Skip to content

Latest commit

 

History

History
153 lines (136 loc) · 3.22 KB

Study.md

File metadata and controls

153 lines (136 loc) · 3.22 KB
kanban-plugin
board

Week 1

  • 11th Dec :
    • Counting
    • [[Probability Axioms]]
    • Sample Space
    • Events
  • 12th December :
    • Independent and Mutually exclusive events
    • Marginal Probability
    • Conditional Probability
    • Joint Probability
    • Bayes Theorem
  • 13th December :
    • Conditional Expectation and Variance
    • Mean, Median, Mode
    • Standard Deviation
  • 14th December :
    • Correlation
    • Covariance
    • Random Variables
    • Discrete Random Variables
    • PMFs
  • 15th December :
    • Uniform Distribution
    • Bernoulli Distribution
    • Binomial Distribution
  • 16th December:
    • Continuous Random Variables :
    • Uniform
    • Exponential
    • Poisson Distribution
  • 17th December:
    • Normal Distribution
    • Standard Normal Distribution
    • T-Distribution
    • $\chi^{2}$ distribution
    • CDF

Week 2

  • 18th December :
    • Vector Space
    • Subspaces
    • Linear Dependence and Independence
  • 19th December :
    • Matrices
    • Projection Matrix
    • Orthogonal Matrix
    • Idempotent Matrix
  • 20th December :
    • Quadratic Forms
    • Systems of Linear Equations
    • Gaussian Elimination
  • 21st December :
    • Eigenvalues and Eigenvectors
    • Determinants
    • Rank
    • Nullity
  • 22nd December :
    • LU Decomposition
    • Singular Value Decomposition
  • 23rd December :
    • Practice Linear Algebra
  • 24th December :
    • Practice Probability

Week 3

  • 25th December :
    • Functions of a Single Variable
    • Limits
    • Continuity and Differentiability
  • 26th December :
    • Taylor Series
    • Maxima and Minima
    • Single Variabel Optimization
  • 27th December :
    • Stacks and Queues implementation in Python
  • 28th December :
    • Linked Lists
    • Trees
    • Hash Tables
  • 29th December :
    • Linear Search
    • Binary Search
    • Selection Sort
    • Bubble Sort
    • Insertion Sort
  • 30th December :
    • Divide and Conquer Algorithms
    • MergeSort
    • QuickSort
  • 31st December :
    • Graph Theory Basics
    • Traversals
    • Shortest Path

Week 4

  • 1st Jan 2025:
    • ER-Model
    • Relational Algebra
    • Tuple Calculus
    • SQL
  • 2nd January :
    • Integrity Constraints
    • Normalization
    • Discretization
    • Sampling Compression
  • 3rd January :
    • Multidimensional Data Models
    • COncept Hierarchies
    • Measures
  • 4th January :
    • Supervised Learning : Regression Problems
    • Simple/Multiple Linear Regression
    • Ridge Regression
  • 5th January :
    • Logistic Regression
    • k_NN
    • Naive Bayes
    • Linear Discriminant Analysis
    • SVM
  • 6th January :
    • Clustering Algorithms :
    • k-means/k-medoid
    • Hierarchical Clustering
    • Principal Component Analysis
  • 7th January :
    • AI: Informed Search
    • Uninformed Search
    • Adversarial Search
    • Logical ( Propositional)
    • Logic(Predicate)

%% kanban:settings

{"kanban-plugin":"board","list-collapse":[false,false,false,false]}

%%