-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathbenchmark.py
292 lines (238 loc) · 10.1 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import argparse
import sys
import time
sys.path.insert(0, 'catboost/catboost/python-package')
import ml_dataset_loader.datasets as data_loader
import numpy as np
import pandas as pd
import xgboost as xgb
from sklearn.metrics import mean_squared_error, accuracy_score
from sklearn.model_selection import train_test_split
# Global parameters
random_seed = 0
max_depth = 6
learning_rate = 0.1
min_split_loss = 0
min_weight = 1
l1_reg = 0
l2_reg = 1
class Data:
def __init__(self, X, y, name, task, metric, train_size=0.6, validation_size=0.2,
test_size=0.2):
assert (train_size + validation_size + test_size) == 1.0
self.name = name
self.task = task
self.metric = metric
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(X, y,
test_size=test_size,
random_state=random_seed)
self.X_train, self.X_val, self.y_train, self.y_val = train_test_split(self.X_train,
self.y_train,
test_size=validation_size / (1 - test_size),
random_state=random_seed)
assert (self.X_train.shape[0] + self.X_val.shape[0] + self.X_test.shape[0]) == X.shape[0]
def eval(data, pred):
if data.metric == "RMSE":
return np.sqrt(mean_squared_error(data.y_test, pred))
elif data.metric == "Accuracy":
# Threshold prediction if binary classification
if data.task == "Classification":
pred = pred > 0.5
elif data.task == "Multiclass classification":
if pred.ndim > 1:
pred = np.argmax(pred, axis=1)
return accuracy_score(data.y_test, pred)
else:
raise ValueError("Unknown metric: " + data.metric)
def add_data(df, algorithm, data, elapsed, metric):
time_col = (data.name, 'Time(s)')
metric_col = (data.name, data.metric)
try:
df.insert(len(df.columns), time_col, '-')
df.insert(len(df.columns), metric_col, '-')
except:
pass
df.at[algorithm, time_col] = elapsed
df.at[algorithm, metric_col] = metric
def configure_xgboost(data, use_gpu, args):
params = {'max_depth': max_depth,
'learning_rate': learning_rate, 'n_gpus': args.n_gpus, 'min_split_loss': min_split_loss,
'min_child_weight': min_weight, 'alpha': l1_reg, 'lambda': l2_reg, 'debug_verbose':args.debug_verbose}
if use_gpu:
params['tree_method'] = 'gpu_hist'
else:
params['tree_method'] = 'hist'
if data.task == "Regression":
params["objective"] = "reg:linear"
if use_gpu:
params["objective"] = "gpu:" + params["objective"]
elif data.task == "Multiclass classification":
params["objective"] = "multi:softmax"
params["num_class"] = np.max(data.y_test) + 1
elif data.task == "Classification":
params["objective"] = "binary:logistic"
if use_gpu:
params["objective"] = "gpu:" + params["objective"]
else:
raise ValueError("Unknown task: " + data.task)
return params
def configure_lightgbm(data, use_gpu):
params = {
'task': 'train',
'boosting_type': 'gbdt',
'max_depth': max_depth,
'num_leaves': 2 ** 8,
'learning_rate': learning_rate, 'min_data_in_leaf': 0,
'min_sum_hessian_in_leaf': 1, 'lambda_l2': 1, 'min_split_gain': min_split_loss,
'min_child_weight': min_weight, 'lambda_l1': l1_reg, 'lambda_l2': l2_reg}
if use_gpu:
params["device"] = "gpu"
if data.task == "Regression":
params["objective"] = "regression"
elif data.task == "Multiclass classification":
params["objective"] = "multiclass"
params["num_class"] = np.max(data.y_test) + 1
elif data.task == "Classification":
params["objective"] = "binary"
else:
raise ValueError("Unknown task: " + data.task)
return params
def configure_catboost(data, use_gpu, args):
if int(args.n_gpus) == -1:
dev_arr = "-1"
else:
dev_arr = [i for i in range(0, int(args.n_gpus))]
params = {'learning_rate': learning_rate, 'depth': max_depth, 'l2_leaf_reg': l2_reg, 'devices' : dev_arr}
if use_gpu:
params['task_type'] = 'GPU'
if data.task == "Multiclass classification":
params['loss_function'] = 'MultiClass'
params["classes_count"] = np.max(data.y_test) + 1
params["eval_metric"] = 'MultiClass'
return params
def run_xgboost(data, params, args):
dtrain = xgb.DMatrix(data.X_train, data.y_train)
dval = xgb.DMatrix(data.X_val, data.y_val)
dtest = xgb.DMatrix(data.X_test, data.y_test)
start = time.time()
bst = xgb.train(params, dtrain, args.num_rounds, [(dtrain, "train"), (dval, "val")])
elapsed = time.time() - start
pred = bst.predict(dtest)
metric = eval(data, pred)
return elapsed, metric
def train_xgboost(alg, data, df, args):
if alg not in args.algs:
return
use_gpu = True if 'gpu' in alg else False
params = configure_xgboost(data, use_gpu, args)
elapsed, metric = run_xgboost(data, params, args)
add_data(df, alg, data, elapsed, metric)
def run_lightgbm(data, params, args):
import lightgbm as lgb
lgb_train = lgb.Dataset(data.X_train, data.y_train)
lgb_eval = lgb.Dataset(data.X_test, data.y_test, reference=lgb_train)
start = time.time()
gbm = lgb.train(params,
lgb_train,
num_boost_round=args.num_rounds,
valid_sets=lgb_eval)
elapsed = time.time() - start
pred = gbm.predict(data.X_test)
metric = eval(data, pred)
return elapsed, metric
def train_lightgbm(alg, data, df, args):
if alg not in args.algs:
return
use_gpu = True if 'gpu' in alg else False
params = configure_lightgbm(data, use_gpu)
elapsed, metric = run_lightgbm(data, params, args)
add_data(df, alg, data, elapsed, metric)
def run_catboost(data, params, args):
import catboost as cat
cat_train = cat.Pool(data.X_train, data.y_train)
cat_test = cat.Pool(data.X_test, data.y_test)
cat_val = cat.Pool(data.X_val, data.y_val)
params['iterations'] = args.num_rounds
if data.task is "Regression":
model = cat.CatBoostRegressor(**params)
else:
model = cat.CatBoostClassifier(**params)
start = time.time()
model.fit(cat_train, use_best_model=False, eval_set=cat_val)
elapsed = time.time() - start
if data.task == "Multiclass classification":
preds = model.predict_proba(cat_test)
else:
preds = model.predict(cat_test)
metric = eval(data, preds)
return elapsed, metric
def train_catboost(alg, data, df, args):
if alg not in args.algs:
return
use_gpu = True if 'gpu' in alg else False
# catboost GPU does not work with multiclass
if data.task == "Multiclass classification" and use_gpu:
add_data(df, alg, data, 'N/A', 'N/A')
return
params = configure_catboost(data, use_gpu, args)
elapsed, metric = run_catboost(data, params, args)
add_data(df, alg, data, elapsed, metric)
class Experiment:
def __init__(self, data_func, name, task, metric):
self.data_func = data_func
self.name = name
self.task = task
self.metric = metric
def run(self, df, args):
X, y = self.data_func(num_rows=args.rows)
data = Data(X, y, self.name, self.task, self.metric)
train_xgboost('xgb-cpu-hist', data, df, args)
train_xgboost('xgb-gpu-hist', data, df, args)
train_lightgbm('lightgbm-cpu', data, df, args)
train_lightgbm('lightgbm-gpu', data, df, args)
train_catboost('cat-cpu', data, df, args)
train_catboost('cat-gpu', data, df, args)
experiments = [
Experiment(data_loader.get_year, "YearPredictionMSD", "Regression", "RMSE"),
Experiment(data_loader.get_synthetic_regression, "Synthetic", "Regression", "RMSE"),
Experiment(data_loader.get_higgs, "Higgs", "Classification", "Accuracy"),
Experiment(data_loader.get_cover_type, "Cover Type", "Multiclass classification", "Accuracy"),
Experiment(data_loader.get_bosch, "Bosch", "Classification", "Accuracy"),
Experiment(data_loader.get_airline, "Airline", "Classification", "Accuracy"),
]
def write_results(df, filename, format):
if format == "latex":
tmp_df = df.copy()
tmp_df.columns = pd.MultiIndex.from_tuples(tmp_df.columns)
with open(filename, "w") as file:
file.write(tmp_df.to_latex())
elif format == "csv":
with open(filename, "w") as file:
file.write(df.to_csv())
else:
raise ValueError("Unknown format: " + format)
print(format + " results written to: " + filename)
def main():
all_dataset_names = ''
for exp in experiments:
all_dataset_names += exp.name + ','
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--rows', type=int, default=None,
help='Max rows to benchmark for each dataset.')
parser.add_argument('--num_rounds', type=int, default=500, help='Boosting rounds.')
parser.add_argument('--datasets', default=all_dataset_names, help='Datasets to run.')
parser.add_argument('--debug_verbose', type=int, default=1)
parser.add_argument('--n_gpus', type=int, default=-1)
parser.add_argument('--algs', default='xgb-cpu-hist,xgb-gpu-hist,lightgbm-cpu,lightgbm-gpu,'
'cat-cpu,cat-gpu', help='Boosting algorithms to run.')
args = parser.parse_args()
df = pd.DataFrame()
for exp in experiments:
if exp.name in args.datasets:
exp.run(df, args)
# Write partial results at each iteration in case of failure
print(df.to_string())
write_results(df, "results.latex", "latex")
write_results(df, "results.csv", "csv")
if __name__ == "__main__":
main()