-
Notifications
You must be signed in to change notification settings - Fork 2
/
weather_update_v2_daily.py
446 lines (440 loc) · 19.1 KB
/
weather_update_v2_daily.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# %%
import requests
from datetime import datetime
import pandas as pd
from dateutil.parser import parse
import os
from collections import OrderedDict
from requests import get,post
import json
import io
import time # 新增此行
class NAGR:
def __init__(self):
self.my_headers = {
"accept": "application/json, text/javascript, */*; q=0.01",
"accept-language": "ja-JP,ja;q=0.9,zh-TW;q=0.8,zh;q=0.7,en-US;q=0.6,en;q=0.5",
"content-type": "application/x-www-form-urlencoded; charset=UTF-8",
"sec-ch-ua": "\"Chromium\";v=\"92\", \" Not A;Brand\";v=\"99\", \"Google Chrome\";v=\"92\"",
"sec-ch-ua-mobile": "?0",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"x-requested-with": "XMLHttpRequest", #required
}
def dictToGET(self, d):
return '&'.join(['{}={}'.format(k,v) for k,v in d.items()])
def agr_get_items (self, station = '466910', type = 'hourly'): #check available fields
if type == 'daily':
get_items_URI = "https://agr.cwa.gov.tw/NAGR/history/station_day/get_items"
elif type == 'hourly':
get_items_URI = "https://agr.cwa.gov.tw/NAGR/history/station_hour/get_items"
r = post(get_items_URI, data = {'station': station}, headers= self.my_headers)
i = json.loads(r.text)
d = {t['item']: t['cname'] for t in i['items']}
if d == {}:
return {}
orderedD = OrderedDict()
for e in i['columns']:
orderedD[d[e]] = e
return orderedD
def replaceListByDict(self,l, d):
d['觀測時間'] = 'date'
return [d[i] if i in d else i for i in l]
def add_2359(self, d):
if d.strftime('%H%M') == '2359':
return d + pd.Timedelta(minutes=1)
else:
return d
def getDataByCsvAPI(self,STA = '466900', start_time='2020-08-16', end_time='2020-09-13', type='hourly', save_path = ''):
#print("Downloading data from {} to {}".format(start_time, end_time))
#STA = '466900'
if type=='hourly':
URI = 'https://agr.cwa.gov.tw/NAGR/history/station_hour/create_report'
elif type=='daily':
URI = 'https://agr.cwa.gov.tw/NAGR/history/station_day/create_report'
items = self.agr_get_items(STA, type)
data = {
'station': STA,
'start_time': parse(start_time).strftime('%Y-%m-%d'),
'end_time': parse(end_time).strftime('%Y-%m-%d'),
'items': ','.join(items.values()),
'report_type':'csv_time',
'level': '自動站'
}
if STA[0:2] not in ['46','C0','C1']:
data['level'] = ''
try:
r = get(URI+'?'+self.dictToGET(data))
r.encoding='big5'
rio = io.StringIO(r.text)
df = pd.read_csv(rio,encoding='big5', skiprows=[0], on_bad_lines = 'skip', index_col=False)
df.columns = self.replaceListByDict(df.columns, items)
df.drop(['測站代碼'], axis=1, inplace=True)
#discard NaN date, which is occasionally returned by the API
df = df[df['date'].isna() == False]
df['date'] = pd.to_datetime(df['date'])
df['date'] = df['date'].apply(self.add_2359)
df.index = df['date'].to_list()
df.drop(['date'], axis=1, inplace=True)
except Exception as e:
print("Error during parsing file:", e)
return pd.DataFrame()
if save_path != '':
df.to_csv(save_path)
print ("Saved to {}".format(save_path))
return df
class CODIS:
def _stations_fetch(self):
return ("https://codis.cwa.gov.tw/api/station_list", {
"headers": {
"accept": "*/*",
"accept-language": "ja-JP,ja;q=0.9,zh-TW;q=0.8,zh;q=0.7,en-US;q=0.6,en;q=0.5",
"sec-ch-ua": "\"Not?A_Brand\";v=\"8\", \"Chromium\";v=\"108\", \"Google Chrome\";v=\"108\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"x-requested-with": "XMLHttpRequest"
},
"referrer": "https://codis.cwa.gov.tw/StationData",
"referrerPolicy": "strict-origin-when-cross-origin",
"body": "",
"method": "GET",
"mode": "cors",
"credentials": "include"
})
def _daily_fetch(self, sta_id="467490", stn_type='cwb', start=datetime(2022,8,16,0,0,0), end=datetime(2022,9,13,0,0,0)):
return ("https://codis.cwa.gov.tw/api/station?", {
"headers": {
"accept": "application/json, text/javascript, */*; q=0.01",
"accept-language": "ja-JP,ja;q=0.9,zh-TW;q=0.8,zh;q=0.7,en-US;q=0.6,en;q=0.5",
"content-type": "application/x-www-form-urlencoded; charset=UTF-8",
"sec-ch-ua": "\"Not?A_Brand\";v=\"8\", \"Chromium\";v=\"108\", \"Google Chrome\";v=\"108\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"x-requested-with": "XMLHttpRequest"
},
"referrer": "https://codis.cwa.gov.tw/StationData",
"referrerPolicy": "strict-origin-when-cross-origin",
"body": "",
"method": "POST",
"mode": "cors",
"credentials": "include"
},
{
"date": "2022-08-16T00%3A00%3A00.000%2B08%3A00",
"type": "report_month",
"stn_ID": sta_id,
"stn_type": stn_type,
"start": start.strftime("%Y-%m-%dT00:00:00"),
"end": end.strftime("%Y-%m-%dT00:00:00")
})
def fetcher(self, url, params, data=""):
if params['method'] == 'GET':
return requests.get(url, params=params, data=data).json()
elif params['method'] == 'POST':
return requests.post(url, params=params, data=data).json()
def get_stations_df(self):
stations_raw = self.fetcher(*self._stations_fetch())
stations_df = pd.DataFrame()
for i in range(len(stations_raw['data'])):
df_temp = pd.DataFrame(stations_raw['data'][i]['item'])
df_temp['stn_type'] = stations_raw['data'][i]['stationAttribute']
stations_df = pd.concat([stations_df, df_temp], axis=0)
return stations_df
def daily_json_parser(self, wea_data):
output_df = pd.DataFrame()
for v in wea_data['data'][0]['dts']:
#Since different stations have different data, we need to check if the data is available
#Super ugly code, but it works
#print(v['DataTime'])
try:
output_df.loc[v['DataDate'], 'StnPres'] = v['StationPressure']['Mean']
except:
pass
try:
output_df.loc[v['DataDate'], 'SeaPres'] = v['SeaLevelPressure']['Mean']
except:
pass
try:
output_df.loc[v['DataDate'], 'StnPresMax'] = v['StationPressure']['Maximum']
except:
pass
try:
output_df.loc[v['DataDate'], 'StnPresMaxTime'] = v['StationPressure']['MaximumTime']
except:
pass
try:
output_df.loc[v['DataDate'], 'StnPresMin'] = v['StationPressure']['Minimum']
except:
pass
try:
output_df.loc[v['DataDate'], 'StnPresMinTime'] = v['StationPressure']['MinimumTime']
except:
pass
try:
output_df.loc[v['DataDate'], 'Tx'] = v['AirTemperature']['Mean']
except:
pass
try:
output_df.loc[v['DataDate'], 'TxMaxAbs'] = v['AirTemperature']['Maximum']
except:
pass
try:
output_df.loc[v['DataDate'], 'TxMaxAbsTime'] = v['AirTemperature']['MaximumTime']
except:
pass
try:
output_df.loc[v['DataDate'], 'TxMinAbs'] = v['AirTemperature']['Minimum']
except:
pass
try:
output_df.loc[v['DataDate'], 'TxMinAbsTime'] = v['AirTemperature']['MinimumTime']
except:
pass
try:
output_df.loc[v['DataDate'], 'Td'] = v['DewPointTemperature']['Mean']
except:
pass
try:
output_df.loc[v['DataDate'], 'RH'] = v['RelativeHumidity']['Mean']
except:
pass
try:
output_df.loc[v['DataDate'], 'RHMin'] = v['RelativeHumidity']['Minimum']
except:
pass
try:
output_df.loc[v['DataDate'], 'RHMinTime'] = v['RelativeHumidity']['MinimumTime']
except:
pass
try:
output_df.loc[v['DataDate'], 'WS'] = v['WindSpeed']['Mean']
except:
pass
try:
output_df.loc[v['DataDate'], 'WD'] = v['WindDirection']['Prevailing']
except:
pass
try:
output_df.loc[v['DataDate'], 'WSGust'] = v['PeakGust']['Maximum']
except:
pass
try:
output_df.loc[v['DataDate'], 'WDGust'] = v['PeakGust']['Direction']
except:
pass
try:
output_df.loc[v['DataDate'], 'WGustTime'] = v['PeakGust']['MaximumTime']
except:
pass
try:
output_df.loc[v['DataDate'], 'Precp'] = v['Precipitation']['Accumulation']
if output_df.loc[v['DataDate'], 'Precp'] == -9.8:
output_df.loc[v['DataDate'], 'Precp'] = 0.09
except:
pass
try:
output_df.loc[v['DataDate'], 'PrecpHour'] = v['PrecipitationDuration']['Total']
except:
pass
try:
output_df.loc[v['DataDate'], 'PrecpMax10'] = v['Precipitation']['TenMinutelyMaximum']
except:
pass
try:
output_df.loc[v['DataDate'], 'PrecpMax10Time'] = v['Precipitation']['TenMinutelyMaximumTime']
except:
pass
try:
output_df.loc[v['DataDate'], 'PrecpMax60'] = v['Precipitation']['SixtyMinutelyMaximum']
except:
pass
try:
output_df.loc[v['DataDate'], 'PrecpMax60Time'] = v['Precipitation']['SixtyMinutelyMaximumTime']
except:
pass
try:
output_df.loc[v['DataDate'], 'SunShine'] = v['SunshineDuration']['Total']
except:
pass
try:
output_df.loc[v['DataDate'], 'SunShineRate'] = v['SunshineDuration']['Rate']
except:
pass
try:
output_df.loc[v['DataDate'], 'GloblRad'] = v['GlobalSolarRadiation']['Accumulation']
except:
pass
try:
output_df.loc[v['DataDate'], 'EvapA'] = v['EvaporationClassAPan']['Accumulation']
except:
pass
try:
output_df.loc[v['DataDate'], 'TxSoil0cm'] = v['SoilTemperatureAt0cm']['Mean']
except:
pass
try:
output_df.loc[v['DataDate'], 'TxSoil5cm'] = v['SoilTemperatureAt5cm']['Mean']
except:
pass
try:
output_df.loc[v['DataDate'], 'TxSoil10cm'] = v['SoilTemperatureAt10cm']['Mean']
except:
pass
try:
output_df.loc[v['DataDate'], 'TxSoil20cm'] = v['SoilTemperatureAt20cm']['Mean']
except:
pass
try:
output_df.loc[v['DataDate'], 'TxSoil30cm'] = v['SoilTemperatureAt30cm']['Mean']
except:
pass
try:
output_df.loc[v['DataDate'], 'TxSoil50cm'] = v['SoilTemperatureAt50cm']['Mean']
except:
pass
try:
output_df.loc[v['DataDate'], 'TxSoil100cm'] = v['SoilTemperatureAt100cm']['Mean']
except:
pass
try:
output_df.loc[v['DataDate'], 'TxSoil200cm'] = v['SoilTemperatureAt200cm']['Mean']
except:
pass
try:
output_df.loc[v['DataDate'], 'TxSoil300cm'] = v['SoilTemperatureAt300cm']['Mean']
except:
pass
try:
output_df.loc[v['DataDate'], 'TxSoil500cm'] = v['SoilTemperatureAt500cm']['Mean']
except:
pass
try:
output_df.loc[v['DataDate'], 'VaporPressure'] = v['VaporPressure']['Mean']
except:
pass
output_df.fillna(-99.8, inplace=True)
output_df.index = pd.to_datetime(output_df.index)
#For which H:M:S is 23:59:00, we need to change it to 00:00:00 by adding 1 minute
output_df['DataTime_temp'] = output_df.index
output_df.loc[output_df['DataTime_temp'].dt.strftime('%H:%M:%S') == '23:59:00', 'DataTime_temp'] = output_df.loc[output_df['DataTime_temp'].dt.strftime('%H:%M:%S') == '23:59:00', 'DataTime_temp'] + pd.Timedelta(minutes=1)
output_df.index = output_df['DataTime_temp']
output_df.index.name = ""
output_df.drop('DataTime_temp', axis=1, inplace=True)
#Sort by index
output_df.sort_index(inplace=True)
return output_df
def get_full_year(self, sta_id="467490", stn_type='cwb', year = 2022):
output_df = pd.DataFrame()
#fetcher(*_hourly_fetch(sta_id="467490", stn_type='cwb', start=datetime(2022,1,1,0,0,0), end=datetime(2022,3,2,0,0,0)))
start = datetime(year,1,1,0,0,0)
terminate = min(datetime(year+1,1,1,0,0,0), datetime.now())
while start < terminate:
#Max. duration cannot exceed 60 days
end = start + pd.Timedelta(days=60)
if end > datetime(year+1,1,1,0,0,0):
end = datetime(year+1,1,1,0,0,0)
raw_data = self.fetcher(*self._daily_fetch(sta_id=sta_id, stn_type=stn_type, start=start, end=end))
try:
output_df = pd.concat([output_df, self.daily_json_parser(raw_data)])
print(" Success to process station: {} for {} {}".format(sta_id, start, end))
except Exception as e:
print(" Failed to process station: {} for {} {}".format(sta_id, start, end))
start = end
return output_df
codis = CODIS()
stations_df = codis.get_stations_df()
#Remove suspended stations (row['stationEndDate'] != "")
stations_df = stations_df[(stations_df['stationEndDate'] == "")]
nagr = NAGR()
stations_df.reset_index(inplace=True, drop=True)
stations_df[-10:]
# %%
from filelock import FileLock
import os
def safe_write_to_csv(log, filename="log.csv"):
lock_file = f"{filename}.lock"
with FileLock(lock_file):
log.to_csv(filename)
def thread_pack (sta_id,stn_type,y):
filename = "data/{}/{}_{}_daily.csv".format(sta_id, sta_id, y)
if os.path.exists("log.csv"):
log = pd.read_csv("log.csv", index_col='sta_id')
if sta_id in log.index:
if 'daily' in log.columns:
AVOID_RE_UPDATE = False
try:
if pd.to_datetime(log.loc[sta_id, 'daily']) > datetime.now() - pd.Timedelta(days=1) and AVOID_RE_UPDATE:
print("File {} was updated in the last 24 hours. Skipping...".format(filename))
return pd.DataFrame()
except:
pass
print("Processing station: {} for year {}".format(sta_id, y))
if stn_type == 'agr':
#if station is agr, use NAGR API
output_df = nagr.getDataByCsvAPI(STA = sta_id, start_time= f"{y}-01-01", end_time=f"{y+1}-01-01", type='daily', save_path = filename)
else:
output_df = codis.get_full_year(sta_id=sta_id, stn_type=stn_type, year = y)
if output_df.empty:
return pd.DataFrame()
else:
#將更新紀錄寫在log.csv中,縱index為站號,橫標題為daily, 值 = 更新時間
#log.csv可能是空白的檔案,或是已經有部分資料
print ("Updating log.csv")
if os.path.exists("log.csv"):
log = pd.read_csv("log.csv", index_col = 'sta_id')
else:
log = pd.DataFrame(columns=['sta_id', 'daily', 'hourly', 'monthly'])
#Set sta_id as index
log.set_index('sta_id', inplace=True)
log.loc[sta_id, 'daily'] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
safe_write_to_csv(log, "log.csv")
output_df.to_csv(filename.format(sta_id, sta_id, y))
return output_df
# %%
import threading
import time
station_counter = 0
waiting_list = []
for index, row in stations_df.iterrows():
os.makedirs("./data/{}".format(row['stationID']), exist_ok=True)
sta_id = row['stationID']
stn_type = ""
if row['stn_type'] == 'agr':
stn_type = 'agr'
elif row['stn_type'] == 'cwb':
stn_type = 'cwb'
elif row['stn_type'] == 'auto':
if row['stationID'][0:2] == 'C0':
stn_type = 'auto_C0'
elif row['stationID'][0:2] == 'C1':
stn_type = 'auto_C1'
if stn_type == "":
continue
if datetime.now().month == 1:
start_y = datetime.now().year - 1
else:
start_y = datetime.now().year
end_y = datetime.now().year
for y in range(start_y, end_y+1):
#Start multi-threading, max. 10 threads, 1 thread for 1 station, timeout = 60 seconds
t = threading.Thread(target=thread_pack, args=(sta_id,stn_type,y))
t.start()
waiting_list.append(t)
while len(waiting_list) >= 1:
for t in waiting_list:
t.join(timeout=60)
if not t.is_alive():
waiting_list.remove(t)
break
station_counter += 1 # 增加计数器
if station_counter % 5 == 0:
print("暫停一下子,避免頻繁存取", station_counter)
time.sleep(20)
# %%