状态 + if (ws > 0) { + do { + // 循环向前查找取消节点,把取消节点从队列中剔除 + node.prev = pred = pred.prev; + } while (pred.waitStatus > 0); + pred.next = node; + } else { + // 设置前任节点等待状态为SIGNAL + compareAndSetWaitStatus(pred, ws, Node.SIGNAL); + } + return false; +} +``` + +parkAndCheckInterrupt主要用于挂起当前线程,阻塞调用栈,返回当前线程的中断状态。 + +```java +// java.util.concurrent.locks.AbstractQueuedSynchronizer + +private final boolean parkAndCheckInterrupt() { + LockSupport.park(this); + return Thread.interrupted(); +} +``` + +上述方法的流程图如下: + +![](https://p0.meituan.net/travelcube/c124b76dcbefb9bdc778458064703d1135485.png) + +从上图可以看出,跳出当前循环的条件是当“前置节点是头结点,且当前线程获取锁成功”。为了防止因死循环导致CPU资源被浪费,我们会判断前置节点的状态来决定是否要将当前线程挂起,具体挂起流程用流程图表示如下(shouldParkAfterFailedAcquire流程): + +![](https://p0.meituan.net/travelcube/9af16e2481ad85f38ca322a225ae737535740.png) + +从队列中释放节点的疑虑打消了,那么又有新问题了: + +- shouldParkAfterFailedAcquire中取消节点是怎么生成的呢?什么时候会把一个节点的waitStatus设置为-1? +- 是在什么时间释放节点通知到被挂起的线程呢? + +### 2.3.2 CANCELLED状态节点生成 + +acquireQueued方法中的Finally代码: + +```java +// java.util.concurrent.locks.AbstractQueuedSynchronizer + +final boolean acquireQueued(final Node node, int arg) { + boolean failed = true; + try { + ... + for (;;) { + final Node p = node.predecessor(); + if (p == head && tryAcquire(arg)) { + ... + failed = false; + ... + } + ... + } finally { + if (failed) + cancelAcquire(node); + } +} +``` + +通过cancelAcquire方法,将Node的状态标记为CANCELLED。接下来,我们逐行来分析这个方法的原理: + +```java +// java.util.concurrent.locks.AbstractQueuedSynchronizer + +private void cancelAcquire(Node node) { + // 将无效节点过滤 + if (node == null) + return; + // 设置该节点不关联任何线程,也就是虚节点 + node.thread = null; + Node pred = node.prev; + // 通过前驱节点,跳过取消状态的node + while (pred.waitStatus > 0) + node.prev = pred = pred.prev; + // 获取过滤后的前驱节点的后继节点 + Node predNext = pred.next; + // 把当前node的状态设置为CANCELLED + node.waitStatus = Node.CANCELLED; + // 如果当前节点是尾节点,将从后往前的第一个非取消状态的节点设置为尾节点 + // 更新失败的话,则进入else,如果更新成功,将tail的后继节点设置为null + if (node == tail && compareAndSetTail(node, pred)) { + compareAndSetNext(pred, predNext, null); + } else { + int ws; + // 如果当前节点不是head的后继节点,1:判断当前节点前驱节点的是否为SIGNAL,2:如果不是,则把前驱节点设置为SINGAL看是否成功 + // 如果1和2中有一个为true,再判断当前节点的线程是否为null + // 如果上述条件都满足,把当前节点的前驱节点的后继指针指向当前节点的后继节点 + if (pred != head && ((ws = pred.waitStatus) == Node.SIGNAL || (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) && pred.thread != null) { + Node next = node.next; + if (next != null && next.waitStatus <= 0) + compareAndSetNext(pred, predNext, next); + } else { + // 如果当前节点是head的后继节点,或者上述条件不满足,那就唤醒当前节点的后继节点 + unparkSuccessor(node); + } + node.next = node; // help GC + } +} +``` + +当前的流程: + +- 获取当前节点的前驱节点,如果前驱节点的状态是CANCELLED,那就一直往前遍历,找到第一个waitStatus <= 0的节点,将找到的Pred节点和当前Node关联,将当前Node设置为CANCELLED。 +- 根据当前节点的位置,考虑以下三种情况: + +(1) 当前节点是尾节点。 + +(2) 当前节点是Head的后继节点。 + +(3) 当前节点不是Head的后继节点,也不是尾节点。 + +根据上述第二条,我们来分析每一种情况的流程。 + +当前节点是尾节点。 + +![](https://p1.meituan.net/travelcube/b845211ced57561c24f79d56194949e822049.png) + +当前节点是Head的后继节点。 + +![](https://p1.meituan.net/travelcube/ab89bfec875846e5028a4f8fead32b7117975.png) + +当前节点不是Head的后继节点,也不是尾节点。 + +![](https://p0.meituan.net/travelcube/45d0d9e4a6897eddadc4397cf53d6cd522452.png) + +通过上面的流程,我们对于CANCELLED节点状态的产生和变化已经有了大致的了解,但是为什么所有的变化都是对Next指针进行了操作,而没有对Prev指针进行操作呢?什么情况下会对Prev指针进行操作? + +> 执行cancelAcquire的时候,当前节点的前置节点可能已经从队列中出去了(已经执行过Try代码块中的shouldParkAfterFailedAcquire方法了),如果此时修改Prev指针,有可能会导致Prev指向另一个已经移除队列的Node,因此这块变化Prev指针不安全。 shouldParkAfterFailedAcquire方法中,会执行下面的代码,其实就是在处理Prev指针。shouldParkAfterFailedAcquire是获取锁失败的情况下才会执行,进入该方法后,说明共享资源已被获取,当前节点之前的节点都不会出现变化,因此这个时候变更Prev指针比较安全。 +> +> ```java +> do { +> node.prev = pred = pred.prev; +> } while (pred.waitStatus > 0); +> ``` + +### 2.3.3 如何解锁 + +我们已经剖析了加锁过程中的基本流程,接下来再对解锁的基本流程进行分析。由于ReentrantLock在解锁的时候,并不区分公平锁和非公平锁,所以我们直接看解锁的源码: + +```java +// java.util.concurrent.locks.ReentrantLock + +public void unlock() { + sync.release(1); +} +``` + +可以看到,本质释放锁的地方,是通过框架来完成的。 + +```java +// java.util.concurrent.locks.AbstractQueuedSynchronizer + +public final boolean release(int arg) { + if (tryRelease(arg)) { + Node h = head; + if (h != null && h.waitStatus != 0) + unparkSuccessor(h); + return true; + } + return false; +} +``` + +在ReentrantLock里面的公平锁和非公平锁的父类Sync定义了可重入锁的释放锁机制。 + +```java +// java.util.concurrent.locks.ReentrantLock.Sync + +// 方法返回当前锁是不是没有被线程持有 +protected final boolean tryRelease(int releases) { + // 减少可重入次数 + int c = getState() - releases; + // 当前线程不是持有锁的线程,抛出异常 + if (Thread.currentThread() != getExclusiveOwnerThread()) + throw new IllegalMonitorStateException(); + boolean free = false; + // 如果持有线程全部释放,将当前独占锁所有线程设置为null,并更新state + if (c == 0) { + free = true; + setExclusiveOwnerThread(null); + } + setState(c); + return free; +} +``` + +我们来解释下述源码: + +```java +// java.util.concurrent.locks.AbstractQueuedSynchronizer + +public final boolean release(int arg) { + // 上边自定义的tryRelease如果返回true,说明该锁没有被任何线程持有 + if (tryRelease(arg)) { + // 获取头结点 + Node h = head; + // 头结点不为空并且头结点的waitStatus不是初始化节点情况,解除线程挂起状态 + if (h != null && h.waitStatus != 0) + unparkSuccessor(h); + return true; + } + return false; +} +``` + +这里的判断条件为什么是h != null && h.waitStatus != 0? + +> h == null Head还没初始化。初始情况下,head == null,第一个节点入队,Head会被初始化一个虚拟节点。所以说,这里如果还没来得及入队,就会出现head == null 的情况。 +> +> h != null && waitStatus == 0 表明后继节点对应的线程仍在运行中,不需要唤醒。 +> +> h != null && waitStatus < 0 表明后继节点可能被阻塞了,需要唤醒。 + +再看一下unparkSuccessor方法: + +```java +// java.util.concurrent.locks.AbstractQueuedSynchronizer + +private void unparkSuccessor(Node node) { + // 获取头结点waitStatus + int ws = node.waitStatus; + if (ws < 0) + compareAndSetWaitStatus(node, ws, 0); + // 获取当前节点的下一个节点 + Node s = node.next; + // 如果下个节点是null或者下个节点被cancelled,就找到队列最开始的非cancelled的节点 + if (s == null || s.waitStatus > 0) { + s = null; + // 就从尾部节点开始找,到队首,找到队列第一个waitStatus<0的节点。 + for (Node t = tail; t != null && t != node; t = t.prev) + if (t.waitStatus <= 0) + s = t; + } + // 如果当前节点的下个节点不为空,而且状态<=0,就把当前节点unpark + if (s != null) + LockSupport.unpark(s.thread); +} +``` + +为什么要从后往前找第一个非Cancelled的节点呢?原因如下。 + +之前的addWaiter方法: + +```java +// java.util.concurrent.locks.AbstractQueuedSynchronizer + +private Node addWaiter(Node mode) { + Node node = new Node(Thread.currentThread(), mode); + // Try the fast path of enq; backup to full enq on failure + Node pred = tail; + if (pred != null) { + node.prev = pred; + if (compareAndSetTail(pred, node)) { + pred.next = node; + return node; + } + } + enq(node); + return node; +} +``` + +我们从这里可以看到,节点入队并不是原子操作,也就是说,node.prev = pred; compareAndSetTail(pred, node) 这两个地方可以看作Tail入队的原子操作,但是此时pred.next = node;还没执行,如果这个时候执行了unparkSuccessor方法,就没办法从前往后找了,所以需要从后往前找。还有一点原因,在产生CANCELLED状态节点的时候,先断开的是Next指针,Prev指针并未断开,因此也是必须要从后往前遍历才能够遍历完全部的Node。 + +综上所述,如果是从前往后找,由于极端情况下入队的非原子操作和CANCELLED节点产生过程中断开Next指针的操作,可能会导致无法遍历所有的节点。所以,唤醒对应的线程后,对应的线程就会继续往下执行。继续执行acquireQueued方法以后,中断如何处理? + +### 2.3.4 中断恢复后的执行流程 + +唤醒后,会执行return Thread.interrupted();,这个函数返回的是当前执行线程的中断状态,并清除。 + +```java +// java.util.concurrent.locks.AbstractQueuedSynchronizer + +private final boolean parkAndCheckInterrupt() { + LockSupport.park(this); + return Thread.interrupted(); +} +``` + +再回到acquireQueued代码,当parkAndCheckInterrupt返回True或者False的时候,interrupted的值不同,但都会执行下次循环。如果这个时候获取锁成功,就会把当前interrupted返回。 + +```java +// java.util.concurrent.locks.AbstractQueuedSynchronizer + +final boolean acquireQueued(final Node node, int arg) { + boolean failed = true; + try { + boolean interrupted = false; + for (;;) { + final Node p = node.predecessor(); + if (p == head && tryAcquire(arg)) { + setHead(node); + p.next = null; // help GC + failed = false; + return interrupted; + } + if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) + interrupted = true; + } + } finally { + if (failed) + cancelAcquire(node); + } +} +``` + +如果acquireQueued为True,就会执行selfInterrupt方法。 + +```java +// java.util.concurrent.locks.AbstractQueuedSynchronizer + +static void selfInterrupt() { + Thread.currentThread().interrupt(); +} +``` + +该方法其实是为了中断线程。但为什么获取了锁以后还要中断线程呢?这部分属于Java提供的协作式中断知识内容,感兴趣同学可以查阅一下。这里简单介绍一下: + +1. 当中断线程被唤醒时,并不知道被唤醒的原因,可能是当前线程在等待中被中断,也可能是释放了锁以后被唤醒。因此我们通过Thread.interrupted()方法检查中断标记(该方法返回了当前线程的中断状态,并将当前线程的中断标识设置为False),并记录下来,如果发现该线程被中断过,就再中断一次。 +2. 线程在等待资源的过程中被唤醒,唤醒后还是会不断地去尝试获取锁,直到抢到锁为止。也就是说,在整个流程中,并不响应中断,只是记录中断记录。最后抢到锁返回了,那么如果被中断过的话,就需要补充一次中断。 + +这里的处理方式主要是运用线程池中基本运作单元Worder中的runWorker,通过Thread.interrupted()进行额外的判断处理,感兴趣的同学可以看下ThreadPoolExecutor源码。 + +### 2.3.5 小结 + +我们在1.3小节中提出了一些问题,现在来回答一下。 + +> Q:某个线程获取锁失败的后续流程是什么呢? +> +> A:存在某种排队等候机制,线程继续等待,仍然保留获取锁的可能,获取锁流程仍在继续。 +> +> Q:既然说到了排队等候机制,那么就一定会有某种队列形成,这样的队列是什么数据结构呢? +> +> A:是CLH变体的FIFO双端队列。 +> +> Q:处于排队等候机制中的线程,什么时候可以有机会获取锁呢? +> +> A:可以详细看下2.3.1.3小节。 +> +> Q:如果处于排队等候机制中的线程一直无法获取锁,需要一直等待么?还是有别的策略来解决这一问题? +> +> A:线程所在节点的状态会变成取消状态,取消状态的节点会从队列中释放,具体可见2.3.2小节。 +> +> Q:Lock函数通过Acquire方法进行加锁,但是具体是如何加锁的呢? +> +> A:AQS的Acquire会调用tryAcquire方法,tryAcquire由各个自定义同步器实现,通过tryAcquire完成加锁过程。 + +## 3 AQS应用 + +### 3.1 ReentrantLock的可重入应用 + +ReentrantLock的可重入性是AQS很好的应用之一,在了解完上述知识点以后,我们很容易得知ReentrantLock实现可重入的方法。在ReentrantLock里面,不管是公平锁还是非公平锁,都有一段逻辑。 + +公平锁: + +```java +// java.util.concurrent.locks.ReentrantLock.FairSync#tryAcquire + +if (c == 0) { + if (!hasQueuedPredecessors() && compareAndSetState(0, acquires)) { + setExclusiveOwnerThread(current); + return true; + } +} +else if (current == getExclusiveOwnerThread()) { + int nextc = c + acquires; + if (nextc < 0) + throw new Error("Maximum lock count exceeded"); + setState(nextc); + return true; +} +``` + +非公平锁: + +```java +// java.util.concurrent.locks.ReentrantLock.Sync#nonfairTryAcquire + +if (c == 0) { + if (compareAndSetState(0, acquires)){ + setExclusiveOwnerThread(current); + return true; + } +} +else if (current == getExclusiveOwnerThread()) { + int nextc = c + acquires; + if (nextc < 0) // overflow + throw new Error("Maximum lock count exceeded"); + setState(nextc); + return true; +} +``` + +从上面这两段都可以看到,有一个同步状态State来控制整体可重入的情况。State是Volatile修饰的,用于保证一定的可见性和有序性。 + +```java +// java.util.concurrent.locks.AbstractQueuedSynchronizer + +private volatile int state; +``` + +接下来看State这个字段主要的过程: + +1. State初始化的时候为0,表示没有任何线程持有锁。 +2. 当有线程持有该锁时,值就会在原来的基础上+1,同一个线程多次获得锁是,就会多次+1,这里就是可重入的概念。 +3. 解锁也是对这个字段-1,一直到0,此线程对锁释放。 + +### 3.2 JUC中的应用场景 + +除了上边ReentrantLock的可重入性的应用,AQS作为并发编程的框架,为很多其他同步工具提供了良好的解决方案。下面列出了JUC中的几种同步工具,大体介绍一下AQS的应用场景: + +| 同步工具 | 同步工具与AQS的关联 | +| :--------------------- | :----------------------------------------------------------- | +| ReentrantLock | 使用AQS保存锁重复持有的次数。当一个线程获取锁时,ReentrantLock记录当前获得锁的线程标识,用于检测是否重复获取,以及错误线程试图解锁操作时异常情况的处理。 | +| Semaphore | 使用AQS同步状态来保存信号量的当前计数。tryRelease会增加计数,acquireShared会减少计数。 | +| CountDownLatch | 使用AQS同步状态来表示计数。计数为0时,所有的Acquire操作(CountDownLatch的await方法)才可以通过。 | +| ReentrantReadWriteLock | 使用AQS同步状态中的16位保存写锁持有的次数,剩下的16位用于保存读锁的持有次数。 | +| ThreadPoolExecutor | Worker利用AQS同步状态实现对独占线程变量的设置(tryAcquire和tryRelease)。 | + +### 3.3 自定义同步工具 + +了解AQS基本原理以后,按照上面所说的AQS知识点,自己实现一个同步工具。 + +```java +public class LeeLock { + + private static class Sync extends AbstractQueuedSynchronizer { + @Override + protected boolean tryAcquire (int arg) { + return compareAndSetState(0, 1); + } + + @Override + protected boolean tryRelease (int arg) { + setState(0); + return true; + } + + @Override + protected boolean isHeldExclusively () { + return getState() == 1; + } + } + + private Sync sync = new Sync(); + + public void lock () { + sync.acquire(1); + } + + public void unlock () { + sync.release(1); + } +} +``` + +通过我们自己定义的Lock完成一定的同步功能。 + +```java +public class LeeMain { + + static int count = 0; + static LeeLock leeLock = new LeeLock(); + + public static void main (String[] args) throws InterruptedException { + + Runnable runnable = new Runnable() { + @Override + public void run () { + try { + leeLock.lock(); + for (int i = 0; i < 10000; i++) { + count++; + } + } catch (Exception e) { + e.printStackTrace(); + } finally { + leeLock.unlock(); + } + + } + }; + Thread thread1 = new Thread(runnable); + Thread thread2 = new Thread(runnable); + thread1.start(); + thread2.start(); + thread1.join(); + thread2.join(); + System.out.println(count); + } +} +``` + +上述代码每次运行结果都会是20000。通过简单的几行代码就能实现同步功能,这就是AQS的强大之处。 + +## 总结 + +我们日常开发中使用并发的场景太多,但是对并发内部的基本框架原理了解的人却不多。由于篇幅原因,本文仅介绍了可重入锁ReentrantLock的原理和AQS原理,希望能够成为大家了解AQS和ReentrantLock等同步器的“敲门砖”。 + +## 参考资料 + +- Lea D. The java. util. concurrent synchronizer framework[J]. Science of Computer Programming, 2005, 58(3): 293-309. +- 《Java并发编程实战》 +- [不可不说的Java“锁”事](https://tech.meituan.com/2018/11/15/java-lock.html) \ No newline at end of file diff --git "a/docs/java/multi-thread/\344\270\207\345\255\227\350\257\246\350\247\243ThreadLocal\345\205\263\351\224\256\345\255\227.md" b/docs/java/concurrent/threadlocal.md similarity index 80% rename from "docs/java/multi-thread/\344\270\207\345\255\227\350\257\246\350\247\243ThreadLocal\345\205\263\351\224\256\345\255\227.md" rename to docs/java/concurrent/threadlocal.md index 3650ddbb25e..a4aff50f23a 100644 --- "a/docs/java/multi-thread/\344\270\207\345\255\227\350\257\246\350\247\243ThreadLocal\345\205\263\351\224\256\345\255\227.md" +++ b/docs/java/concurrent/threadlocal.md @@ -1,19 +1,28 @@ -> 本文来自一枝花算不算浪漫投稿, 原文地址:[https://juejin.im/post/5eacc1c75188256d976df748](https://juejin.im/post/5eacc1c75188256d976df748)。 +--- +title: 万字解析 ThreadLocal 关键字 +category: Java +tag: + - Java并发 +--- + + + +> 本文来自一枝花算不算浪漫投稿, 原文地址:[https://juejin.im/post/5eacc1c75188256d976df748](https://juejin.im/post/5eacc1c75188256d976df748)。 ### 前言 ![](./images/thread-local/1.png) -**全文共10000+字,31张图,这篇文章同样耗费了不少的时间和精力才创作完成,原创不易,请大家点点关注+在看,感谢。** +**全文共 10000+字,31 张图,这篇文章同样耗费了不少的时间和精力才创作完成,原创不易,请大家点点关注+在看,感谢。** 对于`ThreadLocal`,大家的第一反应可能是很简单呀,线程的变量副本,每个线程隔离。那这里有几个问题大家可以思考一下: -- `ThreadLocal`的key是**弱引用**,那么在 `ThreadLocal`.get()的时候,发生**GC**之后,key是否为**null**? +- `ThreadLocal`的 key 是**弱引用**,那么在 `ThreadLocal.get()`的时候,发生**GC**之后,key 是否为**null**? - `ThreadLocal`中`ThreadLocalMap`的**数据结构**? -- `ThreadLocalMap`的**Hash算法**? -- `ThreadLocalMap`中**Hash冲突**如何解决? +- `ThreadLocalMap`的**Hash 算法**? +- `ThreadLocalMap`中**Hash 冲突**如何解决? - `ThreadLocalMap`的**扩容机制**? -- `ThreadLocalMap`中**过期key的清理机制**?**探测式清理**和**启发式清理**流程? +- `ThreadLocalMap`中**过期 key 的清理机制**?**探测式清理**和**启发式清理**流程? - `ThreadLocalMap.set()`方法实现原理? - `ThreadLocalMap.get()`方法实现原理? - 项目中`ThreadLocal`使用情况?遇到的坑? @@ -23,8 +32,6 @@ ### 目录 - - **注明:** 本文源码基于`JDK 1.8` ### `ThreadLocal`代码演示 @@ -80,19 +87,18 @@ size: 0 我们还要注意`Entry`, 它的`key`是`ThreadLocal k` ,继承自`WeakReference`, 也就是我们常说的弱引用类型。 -### GC 之后key是否为null? +### GC 之后 key 是否为 null? -回应开头的那个问题, `ThreadLocal` 的`key`是弱引用,那么在`ThreadLocal.get()`的时候,发生`GC`之后,`key`是否是`null`? +回应开头的那个问题, `ThreadLocal` 的`key`是弱引用,那么在`ThreadLocal.get()`的时候,发生`GC`之后,`key`是否是`null`? 为了搞清楚这个问题,我们需要搞清楚`Java`的**四种引用类型**: -- **强引用**:我们常常new出来的对象就是强引用类型,只要强引用存在,垃圾回收器将永远不会回收被引用的对象,哪怕内存不足的时候 -- **软引用**:使用SoftReference修饰的对象被称为软引用,软引用指向的对象在内存要溢出的时候被回收 -- **弱引用**:使用WeakReference修饰的对象被称为弱引用,只要发生垃圾回收,若这个对象只被弱引用指向,那么就会被回收 +- **强引用**:我们常常 new 出来的对象就是强引用类型,只要强引用存在,垃圾回收器将永远不会回收被引用的对象,哪怕内存不足的时候 +- **软引用**:使用 SoftReference 修饰的对象被称为软引用,软引用指向的对象在内存要溢出的时候被回收 +- **弱引用**:使用 WeakReference 修饰的对象被称为弱引用,只要发生垃圾回收,若这个对象只被弱引用指向,那么就会被回收 - **虚引用**:虚引用是最弱的引用,在 Java 中使用 PhantomReference 进行定义。虚引用中唯一的作用就是用队列接收对象即将死亡的通知 - -接着再来看下代码,我们使用反射的方式来看看`GC`后`ThreadLocal`中的数据情况:(下面代码来源自:https://blog.csdn.net/thewindkee/article/details/103726942 本地运行演示GC回收场景) +接着再来看下代码,我们使用反射的方式来看看`GC`后`ThreadLocal`中的数据情况:(下面代码来源自:https://blog.csdn.net/thewindkee/article/details/103726942 本地运行演示 GC 回收场景) ```java public class ThreadLocalDemo { @@ -140,6 +146,7 @@ public class ThreadLocalDemo { ``` 结果如下: + ```java 弱引用key:java.lang.ThreadLocal@433619b6,值:abc 弱引用key:java.lang.ThreadLocal@418a15e3,值:java.lang.ref.SoftReference@bf97a12 @@ -192,7 +199,7 @@ void createMap(Thread t, T firstValue) { 主要的核心逻辑还是在`ThreadLocalMap`中的,一步步往下看,后面还有更详细的剖析。 -### `ThreadLocalMap` Hash算法 +### `ThreadLocalMap` Hash 算法 既然是`Map`结构,那么`ThreadLocalMap`当然也要实现自己的`hash`算法来解决散列表数组冲突问题。 @@ -200,7 +207,7 @@ void createMap(Thread t, T firstValue) { int i = key.threadLocalHashCode & (len-1); ``` -`ThreadLocalMap`中`hash`算法很简单,这里`i`就是当前key在散列表中对应的数组下标位置。 +`ThreadLocalMap`中`hash`算法很简单,这里`i`就是当前 key 在散列表中对应的数组下标位置。 这里最关键的就是`threadLocalHashCode`值的计算,`ThreadLocal`中有一个属性为`HASH_INCREMENT = 0x61c88647` @@ -215,7 +222,7 @@ public class ThreadLocal { private static int nextHashCode() { return nextHashCode.getAndAdd(HASH_INCREMENT); } - + static class ThreadLocalMap { ThreadLocalMap(ThreadLocal firstKey, Object firstValue) { table = new Entry[INITIAL_CAPACITY]; @@ -231,7 +238,7 @@ public class ThreadLocal { 每当创建一个`ThreadLocal`对象,这个`ThreadLocal.nextHashCode` 这个值就会增长 `0x61c88647` 。 -这个值很特殊,它是**斐波那契数** 也叫 **黄金分割数**。`hash`增量为 这个数字,带来的好处就是 `hash` **分布非常均匀**。 +这个值很特殊,它是**斐波那契数** 也叫 **黄金分割数**。`hash`增量为 这个数字,带来的好处就是 `hash` **分布非常均匀**。 我们自己可以尝试下: @@ -239,32 +246,31 @@ public class ThreadLocal { 可以看到产生的哈希码分布很均匀,这里不去细纠**斐波那契**具体算法,感兴趣的可以自行查阅相关资料。 -### `ThreadLocalMap` Hash冲突 +### `ThreadLocalMap` Hash 冲突 > **注明:** 下面所有示例图中,**绿色块**`Entry`代表**正常数据**,**灰色块**代表`Entry`的`key`值为`null`,**已被垃圾回收**。**白色块**表示`Entry`为`null`。 -虽然`ThreadLocalMap`中使用了**黄金分割数来**作为`hash`计算因子,大大减少了`Hash`冲突的概率,但是仍然会存在冲突。 +虽然`ThreadLocalMap`中使用了**黄金分割数**来作为`hash`计算因子,大大减少了`Hash`冲突的概率,但是仍然会存在冲突。 `HashMap`中解决冲突的方法是在数组上构造一个**链表**结构,冲突的数据挂载到链表上,如果链表长度超过一定数量则会转化成**红黑树**。 -而`ThreadLocalMap`中并没有链表结构,所以这里不能适用`HashMap`解决冲突的方式了。 +而 `ThreadLocalMap` 中并没有链表结构,所以这里不能使用 `HashMap` 解决冲突的方式了。 ![](./images/thread-local/7.png) +如上图所示,如果我们插入一个`value=27`的数据,通过 `hash` 计算后应该落入槽位 4 中,而槽位 4 已经有了 `Entry` 数据。 -如上图所示,如果我们插入一个`value=27`的数据,通过`hash`计算后应该落入第4个槽位中,而槽位4已经有了`Entry`数据。 - -此时就会线性向后查找,一直找到`Entry`为`null`的槽位才会停止查找,将当前元素放入此槽位中。当然迭代过程中还有其他的情况,比如遇到了`Entry`不为`null`且`key`值相等的情况,还有`Entry`中的`key`值为`null`的情况等等都会有不同的处理,后面会一一详细讲解。 +此时就会线性向后查找,一直找到 `Entry` 为 `null` 的槽位才会停止查找,将当前元素放入此槽位中。当然迭代过程中还有其他的情况,比如遇到了 `Entry` 不为 `null` 且 `key` 值相等的情况,还有 `Entry` 中的 `key` 值为 `null` 的情况等等都会有不同的处理,后面会一一详细讲解。 -这里还画了一个`Entry`中的`key`为`null`的数据(**Entry=2的灰色块数据**),因为`key`值是**弱引用**类型,所以会有这种数据存在。在`set`过程中,如果遇到了`key`过期的`Entry`数据,实际上是会进行一轮**探测式清理**操作的,具体操作方式后面会讲到。 +这里还画了一个`Entry`中的`key`为`null`的数据(**Entry=2 的灰色块数据**),因为`key`值是**弱引用**类型,所以会有这种数据存在。在`set`过程中,如果遇到了`key`过期的`Entry`数据,实际上是会进行一轮**探测式清理**操作的,具体操作方式后面会讲到。 ### `ThreadLocalMap.set()`详解 #### `ThreadLocalMap.set()`原理图解 -看完了`ThreadLocal` **hash算法**后,我们再来看`set`是如何实现的。 +看完了`ThreadLocal` **hash 算法**后,我们再来看`set`是如何实现的。 -往`ThreadLocalMap`中`set`数据(**新增**或者**更新**数据)分为好几种情况,针对不同的情况我们画图来说说明。 +往`ThreadLocalMap`中`set`数据(**新增**或者**更新**数据)分为好几种情况,针对不同的情况我们画图来说明。 **第一种情况:** 通过`hash`计算后的槽位对应的`Entry`数据为空: @@ -282,36 +288,33 @@ public class ThreadLocal { ![](./images/thread-local/11.png) -遍历散列数组,线性往后查找,如果找到`Entry`为`null`的槽位,则将数据放入该槽位中,或者往后遍历过程中,遇到了**key值相等**的数据,直接更新即可。 +遍历散列数组,线性往后查找,如果找到`Entry`为`null`的槽位,则将数据放入该槽位中,或者往后遍历过程中,遇到了**key 值相等**的数据,直接更新即可。 -**第四种情况:** 槽位数据不为空,往后遍历过程中,在找到`Entry`为`null`的槽位之前,遇到`key`过期的`Entry`,如下图,往后遍历过程中,一到了`index=7`的槽位数据`Entry`的`key=null`: +**第四种情况:** 槽位数据不为空,往后遍历过程中,在找到`Entry`为`null`的槽位之前,遇到`key`过期的`Entry`,如下图,往后遍历过程中,遇到了`index=7`的槽位数据`Entry`的`key=null`: ![](./images/thread-local/12.png) -散列数组下标为7位置对应的`Entry`数据`key`为`null`,表明此数据`key`值已经被垃圾回收掉了,此时就会执行`replaceStaleEntry()`方法,该方法含义是**替换过期数据的逻辑**,以**index=7**位起点开始遍历,进行探测式数据清理工作。 +散列数组下标为 7 位置对应的`Entry`数据`key`为`null`,表明此数据`key`值已经被垃圾回收掉了,此时就会执行`replaceStaleEntry()`方法,该方法含义是**替换过期数据的逻辑**,以**index=7**位起点开始遍历,进行探测式数据清理工作。 初始化探测式清理过期数据扫描的开始位置:`slotToExpunge = staleSlot = 7` 以当前`staleSlot`开始 向前迭代查找,找其他过期的数据,然后更新过期数据起始扫描下标`slotToExpunge`。`for`循环迭代,直到碰到`Entry`为`null`结束。 -如果找到了过期的数据,继续向前迭代,直到遇到`Entry=null`的槽位才停止迭代,如下图所示,**slotToExpunge被更新为0**: +如果找到了过期的数据,继续向前迭代,直到遇到`Entry=null`的槽位才停止迭代,如下图所示,**slotToExpunge 被更新为 0**: ![](./images/thread-local/13.png) -以当前节点(`index=7`)向前迭代,检测是否有过期的`Entry`数据,如果有则更新`slotToExpunge`值。碰到`null`则结束探测。以上图为例`slotToExpunge`被更新为0。 +以当前节点(`index=7`)向前迭代,检测是否有过期的`Entry`数据,如果有则更新`slotToExpunge`值。碰到`null`则结束探测。以上图为例`slotToExpunge`被更新为 0。 上面向前迭代的操作是为了更新探测清理过期数据的起始下标`slotToExpunge`的值,这个值在后面会讲解,它是用来判断当前过期槽位`staleSlot`之前是否还有过期元素。 -接着开始以`staleSlot`位置(index=7)向后迭代,**如果找到了相同key值的Entry数据:** +接着开始以`staleSlot`位置(`index=7`)向后迭代,**如果找到了相同 key 值的 Entry 数据:** ![](./images/thread-local/14.png) 从当前节点`staleSlot`向后查找`key`值相等的`Entry`元素,找到后更新`Entry`的值并交换`staleSlot`元素的位置(`staleSlot`位置为过期元素),更新`Entry`数据,然后开始进行过期`Entry`的清理工作,如下图所示: -![Yu4oWT.png](https://user-gold-cdn.xitu.io/2020/5/8/171f3ba9af057e1e?w=1336&h=361&f=png&s=63049) - - -**向后遍历过程中,如果没有找到相同key值的Entry数据:** +![](https://guide-blog-images.oss-cn-shenzhen.aliyuncs.com/java-guide-blog/view.png)向后遍历过程中,如果没有找到相同 key 值的 Entry 数据: ![](./images/thread-local/15.png) @@ -367,6 +370,7 @@ int i = key.threadLocalHashCode & (len-1); ``` 什么情况下桶才是可以使用的呢? + 1. `k = key` 说明是替换操作,可以使用 2. 碰到一个过期的桶,执行替换逻辑,占用过期桶 3. 查找过程中,碰到桶中`Entry=null`的情况,直接使用 @@ -386,16 +390,17 @@ private static int prevIndex(int i, int len) { ``` 接着看剩下`for`循环中的逻辑: + 1. 遍历当前`key`值对应的桶中`Entry`数据为空,这说明散列数组这里没有数据冲突,跳出`for`循环,直接`set`数据到对应的桶中 -2. 如果`key`值对应的桶中`Entry`数据不为空 -2.1 如果`k = key`,说明当前`set`操作是一个替换操作,做替换逻辑,直接返回 -2.2 如果`key = null`,说明当前桶位置的`Entry`是过期数据,执行`replaceStaleEntry()`方法(核心方法),然后返回 -3. `for`循环执行完毕,继续往下执行说明向后迭代的过程中遇到了`entry`为`null`的情况 -3.1 在`Entry`为`null`的桶中创建一个新的`Entry`对象 -3.2 执行`++size`操作 -4. 调用`cleanSomeSlots()`做一次启发式清理工作,清理散列数组中`Entry`的`key`过期的数据 -4.1 如果清理工作完成后,未清理到任何数据,且`size`超过了阈值(数组长度的2/3),进行`rehash()`操作 -4.2 `rehash()`中会先进行一轮探测式清理,清理过期`key`,清理完成后如果**size >= threshold - threshold / 4**,就会执行真正的扩容逻辑(扩容逻辑往后看) +2. 如果`key`值对应的桶中`Entry`数据不为空 + 2.1 如果`k = key`,说明当前`set`操作是一个替换操作,做替换逻辑,直接返回 + 2.2 如果`key = null`,说明当前桶位置的`Entry`是过期数据,执行`replaceStaleEntry()`方法(核心方法),然后返回 +3. `for`循环执行完毕,继续往下执行说明向后迭代的过程中遇到了`entry`为`null`的情况 + 3.1 在`Entry`为`null`的桶中创建一个新的`Entry`对象 + 3.2 执行`++size`操作 +4. 调用`cleanSomeSlots()`做一次启发式清理工作,清理散列数组中`Entry`的`key`过期的数据 + 4.1 如果清理工作完成后,未清理到任何数据,且`size`超过了阈值(数组长度的 2/3),进行`rehash()`操作 + 4.2 `rehash()`中会先进行一轮探测式清理,清理过期`key`,清理完成后如果**size >= threshold - threshold / 4**,就会执行真正的扩容逻辑(扩容逻辑往后看) 接着重点看下`replaceStaleEntry()`方法,`replaceStaleEntry()`方法提供替换过期数据的功能,我们可以对应上面**第四种情况**的原理图来再回顾下,具体代码如下: @@ -446,7 +451,7 @@ private void replaceStaleEntry(ThreadLocal key, Object value, } ``` -`slotToExpunge`表示开始探测式清理过期数据的开始下标,默认从当前的`staleSlot`开始。以当前的`staleSlot`开始,向前迭代查找,找到没有过期的数据,`for`循环一直碰到`Entry`为`null`才会结束。如果向前找到了过期数据,更新探测清理过期数据的开始下标为i,即`slotToExpunge=i` +`slotToExpunge`表示开始探测式清理过期数据的开始下标,默认从当前的`staleSlot`开始。以当前的`staleSlot`开始,向前迭代查找,找到没有过期的数据,`for`循环一直碰到`Entry`为`null`才会结束。如果向前找到了过期数据,更新探测清理过期数据的开始下标为 i,即`slotToExpunge=i` ```java for (int i = prevIndex(staleSlot, len); @@ -460,7 +465,7 @@ for (int i = prevIndex(staleSlot, len); ``` 接着开始从`staleSlot`向后查找,也是碰到`Entry`为`null`的桶结束。 -如果迭代过程中,**碰到k == key**,这说明这里是替换逻辑,替换新数据并且交换当前`staleSlot`位置。如果`slotToExpunge == staleSlot`,这说明`replaceStaleEntry()`一开始向前查找过期数据时并未找到过期的`Entry`数据,接着向后查找过程中也未发现过期数据,修改开始探测式清理过期数据的下标为当前循环的index,即`slotToExpunge = i`。最后调用`cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);`进行启发式过期数据清理。 +如果迭代过程中,**碰到 k == key**,这说明这里是替换逻辑,替换新数据并且交换当前`staleSlot`位置。如果`slotToExpunge == staleSlot`,这说明`replaceStaleEntry()`一开始向前查找过期数据时并未找到过期的`Entry`数据,接着向后查找过程中也未发现过期数据,修改开始探测式清理过期数据的下标为当前循环的 index,即`slotToExpunge = i`。最后调用`cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);`进行启发式过期数据清理。 ```java if (k == key) { @@ -468,7 +473,7 @@ if (k == key) { tab[i] = tab[staleSlot]; tab[staleSlot] = e; - + if (slotToExpunge == staleSlot) slotToExpunge = i; @@ -479,7 +484,7 @@ if (k == key) { `cleanSomeSlots()`和`expungeStaleEntry()`方法后面都会细讲,这两个是和清理相关的方法,一个是过期`key`相关`Entry`的启发式清理(`Heuristically scan`),另一个是过期`key`相关`Entry`的探测式清理。 -**如果k != key**则会接着往下走,`k == null`说明当前遍历的`Entry`是一个过期数据,`slotToExpunge == staleSlot`说明,一开始的向前查找数据并未找到过期的`Entry`。如果条件成立,则更新`slotToExpunge` 为当前位置,这个前提是前驱节点扫描时未发现过期数据。 +**如果 k != key**则会接着往下走,`k == null`说明当前遍历的`Entry`是一个过期数据,`slotToExpunge == staleSlot`说明,一开始的向前查找数据并未找到过期的`Entry`。如果条件成立,则更新`slotToExpunge` 为当前位置,这个前提是前驱节点扫描时未发现过期数据。 ```java if (k == null && slotToExpunge == staleSlot) @@ -494,12 +499,13 @@ tab[staleSlot] = new Entry(key, value); ``` 最后判断除了`staleSlot`以外,还发现了其他过期的`slot`数据,就要开启清理数据的逻辑: + ```java if (slotToExpunge != staleSlot) cleanSomeSlots(expungeStaleEntry(slotToExpunge), len); ``` -### `ThreadLocalMap`过期key的探测式清理流程 +### `ThreadLocalMap`过期 key 的探测式清理流程 上面我们有提及`ThreadLocalMap`的两种过期`key`数据清理方式:**探测式清理**和**启发式清理**。 @@ -507,13 +513,13 @@ if (slotToExpunge != staleSlot) ![](./images/thread-local/18.png) -如上图,`set(27)` 经过hash计算后应该落到`index=4`的桶中,由于`index=4`桶已经有了数据,所以往后迭代最终数据放入到`index=7`的桶中,放入后一段时间后`index=5`中的`Entry`数据`key`变为了`null` +如上图,`set(27)` 经过 hash 计算后应该落到`index=4`的桶中,由于`index=4`桶已经有了数据,所以往后迭代最终数据放入到`index=7`的桶中,放入后一段时间后`index=5`中的`Entry`数据`key`变为了`null` ![](./images/thread-local/19.png) 如果再有其他数据`set`到`map`中,就会触发**探测式清理**操作。 -如上图,执行**探测式清理**后,`index=5`的数据被清理掉,继续往后迭代,到`index=7`的元素时,经过`rehash`后发现该元素正确的`index=4`,而此位置已经已经有了数据,往后查找离`index=4`最近的`Entry=null`的节点(刚被探测式清理掉的数据:index=5),找到后移动`index= 7`的数据到`index=5`中,此时桶的位置离正确的位置`index=4`更近了。 +如上图,执行**探测式清理**后,`index=5`的数据被清理掉,继续往后迭代,到`index=7`的元素时,经过`rehash`后发现该元素正确的`index=4`,而此位置已经有了数据,往后查找离`index=4`最近的`Entry=null`的节点(刚被探测式清理掉的数据:`index=5`),找到后移动`index= 7`的数据到`index=5`中,此时桶的位置离正确的位置`index=4`更近了。 经过一轮探测式清理后,`key`过期的数据会被清理掉,没过期的数据经过`rehash`重定位后所处的桶位置理论上更接近`i= key.hashCode & (tab.len - 1)`的位置。这种优化会提高整个散列表查询性能。 @@ -529,7 +535,7 @@ if (slotToExpunge != staleSlot) ![](./images/thread-local/22.png) -执行完第二步后,index=4的元素挪到index=3的槽位中。 +执行完第二步后,index=4 的元素挪到 index=3 的槽位中。 继续往后迭代检查,碰到正常数据,计算该数据位置是否偏移,如果被偏移,则重新计算`slot`位置,目的是让正常数据尽可能存放在正确位置或离正确位置更近的位置 @@ -581,7 +587,7 @@ if (k == null) { e.value = null; tab[i] = null; size--; -} +} ``` 如果`key`没有过期,重新计算当前`key`的下标位置是不是当前槽位下标位置,如果不是,那么说明产生了`hash`冲突,此时以新计算出来正确的槽位位置往后迭代,找到最近一个可以存放`entry`的位置。 @@ -630,7 +636,7 @@ private void expungeStaleEntries() { } ``` -这里首先是会进行探测式清理工作,从`table`的起始位置往后清理,上面有分析清理的详细流程。清理完成之后,`table`中可能有一些`key`为`null`的`Entry`数据被清理掉,所以此时通过判断`size >= threshold - threshold / 4` 也就是`size >= threshold* 3/4` 来决定是否扩容。 +这里首先是会进行探测式清理工作,从`table`的起始位置往后清理,上面有分析清理的详细流程。清理完成之后,`table`中可能有一些`key`为`null`的`Entry`数据被清理掉,所以此时通过判断`size >= threshold - threshold / 4` 也就是`size >= threshold * 3/4` 来决定是否扩容。 我们还记得上面进行`rehash()`的阈值是`size >= threshold`,所以当面试官套路我们`ThreadLocalMap`扩容机制的时候 我们一定要说清楚这两个步骤: @@ -686,7 +692,7 @@ private void resize() { ![](./images/thread-local/27.png) -我们以`get(ThreadLocal1)`为例,通过`hash`计算后,正确的`slot`位置应该是4,而`index=4`的槽位已经有了数据,且`key`值不等于`ThreadLocal1`,所以需要继续往后迭代查找。 +我们以`get(ThreadLocal1)`为例,通过`hash`计算后,正确的`slot`位置应该是 4,而`index=4`的槽位已经有了数据,且`key`值不等于`ThreadLocal1`,所以需要继续往后迭代查找。 迭代到`index=5`的数据时,此时`Entry.key=null`,触发一次探测式数据回收操作,执行`expungeStaleEntry()`方法,执行完后,`index 5,8`的数据都会被回收,而`index 6,7`的数据都会前移,此时继续往后迭代,到`index = 6`的时候即找到了`key`值相等的`Entry`数据,如下图所示: @@ -724,11 +730,9 @@ private Entry getEntryAfterMiss(ThreadLocal key, int i, Entry e) { } ``` +### `ThreadLocalMap`过期 key 的启发式清理流程 -### `ThreadLocalMap`过期key的启发式清理流程 - - -上面多次提及到`ThreadLocalMap`过期可以的两种清理方式:**探测式清理(expungeStaleEntry())**、**启发式清理(cleanSomeSlots())** +上面多次提及到`ThreadLocalMap`过期key的两种清理方式:**探测式清理(expungeStaleEntry())**、**启发式清理(cleanSomeSlots())** 探测式清理是以当前`Entry` 往后清理,遇到值为`null`则结束清理,属于**线性探测清理**。 @@ -760,7 +764,7 @@ private boolean cleanSomeSlots(int i, int n) { 我们使用`ThreadLocal`的时候,在异步场景下是无法给子线程共享父线程中创建的线程副本数据的。 -为了解决这个问题,JDK中还有一个`InheritableThreadLocal`类,我们来看一个例子: +为了解决这个问题,JDK 中还有一个`InheritableThreadLocal`类,我们来看一个例子: ```java public class InheritableThreadLocalDemo { @@ -816,11 +820,11 @@ private void init(ThreadGroup g, Runnable target, String name, 我们现在项目中日志记录用的是`ELK+Logstash`,最后在`Kibana`中进行展示和检索。 -现在都是分布式系统统一对外提供服务,项目间调用的关系可以通过traceId来关联,但是不同项目之间如何传递`traceId`呢? +现在都是分布式系统统一对外提供服务,项目间调用的关系可以通过 `traceId` 来关联,但是不同项目之间如何传递 `traceId` 呢? -这里我们使用`org.slf4j.MDC`来实现此功能,内部就是通过`ThreadLocal`来实现的,具体实现如下: +这里我们使用 `org.slf4j.MDC` 来实现此功能,内部就是通过 `ThreadLocal` 来实现的,具体实现如下: -当前端发送请求到**服务A**时,**服务A**会生成一个类似`UUID`的`traceId`字符串,将此字符串放入当前线程的`ThreadLocal`中,在调用**服务B**的时候,将`traceId`写入到请求的`Header`中,**服务B**在接收请求时会先判断请求的`Header`中是否有`traceId`,如果存在则写入自己线程的`ThreadLocal`中。 +当前端发送请求到**服务 A**时,**服务 A**会生成一个类似`UUID`的`traceId`字符串,将此字符串放入当前线程的`ThreadLocal`中,在调用**服务 B**的时候,将`traceId`写入到请求的`Header`中,**服务 B**在接收请求时会先判断请求的`Header`中是否有`traceId`,如果存在则写入自己线程的`ThreadLocal`中。 ![](./images/thread-local/30.png) @@ -830,9 +834,10 @@ private void init(ThreadGroup g, Runnable target, String name, 针对于这些场景,我们都可以有相应的解决方案,如下所示 -#### Feign远程调用解决方案 +#### Feign 远程调用解决方案 **服务发送请求:** + ```java @Component @Slf4j @@ -849,6 +854,7 @@ public class FeignInvokeInterceptor implements RequestInterceptor { ``` **服务接收请求:** + ```java @Slf4j @Component @@ -876,13 +882,13 @@ public class LogInterceptor extends HandlerInterceptorAdapter { } ``` -#### 线程池异步调用,requestId传递 +#### 线程池异步调用,requestId 传递 因为`MDC`是基于`ThreadLocal`去实现的,异步过程中,子线程并没有办法获取到父线程`ThreadLocal`存储的数据,所以这里可以自定义线程池执行器,修改其中的`run()`方法: ```java public class MyThreadPoolTaskExecutor extends ThreadPoolTaskExecutor { - + @Override public void execute(Runnable runnable) { Map context = MDC.getCopyOfContextMap(); @@ -903,11 +909,6 @@ public class MyThreadPoolTaskExecutor extends ThreadPoolTaskExecutor { } ``` -#### 使用MQ发送消息给第三方系统 - -在MQ发送的消息体中自定义属性`requestId`,接收方消费消息后,自己解析`requestId`使用即可。 - - - - +#### 使用 MQ 发送消息给第三方系统 +在 MQ 发送的消息体中自定义属性`requestId`,接收方消费消息后,自己解析`requestId`使用即可。 diff --git "a/docs/java/concurrent/\345\271\266\345\217\221\345\256\271\345\231\250\346\200\273\347\273\223.md" "b/docs/java/concurrent/\345\271\266\345\217\221\345\256\271\345\231\250\346\200\273\347\273\223.md" new file mode 100644 index 00000000000..d6f3691bfad --- /dev/null +++ "b/docs/java/concurrent/\345\271\266\345\217\221\345\256\271\345\231\250\346\200\273\347\273\223.md" @@ -0,0 +1,202 @@ +--- +title: JDK 提供的并发容器总结 +category: Java +tag: + - Java并发 +--- + +JDK 提供的这些容器大部分在 `java.util.concurrent` 包中。 + +- **`ConcurrentHashMap`** : 线程安全的 `HashMap` +- **`CopyOnWriteArrayList`** : 线程安全的 `List`,在读多写少的场合性能非常好,远远好于 `Vector`。 +- **`ConcurrentLinkedQueue`** : 高效的并发队列,使用链表实现。可以看做一个线程安全的 `LinkedList`,这是一个非阻塞队列。 +- **`BlockingQueue`** : 这是一个接口,JDK 内部通过链表、数组等方式实现了这个接口。表示阻塞队列,非常适合用于作为数据共享的通道。 +- **`ConcurrentSkipListMap`** : 跳表的实现。这是一个 Map,使用跳表的数据结构进行快速查找。 + +## ConcurrentHashMap + +我们知道 `HashMap` 不是线程安全的,在并发场景下如果要保证一种可行的方式是使用 `Collections.synchronizedMap()` 方法来包装我们的 `HashMap`。但这是通过使用一个全局的锁来同步不同线程间的并发访问,因此会带来不可忽视的性能问题。 + +所以就有了 `HashMap` 的线程安全版本—— `ConcurrentHashMap` 的诞生。 + +在 `ConcurrentHashMap` 中,无论是读操作还是写操作都能保证很高的性能:在进行读操作时(几乎)不需要加锁,而在写操作时通过锁分段技术只对所操作的段加锁而不影响客户端对其它段的访问。 + +## CopyOnWriteArrayList + +### CopyOnWriteArrayList 简介 + +```java +public class CopyOnWriteArrayList +extends Object +implements List, RandomAccess, Cloneable, Serializable +``` + +在很多应用场景中,读操作可能会远远大于写操作。由于读操作根本不会修改原有的数据,因此对于每次读取都进行加锁其实是一种资源浪费。我们应该允许多个线程同时访问 `List` 的内部数据,毕竟读取操作是安全的。 + +这和我们之前在多线程章节讲过 `ReentrantReadWriteLock` 读写锁的思想非常类似,也就是读读共享、写写互斥、读写互斥、写读互斥。JDK 中提供了 `CopyOnWriteArrayList` 类比相比于在读写锁的思想又更进一步。为了将读取的性能发挥到极致,`CopyOnWriteArrayList` 读取是完全不用加锁的,并且更厉害的是:写入也不会阻塞读取操作。只有写入和写入之间需要进行同步等待。这样一来,读操作的性能就会大幅度提升。**那它是怎么做的呢?** + +### CopyOnWriteArrayList 是如何做到的? + +`CopyOnWriteArrayList` 类的所有可变操作(add,set 等等)都是通过创建底层数组的新副本来实现的。当 List 需要被修改的时候,我并不修改原有内容,而是对原有数据进行一次复制,将修改的内容写入副本。写完之后,再将修改完的副本替换原来的数据,这样就可以保证写操作不会影响读操作了。 + +从 `CopyOnWriteArrayList` 的名字就能看出 `CopyOnWriteArrayList` 是满足 `CopyOnWrite` 的。所谓 `CopyOnWrite` 也就是说:在计算机,如果你想要对一块内存进行修改时,我们不在原有内存块中进行写操作,而是将内存拷贝一份,在新的内存中进行写操作,写完之后呢,就将指向原来内存指针指向新的内存,原来的内存就可以被回收掉了。 + +### CopyOnWriteArrayList 读取和写入源码简单分析 + +#### CopyOnWriteArrayList 读取操作的实现 + +读取操作没有任何同步控制和锁操作,理由就是内部数组 `array` 不会发生修改,只会被另外一个 `array` 替换,因此可以保证数据安全。 + +```java + /** The array, accessed only via getArray/setArray. */ + private transient volatile Object[] array; + public E get(int index) { + return get(getArray(), index); + } + @SuppressWarnings("unchecked") + private E get(Object[] a, int index) { + return (E) a[index]; + } + final Object[] getArray() { + return array; + } + +``` + +#### 3.3.2 CopyOnWriteArrayList 写入操作的实现 + +`CopyOnWriteArrayList` 写入操作 `add()`方法在添加集合的时候加了锁,保证了同步,避免了多线程写的时候会 copy 出多个副本出来。 + +```java + /** + * Appends the specified element to the end of this list. + * + * @param e element to be appended to this list + * @return {@code true} (as specified by {@link Collection#add}) + */ + public boolean add(E e) { + final ReentrantLock lock = this.lock; + lock.lock();//加锁 + try { + Object[] elements = getArray(); + int len = elements.length; + Object[] newElements = Arrays.copyOf(elements, len + 1);//拷贝新数组 + newElements[len] = e; + setArray(newElements); + return true; + } finally { + lock.unlock();//释放锁 + } + } +``` + +## ConcurrentLinkedQueue + +Java 提供的线程安全的 `Queue` 可以分为**阻塞队列**和**非阻塞队列**,其中阻塞队列的典型例子是 `BlockingQueue`,非阻塞队列的典型例子是 `ConcurrentLinkedQueue`,在实际应用中要根据实际需要选用阻塞队列或者非阻塞队列。 **阻塞队列可以通过加锁来实现,非阻塞队列可以通过 CAS 操作实现。** + +从名字可以看出,`ConcurrentLinkedQueue`这个队列使用链表作为其数据结构.`ConcurrentLinkedQueue` 应该算是在高并发环境中性能最好的队列了。它之所有能有很好的性能,是因为其内部复杂的实现。 + +`ConcurrentLinkedQueue` 内部代码我们就不分析了,大家知道 `ConcurrentLinkedQueue` 主要使用 CAS 非阻塞算法来实现线程安全就好了。 + +`ConcurrentLinkedQueue` 适合在对性能要求相对较高,同时对队列的读写存在多个线程同时进行的场景,即如果对队列加锁的成本较高则适合使用无锁的 `ConcurrentLinkedQueue` 来替代。 + +## BlockingQueue + +### BlockingQueue 简介 + +上面我们己经提到了 `ConcurrentLinkedQueue` 作为高性能的非阻塞队列。下面我们要讲到的是阻塞队列——`BlockingQueue`。阻塞队列(`BlockingQueue`)被广泛使用在“生产者-消费者”问题中,其原因是 `BlockingQueue` 提供了可阻塞的插入和移除的方法。当队列容器已满,生产者线程会被阻塞,直到队列未满;当队列容器为空时,消费者线程会被阻塞,直至队列非空时为止。 + +`BlockingQueue` 是一个接口,继承自 `Queue`,所以其实现类也可以作为 `Queue` 的实现来使用,而 `Queue` 又继承自 `Collection` 接口。下面是 `BlockingQueue` 的相关实现类: + +![BlockingQueue 的实现类](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/18-12-9/51622268.jpg) + +下面主要介绍一下 3 个常见的 `BlockingQueue` 的实现类:`ArrayBlockingQueue`、`LinkedBlockingQueue` 、`PriorityBlockingQueue` 。 + +### ArrayBlockingQueue + +`ArrayBlockingQueue` 是 `BlockingQueue` 接口的有界队列实现类,底层采用数组来实现。 + +```java +public class ArrayBlockingQueue +extends AbstractQueue +implements BlockingQueue, Serializable{} +``` + +`ArrayBlockingQueue` 一旦创建,容量不能改变。其并发控制采用可重入锁 `ReentrantLock` ,不管是插入操作还是读取操作,都需要获取到锁才能进行操作。当队列容量满时,尝试将元素放入队列将导致操作阻塞;尝试从一个空队列中取一个元素也会同样阻塞。 + +`ArrayBlockingQueue` 默认情况下不能保证线程访问队列的公平性,所谓公平性是指严格按照线程等待的绝对时间顺序,即最先等待的线程能够最先访问到 `ArrayBlockingQueue`。而非公平性则是指访问 `ArrayBlockingQueue` 的顺序不是遵守严格的时间顺序,有可能存在,当 `ArrayBlockingQueue` 可以被访问时,长时间阻塞的线程依然无法访问到 `ArrayBlockingQueue`。如果保证公平性,通常会降低吞吐量。如果需要获得公平性的 `ArrayBlockingQueue`,可采用如下代码: + +```java +private static ArrayBlockingQueue blockingQueue = new ArrayBlockingQueue(10,true); +``` + +### LinkedBlockingQueue + +`LinkedBlockingQueue` 底层基于**单向链表**实现的阻塞队列,可以当做无界队列也可以当做有界队列来使用,同样满足 FIFO 的特性,与 `ArrayBlockingQueue` 相比起来具有更高的吞吐量,为了防止 `LinkedBlockingQueue` 容量迅速增,损耗大量内存。通常在创建 `LinkedBlockingQueue` 对象时,会指定其大小,如果未指定,容量等于 `Integer.MAX_VALUE` 。 + +**相关构造方法:** + +```java + /** + *某种意义上的无界队列 + * Creates a {@code LinkedBlockingQueue} with a capacity of + * {@link Integer#MAX_VALUE}. + */ + public LinkedBlockingQueue() { + this(Integer.MAX_VALUE); + } + + /** + *有界队列 + * Creates a {@code LinkedBlockingQueue} with the given (fixed) capacity. + * + * @param capacity the capacity of this queue + * @throws IllegalArgumentException if {@code capacity} is not greater + * than zero + */ + public LinkedBlockingQueue(int capacity) { + if (capacity <= 0) throw new IllegalArgumentException(); + this.capacity = capacity; + last = head = new Node(null); + } +``` + +### PriorityBlockingQueue + +`PriorityBlockingQueue` 是一个支持优先级的无界阻塞队列。默认情况下元素采用自然顺序进行排序,也可以通过自定义类实现 `compareTo()` 方法来指定元素排序规则,或者初始化时通过构造器参数 `Comparator` 来指定排序规则。 + +`PriorityBlockingQueue` 并发控制采用的是可重入锁 `ReentrantLock`,队列为无界队列(`ArrayBlockingQueue` 是有界队列,`LinkedBlockingQueue` 也可以通过在构造函数中传入 `capacity` 指定队列最大的容量,但是 `PriorityBlockingQueue` 只能指定初始的队列大小,后面插入元素的时候,**如果空间不够的话会自动扩容**)。 + +简单地说,它就是 `PriorityQueue` 的线程安全版本。不可以插入 null 值,同时,插入队列的对象必须是可比较大小的(comparable),否则报 `ClassCastException` 异常。它的插入操作 put 方法不会 block,因为它是无界队列(take 方法在队列为空的时候会阻塞)。 + +**推荐文章:** [《解读 Java 并发队列 BlockingQueue》](https://javadoop.com/post/java-concurrent-queue) + +## ConcurrentSkipListMap + +下面这部分内容参考了极客时间专栏[《数据结构与算法之美》](https://time.geekbang.org/column/intro/126?code=zl3GYeAsRI4rEJIBNu5B/km7LSZsPDlGWQEpAYw5Vu0=&utm_term=SPoster "《数据结构与算法之美》")以及《实战 Java 高并发程序设计》。 + +为了引出 `ConcurrentSkipListMap`,先带着大家简单理解一下跳表。 + +对于一个单链表,即使链表是有序的,如果我们想要在其中查找某个数据,也只能从头到尾遍历链表,这样效率自然就会很低,跳表就不一样了。跳表是一种可以用来快速查找的数据结构,有点类似于平衡树。它们都可以对元素进行快速的查找。但一个重要的区别是:对平衡树的插入和删除往往很可能导致平衡树进行一次全局的调整。而对跳表的插入和删除只需要对整个数据结构的局部进行操作即可。这样带来的好处是:在高并发的情况下,你会需要一个全局锁来保证整个平衡树的线程安全。而对于跳表,你只需要部分锁即可。这样,在高并发环境下,你就可以拥有更好的性能。而就查询的性能而言,跳表的时间复杂度也是 **O(logn)** 所以在并发数据结构中,JDK 使用跳表来实现一个 Map。 + +跳表的本质是同时维护了多个链表,并且链表是分层的, + +![2级索引跳表](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/18-12-9/93666217.jpg) + +最低层的链表维护了跳表内所有的元素,每上面一层链表都是下面一层的子集。 + +跳表内的所有链表的元素都是排序的。查找时,可以从顶级链表开始找。一旦发现被查找的元素大于当前链表中的取值,就会转入下一层链表继续找。这也就是说在查找过程中,搜索是跳跃式的。如上图所示,在跳表中查找元素 18。 + +![在跳表中查找元素18](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/18-12-9/32005738.jpg) + +查找 18 的时候原来需要遍历 18 次,现在只需要 7 次即可。针对链表长度比较大的时候,构建索引查找效率的提升就会非常明显。 + +从上面很容易看出,**跳表是一种利用空间换时间的算法。** + +使用跳表实现 `Map` 和使用哈希算法实现 `Map` 的另外一个不同之处是:哈希并不会保存元素的顺序,而跳表内所有的元素都是排序的。因此在对跳表进行遍历时,你会得到一个有序的结果。所以,如果你的应用需要有序性,那么跳表就是你不二的选择。JDK 中实现这一数据结构的类是 `ConcurrentSkipListMap`。 + +## 参考 + +- 《实战 Java 高并发程序设计》 +- https://javadoop.com/post/java-concurrent-queue +- https://juejin.im/post/5aeebd02518825672f19c546 diff --git "a/docs/java/multi-thread/\346\213\277\346\235\245\345\215\263\347\224\250\347\232\204\347\272\277\347\250\213\346\261\240\346\234\200\344\275\263\345\256\236\350\267\265.md" "b/docs/java/concurrent/\346\213\277\346\235\245\345\215\263\347\224\250\347\232\204java\347\272\277\347\250\213\346\261\240\346\234\200\344\275\263\345\256\236\350\267\265.md" similarity index 95% rename from "docs/java/multi-thread/\346\213\277\346\235\245\345\215\263\347\224\250\347\232\204\347\272\277\347\250\213\346\261\240\346\234\200\344\275\263\345\256\236\350\267\265.md" rename to "docs/java/concurrent/\346\213\277\346\235\245\345\215\263\347\224\250\347\232\204java\347\272\277\347\250\213\346\261\240\346\234\200\344\275\263\345\256\236\350\267\265.md" index 06b2ccf492e..45034bf3392 100644 --- "a/docs/java/multi-thread/\346\213\277\346\235\245\345\215\263\347\224\250\347\232\204\347\272\277\347\250\213\346\261\240\346\234\200\344\275\263\345\256\236\350\267\265.md" +++ "b/docs/java/concurrent/\346\213\277\346\235\245\345\215\263\347\224\250\347\232\204java\347\272\277\347\250\213\346\261\240\346\234\200\344\275\263\345\256\236\350\267\265.md" @@ -1,4 +1,9 @@ -# 线程池最佳实践 +--- +title: 拿来即用的Java线程池最佳实践 +category: Java +tag: + - Java并发 +--- 这篇文章篇幅虽短,但是绝对是干货。标题稍微有点夸张,嘿嘿,实际都是自己使用线程池的时候总结的一些个人感觉比较重要的点。 @@ -8,14 +13,14 @@ ### 为什么要使用线程池? -> **池化技术相比大家已经屡见不鲜了,线程池、数据库连接池、Http 连接池等等都是对这个思想的应用。池化技术的思想主要是为了减少每次获取资源的消耗,提高对资源的利用率。** +> **池化技术想必大家已经屡见不鲜了,线程池、数据库连接池、Http 连接池等等都是对这个思想的应用。池化技术的思想主要是为了减少每次获取资源的消耗,提高对资源的利用率。** **线程池**提供了一种限制和管理资源(包括执行一个任务)。 每个**线程池**还维护一些基本统计信息,例如已完成任务的数量。 这里借用《Java 并发编程的艺术》提到的来说一下**使用线程池的好处**: - **降低资源消耗**。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。 -- **提高响应速度**。当任务到达时,任务可以不需要的等到线程创建就能立即执行。 +- **提高响应速度**。当任务到达时,任务可以不需要等到线程创建就能立即执行。 - **提高线程的可管理性**。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。 ### 线程池在实际项目的使用场景 @@ -182,11 +187,9 @@ Finished all threads 上面的代码可能会存在死锁的情况,为什么呢?画个图给大家捋一捋。 -试想这样一种极端情况: +试想这样一种极端情况:假如我们线程池的核心线程数为 **n**,父任务(扣费任务)数量为 **n**,父任务下面有两个子任务(扣费任务下的子任务),其中一个已经执行完成,另外一个被放在了任务队列中。由于父任务把线程池核心线程资源用完,所以子任务因为无法获取到线程资源无法正常执行,一直被阻塞在队列中。父任务等待子任务执行完成,而子任务等待父任务释放线程池资源,这也就造成了 **"死锁"**。 -假如我们线程池的核心线程数为 **n**,父任务(扣费任务)数量为 **n**,父任务下面有两个子任务(扣费任务下的子任务),其中一个已经执行完成,另外一个被放在了任务队列中。由于父任务把线程池核心线程资源用完,所以子任务因为无法获取到线程资源无法正常执行,一直被阻塞在队列中。父任务等待子任务执行完成,而子任务等待父任务释放线程池资源,这也就造成了 **"死锁"**。 - -![](images/thread-pool/7888fb0d-4699-4d3a-8885-405cb5415617.png) +![线程池使用不当导致死锁](./images/thread-pool/线程池使用不当导致死锁.png) 解决方法也很简单,就是新增加一个用于执行子任务的线程池专门为其服务。 @@ -281,7 +284,7 @@ CPU 密集型简单理解就是利用 CPU 计算能力的任务比如你在内 - **`corePoolSize` :** 核心线程数线程数定义了最小可以同时运行的线程数量。 - **`maximumPoolSize` :** 当队列中存放的任务达到队列容量的时候,当前可以同时运行的线程数量变为最大线程数。 -- **`workQueue`:** 当新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,信任就会被存放在队列中。 +- **`workQueue`:** 当新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。 **为什么是这三个参数?** diff --git a/docs/java/images/image-20200405151029416.png b/docs/java/images/image-20200405151029416.png deleted file mode 100644 index 26ea14ca479..00000000000 Binary files a/docs/java/images/image-20200405151029416.png and /dev/null differ diff --git a/docs/java/images/performance-tuning/java-performance1.png b/docs/java/images/performance-tuning/java-performance1.png deleted file mode 100644 index 0975d26519e..00000000000 Binary files a/docs/java/images/performance-tuning/java-performance1.png and /dev/null differ diff --git a/docs/java/images/performance-tuning/java-performance2.png b/docs/java/images/performance-tuning/java-performance2.png deleted file mode 100644 index 76bbc0a82f1..00000000000 Binary files a/docs/java/images/performance-tuning/java-performance2.png and /dev/null differ diff --git a/docs/java/images/performance-tuning/java-performance3.png b/docs/java/images/performance-tuning/java-performance3.png deleted file mode 100644 index 150e5ce5d5a..00000000000 Binary files a/docs/java/images/performance-tuning/java-performance3.png and /dev/null differ diff --git a/docs/java/images/performance-tuning/java-performance4.png b/docs/java/images/performance-tuning/java-performance4.png deleted file mode 100644 index e3bf7450592..00000000000 Binary files a/docs/java/images/performance-tuning/java-performance4.png and /dev/null differ diff --git a/docs/java/images/performance-tuning/java-performance5.png b/docs/java/images/performance-tuning/java-performance5.png deleted file mode 100644 index c6b44840ff4..00000000000 Binary files a/docs/java/images/performance-tuning/java-performance5.png and /dev/null differ diff --git a/docs/java/images/performance-tuning/java-performance6.png b/docs/java/images/performance-tuning/java-performance6.png deleted file mode 100644 index b1e182ed89c..00000000000 Binary files a/docs/java/images/performance-tuning/java-performance6.png and /dev/null differ diff --git a/docs/java/images/performance-tuning/java-performance7.png b/docs/java/images/performance-tuning/java-performance7.png deleted file mode 100644 index 0796e30d239..00000000000 Binary files a/docs/java/images/performance-tuning/java-performance7.png and /dev/null differ diff --git a/docs/java/images/performance-tuning/java-performance8.png b/docs/java/images/performance-tuning/java-performance8.png deleted file mode 100644 index 75172dfad5f..00000000000 Binary files a/docs/java/images/performance-tuning/java-performance8.png and /dev/null differ diff --git "a/docs/java/jvm/\347\261\273\346\226\207\344\273\266\347\273\223\346\236\204.md" b/docs/java/jvm/class-file-structure.md similarity index 92% rename from "docs/java/jvm/\347\261\273\346\226\207\344\273\266\347\273\223\346\236\204.md" rename to docs/java/jvm/class-file-structure.md index 380e11fb15d..b5a2611397e 100644 --- "a/docs/java/jvm/\347\261\273\346\226\207\344\273\266\347\273\223\346\236\204.md" +++ b/docs/java/jvm/class-file-structure.md @@ -1,25 +1,10 @@ +--- +category: Java +tag: + - JVM +--- - - - - -- [类文件结构](#类文件结构) - - [一 概述](#一-概述) - - [二 Class 文件结构总结](#二-class-文件结构总结) - - [2.1 魔数(Magic Number)](#21-魔数magic-number) - - [2.2 Class 文件版本号(Minor&Major Version)](#22-class-文件版本号minormajor-version) - - [2.3 常量池(Constant Pool)](#23-常量池constant-pool) - - [2.4 访问标志(Access Flags)](#24-访问标志access-flags) - - [2.5 当前类(This Class)、父类(Super Class)、接口(Interfaces)索引集合](#25-当前类this-class-父类super-class-接口interfaces索引集合) - - [2.6 字段表集合(Fields)](#26-字段表集合fields) - - [2.7 方法表集合(Methods)](#27-方法表集合methods) - - [2.8 属性表集合(Attributes)](#28-属性表集合attributes) - - [参考](#参考) - - - - -# 类文件结构 +# 类文件结构详解 ## 一 概述 diff --git "a/docs/java/jvm/\347\261\273\345\212\240\350\275\275\350\277\207\347\250\213.md" b/docs/java/jvm/class-loading-process.md similarity index 90% rename from "docs/java/jvm/\347\261\273\345\212\240\350\275\275\350\277\207\347\250\213.md" rename to docs/java/jvm/class-loading-process.md index bf2811eb441..fbe1b161d68 100644 --- "a/docs/java/jvm/\347\261\273\345\212\240\350\275\275\350\277\207\347\250\213.md" +++ b/docs/java/jvm/class-loading-process.md @@ -1,18 +1,13 @@ - +--- +category: Java +tag: + - JVM +--- -- [类的生命周期](#类的生命周期) - - [类加载过程](#类加载过程) - - [加载](#加载) - - [验证](#验证) - - [准备](#准备) - - [解析](#解析) - - [初始化](#初始化) - - [卸载](#卸载) - - [公众号](#公众号) - +# 类加载过程详解 -# 类的生命周期 +## 类的生命周期 一个类的完整生命周期如下: @@ -115,13 +110,3 @@ Class 文件需要加载到虚拟机中之后才能运行和使用,那么虚 - 《深入理解 Java 虚拟机》 - 《实战 Java 虚拟机》 - - -## 公众号 - -如果大家想要实时关注我更新的文章以及分享的干货的话,可以关注我的公众号。 - -**《Java 面试突击》:** 由本文档衍生的专为面试而生的《Java 面试突击》V2.0 PDF 版本[公众号](#公众号)后台回复 **"Java 面试突击"** 即可免费领取! - -**Java 工程师必备学习资源:** 一些 Java 工程师常用学习资源[公众号](#公众号)后台回复关键字 **“1”** 即可免费无套路获取。 - -![我的公众号](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-6/167598cd2e17b8ec.png) diff --git "a/docs/java/jvm/\347\261\273\345\212\240\350\275\275\345\231\250.md" b/docs/java/jvm/classloader.md similarity index 60% rename from "docs/java/jvm/\347\261\273\345\212\240\350\275\275\345\231\250.md" rename to docs/java/jvm/classloader.md index 3cd31cdcebe..93cd907e45a 100644 --- "a/docs/java/jvm/\347\261\273\345\212\240\350\275\275\345\231\250.md" +++ b/docs/java/jvm/classloader.md @@ -1,18 +1,10 @@ - +--- +category: Java +tag: + - JVM +--- -- [回顾一下类加载过程](#回顾一下类加载过程) -- [类加载器总结](#类加载器总结) -- [双亲委派模型](#双亲委派模型) - - [双亲委派模型介绍](#双亲委派模型介绍) - - [双亲委派模型实现源码分析](#双亲委派模型实现源码分析) - - [双亲委派模型的好处](#双亲委派模型的好处) - - [如果我们不想要双亲委派模型怎么办?](#如果我们不想要双亲委派模型怎么办) -- [自定义类加载器](#自定义类加载器) -- [推荐](#推荐) - - - -> 公众号JavaGuide 后台回复关键字“1”,免费获取JavaGuide配套的Java工程师必备学习资源(文末有公众号二维码)。 +# 类加载器详解 ## 回顾一下类加载过程 @@ -20,23 +12,23 @@ ![类加载过程](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-6/类加载过程.png) -一个非数组类的加载阶段(加载阶段获取类的二进制字节流的动作)是可控性最强的阶段,这一步我们可以去完成还可以自定义类加载器去控制字节流的获取方式(重写一个类加载器的 `loadClass()` 方法)。数组类型不通过类加载器创建,它由 Java 虚拟机直接创建。 +一个非数组类的加载阶段(加载阶段获取类的二进制字节流的动作)是可控性最强的阶段,这一步我们可以去自定义类加载器去控制字节流的获取方式(重写一个类加载器的 `loadClass()` 方法)。数组类型不通过类加载器创建,它由 Java 虚拟机直接创建。 -所有的类都由类加载器加载,加载的作用就是将 .class文件加载到内存。 +所有的类都由类加载器加载,加载的作用就是将 `.class`文件加载到内存。 ## 类加载器总结 JVM 中内置了三个重要的 ClassLoader,除了 BootstrapClassLoader 其他类加载器均由 Java 实现且全部继承自`java.lang.ClassLoader`: -1. **BootstrapClassLoader(启动类加载器)** :最顶层的加载类,由C++实现,负责加载 `%JAVA_HOME%/lib`目录下的jar包和类或者或被 `-Xbootclasspath`参数指定的路径中的所有类。 -2. **ExtensionClassLoader(扩展类加载器)** :主要负责加载目录 `%JRE_HOME%/lib/ext` 目录下的jar包和类,或被 `java.ext.dirs` 系统变量所指定的路径下的jar包。 -3. **AppClassLoader(应用程序类加载器)** :面向我们用户的加载器,负责加载当前应用classpath下的所有jar包和类。 +1. **BootstrapClassLoader(启动类加载器)** :最顶层的加载类,由 C++实现,负责加载 `%JAVA_HOME%/lib`目录下的 jar 包和类或者被 `-Xbootclasspath`参数指定的路径中的所有类。 +2. **ExtensionClassLoader(扩展类加载器)** :主要负责加载 `%JRE_HOME%/lib/ext` 目录下的 jar 包和类,或被 `java.ext.dirs` 系统变量所指定的路径下的 jar 包。 +3. **AppClassLoader(应用程序类加载器)** :面向我们用户的加载器,负责加载当前应用 classpath 下的所有 jar 包和类。 ## 双亲委派模型 ### 双亲委派模型介绍 -每一个类都有一个对应它的类加载器。系统中的 ClassLoder 在协同工作的时候会默认使用 **双亲委派模型** 。即在类加载的时候,系统会首先判断当前类是否被加载过。已经被加载的类会直接返回,否则才会尝试加载。加载的时候,首先会把该请求委派该父类加载器的 `loadClass()` 处理,因此所有的请求最终都应该传送到顶层的启动类加载器 `BootstrapClassLoader` 中。当父类加载器无法处理时,才由自己来处理。当父类加载器为null时,会使用启动类加载器 `BootstrapClassLoader` 作为父类加载器。 +每一个类都有一个对应它的类加载器。系统中的 ClassLoader 在协同工作的时候会默认使用 **双亲委派模型** 。即在类加载的时候,系统会首先判断当前类是否被加载过。已经被加载的类会直接返回,否则才会尝试加载。加载的时候,首先会把该请求委派给父类加载器的 `loadClass()` 处理,因此所有的请求最终都应该传送到顶层的启动类加载器 `BootstrapClassLoader` 中。当父类加载器无法处理时,才由自己来处理。当父类加载器为 null 时,会使用启动类加载器 `BootstrapClassLoader` 作为父类加载器。 ![ClassLoader](https://my-blog-to-use.oss-cn-beijing.aliyuncs.com/2019-6/classloader_WPS图片.png) @@ -61,18 +53,18 @@ The GrandParent of ClassLodarDemo's ClassLoader is null ``` `AppClassLoader`的父类加载器为`ExtClassLoader`, -`ExtClassLoader`的父类加载器为null,**null并不代表`ExtClassLoader`没有父类加载器,而是 `BootstrapClassLoader`** 。 +`ExtClassLoader`的父类加载器为 null,**null 并不代表`ExtClassLoader`没有父类加载器,而是 `BootstrapClassLoader`** 。 -其实这个双亲翻译的容易让别人误解,我们一般理解的双亲都是父母,这里的双亲更多地表达的是“父母这一辈”的人而已,并不是说真的有一个 Mother ClassLoader 和一个 Father ClassLoader 。另外,类加载器之间的“父子”关系也不是通过继承来体现的,是由“优先级”来决定。官方API文档对这部分的描述如下: +其实这个双亲翻译的容易让别人误解,我们一般理解的双亲都是父母,这里的双亲更多地表达的是“父母这一辈”的人而已,并不是说真的有一个 Mother ClassLoader 和一个 Father ClassLoader 。另外,类加载器之间的“父子”关系也不是通过继承来体现的,是由“优先级”来决定。官方 API 文档对这部分的描述如下: ->The Java platform uses a delegation model for loading classes. **The basic idea is that every class loader has a "parent" class loader.** When loading a class, a class loader first "delegates" the search for the class to its parent class loader before attempting to find the class itself. +> The Java platform uses a delegation model for loading classes. **The basic idea is that every class loader has a "parent" class loader.** When loading a class, a class loader first "delegates" the search for the class to its parent class loader before attempting to find the class itself. ### 双亲委派模型实现源码分析 双亲委派模型的实现代码非常简单,逻辑非常清晰,都集中在 `java.lang.ClassLoader` 的 `loadClass()` 中,相关代码如下所示。 ```java -private final ClassLoader parent; +private final ClassLoader parent; protected Class loadClass(String name, boolean resolve) throws ClassNotFoundException { @@ -90,7 +82,7 @@ protected Class loadClass(String name, boolean resolve) } catch (ClassNotFoundException e) { //抛出异常说明父类加载器无法完成加载请求 } - + if (c == null) { long t1 = System.nanoTime(); //自己尝试加载 @@ -112,7 +104,7 @@ protected Class loadClass(String name, boolean resolve) ### 双亲委派模型的好处 -双亲委派模型保证了Java程序的稳定运行,可以避免类的重复加载(JVM 区分不同类的方式不仅仅根据类名,相同的类文件被不同的类加载器加载产生的是两个不同的类),也保证了 Java 的核心 API 不被篡改。如果没有使用双亲委派模型,而是每个类加载器加载自己的话就会出现一些问题,比如我们编写一个称为 `java.lang.Object` 类的话,那么程序运行的时候,系统就会出现多个不同的 `Object` 类。 +双亲委派模型保证了 Java 程序的稳定运行,可以避免类的重复加载(JVM 区分不同类的方式不仅仅根据类名,相同的类文件被不同的类加载器加载产生的是两个不同的类),也保证了 Java 的核心 API 不被篡改。如果没有使用双亲委派模型,而是每个类加载器加载自己的话就会出现一些问题,比如我们编写一个称为 `java.lang.Object` 类的话,那么程序运行的时候,系统就会出现多个不同的 `Object` 类。 ### 如果我们不想用双亲委派模型怎么办? @@ -129,6 +121,3 @@ protected Class loadClass(String name, boolean resolve) - - - - - - diff --git "a/docs/java/jvm/JDK\347\233\221\346\216\247\345\222\214\346\225\205\351\232\234\345\244\204\347\220\206\345\267\245\345\205\267\346\200\273\347\273\223.md" b/docs/java/jvm/jdk-monitoring-and-troubleshooting-tools.md similarity index 88% rename from "docs/java/jvm/JDK\347\233\221\346\216\247\345\222\214\346\225\205\351\232\234\345\244\204\347\220\206\345\267\245\345\205\267\346\200\273\347\273\223.md" rename to docs/java/jvm/jdk-monitoring-and-troubleshooting-tools.md index c8263de02e2..37e2c0d320e 100644 --- "a/docs/java/jvm/JDK\347\233\221\346\216\247\345\222\214\346\225\205\351\232\234\345\244\204\347\220\206\345\267\245\345\205\267\346\200\273\347\273\223.md" +++ b/docs/java/jvm/jdk-monitoring-and-troubleshooting-tools.md @@ -1,22 +1,8 @@ - - -- [JDK 监控和故障处理工具总结](#jdk-监控和故障处理工具总结) - - [JDK 命令行工具](#jdk-命令行工具) - - [`jps`:查看所有 Java 进程](#jps查看所有-java-进程) - - [`jstat`: 监视虚拟机各种运行状态信息](#jstat-监视虚拟机各种运行状态信息) - - [` jinfo`: 实时地查看和调整虚拟机各项参数](#-jinfo-实时地查看和调整虚拟机各项参数) - - [`jmap`:生成堆转储快照](#jmap生成堆转储快照) - - [**`jhat`**: 分析 heapdump 文件](#jhat-分析-heapdump-文件) - - [**`jstack`** :生成虚拟机当前时刻的线程快照](#jstack-生成虚拟机当前时刻的线程快照) - - [JDK 可视化分析工具](#jdk-可视化分析工具) - - [JConsole:Java 监视与管理控制台](#jconsolejava-监视与管理控制台) - - [连接 Jconsole](#连接-jconsole) - - [查看 Java 程序概况](#查看-java-程序概况) - - [内存监控](#内存监控) - - [线程监控](#线程监控) - - [Visual VM:多合一故障处理工具](#visual-vm多合一故障处理工具) - - +--- +category: Java +tag: + - JVM +--- # JDK 监控和故障处理工具总结 @@ -24,12 +10,12 @@ 这些命令在 JDK 安装目录下的 bin 目录下: -- **`jps`** (JVM Process Status): 类似 UNIX 的 `ps` 命令。用户查看所有 Java 进程的启动类、传入参数和 Java 虚拟机参数等信息; -- **`jstat`**( JVM Statistics Monitoring Tool): 用于收集 HotSpot 虚拟机各方面的运行数据; -- **`jinfo`** (Configuration Info for Java) : Configuration Info forJava,显示虚拟机配置信息; -- **`jmap`** (Memory Map for Java) :生成堆转储快照; -- **`jhat`** (JVM Heap Dump Browser ) : 用于分析 heapdump 文件,它会建立一个 HTTP/HTML 服务器,让用户可以在浏览器上查看分析结果; -- **`jstack`** (Stack Trace for Java):生成虚拟机当前时刻的线程快照,线程快照就是当前虚拟机内每一条线程正在执行的方法堆栈的集合。 +- **`jps`** (JVM Process Status): 类似 UNIX 的 `ps` 命令。用于查看所有 Java 进程的启动类、传入参数和 Java 虚拟机参数等信息; +- **`jstat`**(JVM Statistics Monitoring Tool): 用于收集 HotSpot 虚拟机各方面的运行数据; +- **`jinfo`** (Configuration Info for Java) : Configuration Info for Java,显示虚拟机配置信息; +- **`jmap`** (Memory Map for Java) : 生成堆转储快照; +- **`jhat`** (JVM Heap Dump Browser) : 用于分析 heapdump 文件,它会建立一个 HTTP/HTML 服务器,让用户可以在浏览器上查看分析结果; +- **`jstack`** (Stack Trace for Java) : 生成虚拟机当前时刻的线程快照,线程快照就是当前虚拟机内每一条线程正在执行的方法堆栈的集合。 ### `jps`:查看所有 Java 进程 @@ -88,7 +74,7 @@ jstat -