-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathasync_agent.py
171 lines (140 loc) · 5.73 KB
/
async_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import gym
import os
from scipy.misc import imresize
from tensorboardX import SummaryWriter
import threading
import utils
import a3c
import tensorflow as tf
import numpy as np
import copy
class Agent(threading.Thread):
def __init__(self, session, coord, name, global_network, input_shape, output_dim, logdir=None):
"""Agent worker thread
Args:
session (tf.Session): Tensorflow session needs to be shared
env (gym.env): Gym environment
coord (tf.train.Coordinator): Tensorflow Queue Coordinator
name (str): Name of this worker
global_network (A3CNetwork): Global network that needs to be updated
input_shape (list): Required for local A3CNetwork (H, W, C)
output_dim (int): Number of actions
logdir (str, optional): If logdir is given, will write summary
TODO: Add summary
"""
super(Agent, self).__init__()
self.local = a3c.A3CNetwork(name, input_shape, output_dim, logdir)
self.global_to_local = utils.copy_src_to_dst("global", name)
self.global_network = global_network
self.input_shape = input_shape
self.output_dim = output_dim
self.sess = session
self.coord = coord
self.name = name
self.logdir = logdir
self.episode = 0
self.writer = SummaryWriter('runs/'+self.name)
def run(self):
self.sess.run(self.global_to_local)
self.env = gym.make('PongDeterministic-v4')
s = self.env.reset()
s = utils.pipeline(s)
history = np.stack((s, s, s, s), axis=2)
done = False
total_reward = 0
time_step = 0
self.episode = 0
episode_step = 0
total_max_prob = 0
total_pi_loss = 0
total_entropy = 0
total_value_loss = 0
train_step = 0
while True:
train_step += 1
states = []
actions = []
rewards = []
dones = []
for i in range(256):
a, max_prob = self.choose_action(copy.deepcopy(history))
total_max_prob += max_prob
episode_step += 1
s2, r, real_done, _ = self.env.step(int(a+1))
s2 = utils.pipeline(s2)
total_reward += r
d = False
if r == -1 or r == 1:
d = True
states.append(copy.deepcopy(history))
actions.append(a)
rewards.append(r)
dones.append(d)
history[:, :, :3] = history[:, :, 1:]
history[:, :, 3] = s2
if real_done:
self.writer.add_scalar('score', total_reward, self.episode)
self.writer.add_scalar('max_prob', total_max_prob / episode_step, self.episode)
self.writer.add_scalar('episode_step', episode_step, self.episode)
print(self.name, total_reward, total_max_prob / episode_step, episode_step)
s = self.env.reset()
s = utils.pipeline(s)
history = np.stack((s, s, s, s), axis=2)
done = False
total_reward = 0
time_step = 0
self.episode += 1
episode_step = 0
total_max_prob = 0
total_pi_loss = 0
total_entropy = 0
total_value_loss = 0
if d:
break
pi_loss, value_loss, entropy = self.train_with_done(states, actions, rewards, dones)
self.sess.run(self.global_to_local)
self.writer.add_scalar('pi_loss', pi_loss, train_step)
self.writer.add_scalar('value_loss', value_loss, train_step)
self.writer.add_scalar('entropy', entropy, train_step)
def choose_action(self, states):
"""
Args:
states (2-D array): (N, H, W, 1)
"""
states = np.reshape(states, [-1, *self.input_shape])
feed = {
self.local.states: states
}
action = self.sess.run(self.local.action_prob, feed)
action = np.squeeze(action)
act = np.random.choice(self.output_dim, p=action)
return act, max(action)
def train_with_done(self, states, actions, rewards, dones):
states = np.array(states)
actions = np.array(actions)
rewards = np.array(rewards)
dones = np.array(dones)
feed = {
self.local.states: states
}
values = self.sess.run(self.local.values, feed)
rewards = utils.discount_reward_with_done(rewards, dones, gamma=0.99)
advantage = rewards - values
advantage -= np.mean(advantage)
advantage /= np.std(advantage) + 1e-8
sample_range = np.arange(len(states))
np.random.shuffle(sample_range)
shuffled_idx = sample_range[:32]
feed = {
self.local.states: [states[i] for i in shuffled_idx],
self.local.actions: [actions[i] for i in shuffled_idx],
self.local.rewards: [rewards[i] for i in shuffled_idx],
self.local.advantage: [advantage[i] for i in shuffled_idx]
}
gradients, pi_loss, value_loss, entropy = self.sess.run([self.local.gradients, self.local.pi_loss, self.local.mean_value_loss, self.local.entropy], feed)
feed = []
for (grad, _), (placeholder, _) in zip(gradients, self.global_network.gradients_placeholders):
feed.append((placeholder, grad))
feed = dict(feed)
self.sess.run(self.global_network.apply_gradients, feed)
return pi_loss, value_loss, entropy