forked from HarshwardhanPatil07/HactoberFest2024
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnqueen.cpp
114 lines (95 loc) · 2.54 KB
/
nqueen.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
// C++ program to solve N Queen Problem using backtracking
#include <bits/stdc++.h>
#define N 4
using namespace std;
// A utility function to print solution
void printSolution(int board[N][N])
{
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++)
if(board[i][j])
cout << "Q ";
else cout<<". ";
printf("\n");
}
}
// A utility function to check if a queen can
// be placed on board[row][col]. Note that this
// function is called when "col" queens are
// already placed in columns from 0 to col -1.
// So we need to check only left side for
// attacking queens
bool isSafe(int board[N][N], int row, int col)
{
int i, j;
// Check this row on left side
for (i = 0; i < col; i++)
if (board[row][i])
return false;
// Check upper diagonal on left side
for (i = row, j = col; i >= 0 && j >= 0; i--, j--)
if (board[i][j])
return false;
// Check lower diagonal on left side
for (i = row, j = col; j >= 0 && i < N; i++, j--)
if (board[i][j])
return false;
return true;
}
// A recursive utility function to solve N
// Queen problem
bool solveNQUtil(int board[N][N], int col)
{
// base case: If all queens are placed
// then return true
if (col >= N)
return true;
// Consider this column and try placing
// this queen in all rows one by one
for (int i = 0; i < N; i++) {
// Check if the queen can be placed on
// board[i][col]
if (isSafe(board, i, col)) {
// Place this queen in board[i][col]
board[i][col] = 1;
// recur to place rest of the queens
if (solveNQUtil(board, col + 1))
return true;
// If placing queen in board[i][col]
// doesn't lead to a solution, then
// remove queen from board[i][col]
board[i][col] = 0; // BACKTRACK
}
}
// If the queen cannot be placed in any row in
// this column col then return false
return false;
}
// This function solves the N Queen problem using
// Backtracking. It mainly uses solveNQUtil() to
// solve the problem. It returns false if queens
// cannot be placed, otherwise, return true and
// prints placement of queens in the form of 1s.
// Please note that there may be more than one
// solutions, this function prints one of the
// feasible solutions.
bool solveNQ()
{
int board[N][N] = { { 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 } };
if (solveNQUtil(board, 0) == false) {
cout << "Solution does not exist";
return false;
}
printSolution(board);
return true;
}
// Driver program to test above function
int main()
{
solveNQ();
return 0;
}
// This code is contributed by Aditya Kumar (adityakumar129)