forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGenerator.cpp
399 lines (345 loc) · 12.5 KB
/
Generator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
#include <torch/csrc/Device.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/Generator.h>
#include <torch/csrc/THP.h>
#include <torch/csrc/autograd/generated/VariableType.h>
#include <torch/csrc/autograd/generated/variable_factories.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/utils/python_arg_parser.h>
#include <torch/csrc/utils/tensor_types.h>
#include <ATen/ATen.h>
#include <ATen/CPUGeneratorImpl.h>
#include <ATen/detail/XPUHooksInterface.h>
#include <structmember.h>
#include <utility>
using namespace at;
using namespace torch;
PyObject* THPGeneratorClass = nullptr;
PyObject* THPGenerator_initDefaultGenerator(const at::Generator& cdata) {
auto type = (PyTypeObject*)THPGeneratorClass;
auto self = THPObjectPtr{type->tp_alloc(type, 0)};
if (!self)
throw python_error();
auto self_ = reinterpret_cast<THPGenerator*>(self.get());
self_->cdata = cdata;
return self.release();
}
static void THPGenerator_dealloc(PyObject* _self) {
auto self = reinterpret_cast<THPGenerator*>(_self);
if (self->cdata.defined()) {
self->cdata.set_pyobj(nullptr);
self->cdata.~Generator();
}
Py_TYPE(_self)->tp_free(_self);
}
static PyObject* THPGenerator_pynew(
PyTypeObject* type,
PyObject* args,
PyObject* kwargs) {
HANDLE_TH_ERRORS
static torch::PythonArgParser parser({"Generator(Device device=None)"});
torch::ParsedArgs<1> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
auto device = r.deviceWithDefault(0, at::Device(at::kCPU));
THPGeneratorPtr self((THPGenerator*)type->tp_alloc(type, 0));
c10::DeviceType device_type = device.type();
if (device_type == at::kCPU) {
self->cdata = make_generator<CPUGeneratorImpl>();
} else {
self->cdata = globalContext()
.getAcceleratorHooksInterface(device_type)
.getNewGenerator(device.index());
}
return (PyObject*)self.release();
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_getState(PyObject* _self, PyObject* noargs) {
using namespace torch::autograd;
HANDLE_TH_ERRORS
auto& gen = ((THPGenerator*)_self)->cdata;
// See Note [Acquire lock when using random generators]
std::scoped_lock<std::mutex> lock(gen.mutex());
auto state_tensor = gen.get_state();
return THPVariable_Wrap(state_tensor);
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_setState(PyObject* _self, PyObject* _new_state) {
using namespace torch::autograd;
HANDLE_TH_ERRORS
if (!THPVariable_Check(_new_state)) {
throw torch::TypeError(
"expected a torch.ByteTensor, but got %s",
Py_TYPE(_new_state)->tp_name);
}
auto self = (THPGenerator*)_self;
auto& gen = self->cdata;
const auto& new_state_tensor = THPVariable_Unpack(_new_state);
// See Note [Acquire lock when using random generators]
std::scoped_lock<std::mutex> lock(gen.mutex());
gen.set_state(new_state_tensor);
Py_INCREF(self);
return (PyObject*)self;
END_HANDLE_TH_ERRORS
}
static uint64_t unpack_uint64(PyObject* pyobj) {
uint64_t unsigned_obj = 0;
try {
// First try to interpret as unsigned long
unsigned_obj = THPUtils_unpackUInt64(pyobj);
} catch (...) {
if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
// If an overflow happened, then the pyobj could be negative,
// so try to interpret it as signed long
PyErr_Clear();
int64_t obj = THPUtils_unpackLong(pyobj);
unsigned_obj = *(reinterpret_cast<uint64_t*>(&obj));
} else {
// If any other type of exception happened, rethrow it
throw;
}
}
return unsigned_obj;
}
static PyObject* THPGenerator_graphSafeGetState(
PyObject* _self,
PyObject* noargs) {
HANDLE_TH_ERRORS
auto& gen = ((THPGenerator*)_self)->cdata;
// See Note [Acquire lock when using random generators]
std::scoped_lock<std::mutex> lock(gen.mutex());
return THPGenerator_Wrap(gen.graphsafe_get_state());
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_graphSafeSetState(
PyObject* _self,
PyObject* _state) {
HANDLE_TH_ERRORS
auto self = (THPGenerator*)_self;
auto& gen = self->cdata;
// See Note [Acquire lock when using random generators]
std::scoped_lock<std::mutex> lock(gen.mutex());
gen.graphsafe_set_state(THPGenerator_Unwrap(_state));
Py_INCREF(self);
return (PyObject*)self;
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_cloneState(PyObject* _self, PyObject* noargs) {
HANDLE_TH_ERRORS
auto& gen = ((THPGenerator*)_self)->cdata;
// See Note [Acquire lock when using random generators]
std::scoped_lock<std::mutex> lock(gen.mutex());
return THPGenerator_Wrap(gen.clone());
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_manualSeed(PyObject* _self, PyObject* seed) {
HANDLE_TH_ERRORS
auto self = (THPGenerator*)_self;
auto generator = self->cdata;
TORCH_CHECK(
THPUtils_checkLong(seed),
"manual_seed expected a long, "
"but got ",
THPUtils_typename(seed));
uint64_t unsigned_seed = unpack_uint64(seed);
// See Note [Acquire lock when using random generators]
std::scoped_lock<std::mutex> lock(generator.mutex());
generator.set_current_seed(unsigned_seed);
Py_INCREF(self);
return (PyObject*)self;
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_setOffset(PyObject* _self, PyObject* offset) {
HANDLE_TH_ERRORS
auto self = (THPGenerator*)_self;
auto generator = self->cdata;
TORCH_CHECK(
THPUtils_checkLong(offset),
"manual_offset expected a long, "
"but got ",
THPUtils_typename(offset));
uint64_t unsigned_offset = unpack_uint64(offset);
// See Note [Acquire lock when using random generators]
std::scoped_lock<std::mutex> lock(generator.mutex());
generator.set_offset(unsigned_offset);
Py_INCREF(self);
return (PyObject*)self;
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_seed(PyObject* _self, PyObject* noargs) {
HANDLE_TH_ERRORS
// See Note [Acquire lock when using random generators]
auto self = (THPGenerator*)_self;
std::scoped_lock<std::mutex> lock(self->cdata.mutex());
uint64_t seed_val = self->cdata.seed();
return THPUtils_packUInt64(seed_val);
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_initialSeed(PyObject* _self, PyObject* noargs) {
HANDLE_TH_ERRORS
auto self = (THPGenerator*)_self;
return THPUtils_packUInt64(self->cdata.current_seed());
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_getOffset(PyObject* _self, PyObject* noargs) {
HANDLE_TH_ERRORS
auto self = (THPGenerator*)_self;
return THPUtils_packUInt64(self->cdata.get_offset());
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_get_device(THPGenerator* self, void* unused) {
HANDLE_TH_ERRORS
return THPDevice_New(self->cdata.device());
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_reduce(PyObject* _self, PyObject* noargs) {
HANDLE_TH_ERRORS
auto self = (THPGenerator*)_self;
auto& gen = self->cdata;
auto ret = THPObjectPtr{PyTuple_New(3)};
if (!ret)
throw python_error();
py::object torch_module = py::module::import("torch");
py::object torch_generator = torch_module.attr("Generator");
PyTuple_SET_ITEM(ret.get(), 0, torch_generator.release().ptr());
auto args = THPObjectPtr{PyTuple_New(1)};
if (!args)
throw python_error();
PyTuple_SET_ITEM(args.get(), 0, THPGenerator_get_device(self, nullptr));
PyTuple_SET_ITEM(ret.get(), 1, args.release());
auto state = THPObjectPtr{PyTuple_New(3)};
if (!state)
throw python_error();
c10::DeviceType device_type = gen.device().type();
PyTuple_SET_ITEM(state.get(), 0, THPGenerator_initialSeed(_self, nullptr));
PyTuple_SET_ITEM(
state.get(),
1,
device_type != at::kCPU ? THPGenerator_getOffset(_self, nullptr)
: Py_None);
PyTuple_SET_ITEM(state.get(), 2, THPGenerator_getState(_self, nullptr));
PyTuple_SET_ITEM(ret.get(), 2, state.release());
return ret.release();
END_HANDLE_TH_ERRORS
}
static PyObject* THPGenerator_pickleSetState(PyObject* _self, PyObject* state) {
HANDLE_TH_ERRORS
THPGenerator_manualSeed(_self, PyTuple_GET_ITEM(state, 0));
auto& offset = PyTuple_GET_ITEM(state, 1);
if (offset != Py_None) {
THPGenerator_setOffset(_self, offset);
}
THPGenerator_setState(_self, PyTuple_GET_ITEM(state, 2));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables)
static struct PyGetSetDef THPGenerator_properties[] = {
{"device", (getter)THPGenerator_get_device, nullptr, nullptr, nullptr},
{nullptr}};
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables)
static PyMethodDef THPGenerator_methods[] = {
{"__reduce__", THPGenerator_reduce, METH_NOARGS, nullptr},
{"__setstate__", THPGenerator_pickleSetState, METH_O, nullptr},
{"get_state", THPGenerator_getState, METH_NOARGS, nullptr},
{"set_state", THPGenerator_setState, METH_O, nullptr},
{"clone_state", THPGenerator_cloneState, METH_NOARGS, nullptr},
{"graphsafe_get_state",
THPGenerator_graphSafeGetState,
METH_NOARGS,
nullptr},
{"graphsafe_set_state", THPGenerator_graphSafeSetState, METH_O, nullptr},
{"set_offset", THPGenerator_setOffset, METH_O, nullptr},
{"manual_seed", THPGenerator_manualSeed, METH_O, nullptr},
{"seed", THPGenerator_seed, METH_NOARGS, nullptr},
{"initial_seed", THPGenerator_initialSeed, METH_NOARGS, nullptr},
{"get_offset", THPGenerator_getOffset, METH_NOARGS, nullptr},
{nullptr}};
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables)
static struct PyMemberDef THPGenerator_members[] = {
{"_cdata", T_ULONGLONG, offsetof(THPGenerator, cdata), READONLY, nullptr},
{nullptr}};
static PyTypeObject THPGeneratorType = {
PyVarObject_HEAD_INIT(nullptr, 0)
"torch._C.Generator", /* tp_name */
sizeof(THPGenerator), /* tp_basicsize */
0, /* tp_itemsize */
THPGenerator_dealloc, /* tp_dealloc */
0, /* tp_vectorcall_offset */
nullptr, /* tp_getattr */
nullptr, /* tp_setattr */
nullptr, /* tp_reserved */
nullptr, /* tp_repr */
nullptr, /* tp_as_number */
nullptr, /* tp_as_sequence */
nullptr, /* tp_as_mapping */
nullptr, /* tp_hash */
nullptr, /* tp_call */
nullptr, /* tp_str */
nullptr, /* tp_getattro */
nullptr, /* tp_setattro */
nullptr, /* tp_as_buffer */
// NOLINTNEXTLINE(misc-redundant-expression)
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
nullptr, /* tp_doc */
nullptr, /* tp_traverse */
nullptr, /* tp_clear */
nullptr, /* tp_richcompare */
0, /* tp_weaklistoffset */
nullptr, /* tp_iter */
nullptr, /* tp_iternext */
THPGenerator_methods, /* tp_methods */
THPGenerator_members, /* tp_members */
THPGenerator_properties, /* tp_getset */
nullptr, /* tp_base */
nullptr, /* tp_dict */
nullptr, /* tp_descr_get */
nullptr, /* tp_descr_set */
0, /* tp_dictoffset */
nullptr, /* tp_init */
nullptr, /* tp_alloc */
THPGenerator_pynew, /* tp_new */
};
bool THPGenerator_init(PyObject* module) {
THPGeneratorClass = (PyObject*)&THPGeneratorType;
if (PyType_Ready(&THPGeneratorType) < 0)
return false;
Py_INCREF(&THPGeneratorType);
PyModule_AddObject(module, "Generator", (PyObject*)&THPGeneratorType);
return true;
}
static void set_pyobj(const Generator& self, PyObject* pyobj) {
TORCH_CHECK(self.defined(), "cannot call set_pyobj() on undefined generator");
self.set_pyobj(pyobj);
}
static PyObject* pyobj(const Generator& self) {
TORCH_CHECK(self.defined(), "cannot call pyobj() on undefined generator");
return self.pyobj();
}
PyObject* THPGenerator_Wrap(const Generator& gen) {
if (!gen.defined()) {
Py_RETURN_NONE;
}
if (auto obj = pyobj(gen)) {
Py_INCREF(obj);
return obj;
}
return THPGenerator_NewWithVar((PyTypeObject*)THPGeneratorClass, gen);
}
at::Generator THPGenerator_Unwrap(PyObject* state) {
if (!Py_IS_TYPE(state, &THPGeneratorType)) {
throw torch::TypeError(
"expected a Generator, but got %s", Py_TYPE(state)->tp_name);
}
return reinterpret_cast<THPGenerator*>(state)->cdata;
}
// Creates a new Python object for a Generator. The Generator must not already
// have a PyObject* associated with it.
PyObject* THPGenerator_NewWithVar(PyTypeObject* type, Generator gen) {
PyObject* obj = type->tp_alloc(type, 0);
if (obj) {
auto g = (THPGenerator*)obj;
new (&g->cdata) Generator(std::move(gen));
set_pyobj(g->cdata, obj);
}
return obj;
}