-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshopping.py
149 lines (120 loc) · 5.02 KB
/
shopping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import csv
import sys
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
TEST_SIZE = 0.4
def main():
# Check command-line arguments
if len(sys.argv) != 2:
sys.exit("Usage: python shopping.py data")
# Load data from spreadsheet and split into train and test sets
evidence, labels = load_data(sys.argv[1])
X_train, X_test, y_train, y_test = train_test_split(
evidence, labels, test_size=TEST_SIZE
)
# Train model and make predictions
model = train_model(X_train, y_train)
predictions = model.predict(X_test)
sensitivity, specificity = evaluate(y_test, predictions)
# Print results
print(f"Correct: {(y_test == predictions).sum()}")
print(f"Incorrect: {(y_test != predictions).sum()}")
print(f"True Positive Rate: {100 * sensitivity:.2f}%")
print(f"True Negative Rate: {100 * specificity:.2f}%")
def load_data(filename):
"""
Load shopping data from a CSV file `filename` and convert into a list of
evidence lists and a list of labels. Return a tuple (evidence, labels).
evidence should be a list of lists, where each list contains the
following values, in order:
- Administrative, an integer
- Administrative_Duration, a floating point number
- Informational, an integer
- Informational_Duration, a floating point number
- ProductRelated, an integer
- ProductRelated_Duration, a floating point number
- BounceRates, a floating point number
- ExitRates, a floating point number
- PageValues, a floating point number
- SpecialDay, a floating point number
- Month, an index from 0 (January) to 11 (December)
- OperatingSystems, an integer
- Browser, an integer
- Region, an integer
- TrafficType, an integer
- VisitorType, an integer 0 (not returning) or 1 (returning)
- Weekend, an integer 0 (if false) or 1 (if true)
labels should be the corresponding list of labels, where each label
is 1 if Revenue is true, and 0 otherwise.
"""
# initialise empty evidence and labels lists
evidence = []
labels = []
# create a dictionary to map a month to a numeric value between 0 and 11
months = {"Jan":0, "Feb":1, "Mar":2, "Apr":3, "May":4, "June":5, "Jul":6, "Aug":7, "Sep":8, "Oct": 9, "Nov": 10, "Dec":11}
# open a file and read it row by row
with open(filename, 'r') as file:
reader = csv.DictReader(file)
for row in reader:
# append the evidence values into the evidence list in the correct format
evidence.append([
int(row["Administrative"]),
float(row["Administrative_Duration"]),
int(row["Informational"]),
float(row["Informational_Duration"]),
int(row["ProductRelated"]),
float(row["ProductRelated_Duration"]),
float(row["BounceRates"]),
float(row["ExitRates"]),
float(row["PageValues"]),
float(row["SpecialDay"]),
months[row["Month"]],
int(row["OperatingSystems"]),
int(row["Browser"]),
int(row["Region"]),
int(row["TrafficType"]),
1 if row["VisitorType"] == "Returning_Visitor" else 0,
1 if row["Weekend"] == "TRUE" else 0
])
# append the labels into the labels list
labels.append(1 if row["Revenue"] == "TRUE" else 0)
# return the lists as tuples
return(evidence, labels)
def train_model(evidence, labels):
"""
Given a list of evidence lists and a list of labels, return a
fitted k-nearest neighbor model (k=1) trained on the data.
"""
# initialise a k-nearest model with k=1 using scikit
model = KNeighborsClassifier(n_neighbors=1).fit(evidence, labels)
return model
def evaluate(labels, predictions):
"""
Given a list of actual labels and a list of predicted labels,
return a tuple (sensitivity, specificty).
Assume each label is either a 1 (positive) or 0 (negative).
`sensitivity` should be a floating-point value from 0 to 1
representing the "true positive rate": the proportion of
actual positive labels that were accurately identified.
`specificity` should be a floating-point value from 0 to 1
representing the "true negative rate": the proportion of
actual negative labels that were accurately identified.
"""
true_positive = 0
positive_count = 0
true_negative = 0
negative_count = 0
for i in range(len(labels)):
if labels[i] == 1:
positive_count += 1
if predictions[i] == 1:
true_positive += 1
else:
negative_count += 1
if predictions[i] == 0:
true_negative += 1
sensitivity = true_positive / positive_count
specificity = true_negative / negative_count
return (sensitivity, specificity)
if __name__ == "__main__":
main()