forked from rossb34/PortfolioAnalyticsPresentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimize.R
474 lines (413 loc) · 18.1 KB
/
optimize.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
# script used to run the portfolio optimizations
# Examples to consider
# Example 1: Consider a portfolio of stocks. Full investment and long
# only (or box) constraints. Objective to minimize portfolio variance.
# Demonstrate a custom moments function to compare a sample covariance
# matrix estimate and a robust covariance matrix estimate. An alternative
# to a MCD estimate is ledoit-wolf shrinkage, DCC GARCH model,
# factor model, etc.
# Example 2: Consider a portfolio of stocks. Dollar neutral, beta
# neutral, box constraints, and leverage_exposure constraints. Objective
# to minimize portfolio StdDev. This will demonstrate some of the
# more advanced constraint types. Could also introduce position limit
# constraints here in this example.
# Example 3: Consider an allocation to hedge funds using the
# EDHEC-Risk Alternative Index as a proxy. This will be an extended
# example starting with an objective to minimize portfolio expected
# shortfall, then risk budget percent contribution limit, then equal
# risk contribution limit.
# Example 4: Consider an allocation to hedge funds using the
# EDHEC-Risk Alternative Index as a proxy.
# Option 1 for example 4
# Objective to maximize a risk adjusted return measure
# (e.g.Calmar Ratio, Sterling Ratio, Sortino Ratio, or Upside Potential
# Ratio)
# I prefer doing this option
# Option 2 for example 4
# Objective to maximize the
# fourth order expansion of the Constant Relative Risk Aversion (CRRA)
# expected utility function. Demonstrate a custom moment function and
# a custom objective function.
# Set the directory to save the optimization results
results.dir <- "optimization_results"
# mix of blue, green, and red hues
my_colors <- c("#a6cee3", "#1f78b4", "#b2df8a", "#33a02c", "#fb9a99", "#e31a1c")
# Load the packages
library(PortfolioAnalytics)
library(foreach)
library(ROI)
library(ROI.plugin.quadprog)
# for running via Rscript
library(methods)
# Source in the lwShrink function
source("R/lwShrink.R")
# Example 1 and Example 2 will use the crsp_weekly data
# Example 3 and Example 4 will use the edhec data
source("data_prep.R")
##### Example 1 #####
stocks <- colnames(equity.data)
# Specify an initial portfolio
portf.init <- portfolio.spec(stocks)
# Add constraints
# weights sum to 1
portf.minvar <- add.constraint(portf.init, type="full_investment")
# box constraints
portf.minvar <- add.constraint(portf.minvar, type="box", min=0.01, max=0.45)
# Add objective
# objective to minimize portfolio variance
portf.minvar <- add.objective(portf.minvar, type="risk", name="var")
# Backtesting parameters
# Set rebalancing frequency
rebal.freq <- "quarters"
# Training Period
training <- 400
# Trailing Period
trailing <- 250
# Run optimization
# Sample Covariance Matrix Estimate
# By default, momentFUN uses set.portfolio.moments which computes the sample
# moment estimates
cat("Example 1: running minimum variance with sample covariance matrix
estimate backtest\n")
if(file.exists(paste(results.dir, "opt.minVarSample.rda", sep="/"))){
cat("file already exists\n")
} else {
opt.minVarSample <- optimize.portfolio.rebalancing(equity.data, portf.minvar,
optimize_method="ROI",
rebalance_on=rebal.freq,
training_period=training,
trailing_periods=trailing)
cat("opt.minVarSample complete. Saving results to ", results.dir, "\n")
save(opt.minVarSample, file=paste(results.dir, "opt.minVarSample.rda", sep="/"))
}
# Custom moment function to use Ledoit-Wolf shinkage covariance matrix estimate
lw.sigma <- function(R, ...){
out <- list()
# estimate covariance matrix via robust covariance matrix estimate,
# ledoit-wolf shrinkage, GARCH, factor model, etc.
# set.seed(1234)
# out$sigma <- MASS::cov.rob(R, method="mcd", ...)$cov
out$sigma <- lwShrink(R)$cov
#print(index(last(R)))
return(out)
}
cat("Example 1: running minimum variance with Ledoit-Wolf shrinkage covariance
matrix estimate backtest\n")
if(file.exists(paste(results.dir, "opt.minVarLW.rda", sep="/"))){
cat("file already exists\n")
} else{
# Using Ledoit-Wolf Shrinkage Covariance Matrix Estimate
opt.minVarLW <- optimize.portfolio.rebalancing(equity.data, portf.minvar,
optimize_method="ROI",
momentFUN=lw.sigma,
rebalance_on=rebal.freq,
training_period=training,
trailing_periods=trailing)
cat("opt.minVarLW complete. Saving results to ", results.dir, "\n")
save(opt.minVarLW, file=paste(results.dir, "opt.minVarLW.rda", sep="/"))
}
##### Example 2 #####
portf.init <- portfolio.spec(stocks)
# weights sum to 0
portf.dn <- add.constraint(portf.init, type="weight_sum",
min_sum=-0.01, max_sum=0.01)
# Add box constraints such that no stock has weight less than -20% or
# greater than 20%
portf.dn <- add.constraint(portf.dn, type="box",
min=-0.2, max=0.2)
# Add position limit constraint such that the portfolio has a maximum
# of 20 non-zero positions
portf.dn <- add.constraint(portf.dn, type="position_limit", max_pos=20)
# Compute the betas of each stock
betas <- t(CAPM.beta(equity.data, market, Rf))
# Add factor exposure constraint to limit portfolio beta
portf.dn <- add.constraint(portf.dn, type="factor_exposure", B=betas,
lower=-0.25, upper=0.25)
# portf.dn <- add.constraint(portf.dn, type="leverage_exposure", leverage=2)
# generate random portfolios
if(file.exists(paste(results.dir, "rp.rda", sep="/"))){
cat("random portfolios already generated\n")
} else {
cat("generating random portfolios\n")
rp <- random_portfolios(portf.dn, 10000, eliminate=TRUE)
cat("random portfolios generated. Saving rp to ", results.dir, "\n")
save(rp, file=paste(results.dir, "rp.rda", sep="/"))
}
# Add objective to maximize return
portf.dn.StdDev <- add.objective(portf.dn, type="return", name="mean",
target=0.0015)
# Add objective to target a portfolio standard deviation of 2%
portf.dn.StdDev <- add.objective(portf.dn.StdDev, type="risk", name="StdDev",
target=0.02)
cat("Example 2: running dollar neutral optimization\n")
if(file.exists(paste(results.dir, "opt.dn.rda", sep="/"))){
cat("file already exists\n")
} else {
# Run optimization
opt.dn <- optimize.portfolio(equity.data, portf.dn.StdDev,
optimize_method="random", rp=rp,
trace=TRUE)
cat("opt.dn complete. Saving results to ", results.dir, "\n")
save(opt.dn, file=paste(results.dir, "opt.dn.rda", sep="/"))
}
##### Example 3 #####
# Example 3 will consider three portfolios
# - minES
# - minES with component contribution limit
# - minES with equal risk contribution
funds <- colnames(R)
portf.init <- portfolio.spec(funds)
portf.init <- add.constraint(portf.init, type="weight_sum",
min_sum=0.99, max_sum=1.01)
portf.init <- add.constraint(portf.init, type="box",
min=0.05, max=0.4)
# Set multiplier=0 so that it is calculated, but does not affect the optimization
portf.init <- add.objective(portf.init, type="return",
name="mean", multiplier=0)
# Add objective to minimize expected shortfall
portf.minES <- add.objective(portf.init, type="risk", name="ES")
# Add risk budget objective with upper limit on percentage contribution
portf.minES.RB <- add.objective(portf.minES, type="risk_budget",
name="ES", max_prisk=0.3)
# Relax the box constraint
portf.minES.RB$constraints[[2]]$max <- rep(1,ncol(R))
# print.default(portf.minES.RB$constraints[[2]])
# Add risk budget objective to minimize concentration of percentage component
# contribution to risk. Concentration is defined as the Herfindahl-Hirschman
# Index (HHI). $\sum_i x_i^2$
portf.minES.EqRB <- add.objective(portf.minES, type="risk_budget",
name="ES", min_concentration=TRUE)
# relax the box constraint
portf.minES.EqRB <- add.constraint(portf.minES.EqRB, type="box",
min=0.05, max=1, indexnum=2)
# portf.minES.RB$constraints[[2]]$max <- rep(1,ncol(R))
# print.default(portf.minES.EqRB$constraints[[2]])
# Add risk budget objective to minES portfolio with multiplier=0 so that it
# is calculated, but does not affect optimization
portf.minES <- add.objective(portf.minES, type="risk_budget",
name="ES", multiplier=0)
# Combine the portfolios so we can make a single call to
# optimize.portfolio
portf <- combine.portfolios(list(minES=portf.minES,
minES.RB=portf.minES.RB,
minES.EqRB=portf.minES.EqRB))
cat("Example 3: running minimum ES optimizations\n")
if(file.exists(paste(results.dir, "opt.minES.rda", sep="/"))){
cat("file already exists\n")
} else {
# Run the optimization
opt.minES <- optimize.portfolio(R, portf, optimize_method="DEoptim",
search_size=5000, trace=TRUE, traceDE=0,
message=TRUE)
cat("opt.minES complete. Saving results to ", results.dir, "\n")
save(opt.minES, file=paste(results.dir, "opt.minES.rda", sep="/"))
}
# Now we want to evaluate the optimization through time
# Rebalancing parameters
# Set rebalancing frequency
rebal.freq <- "quarters"
# Training Period
training <- 120
# Trailing Period
trailing <- 72
cat("Example 3: running minimum ES backtests\n")
if(file.exists(paste(results.dir, "bt.opt.minES.rda", sep="/"))){
cat("file already exists\n")
} else {
# Backtest
bt.opt.minES <- optimize.portfolio.rebalancing(R, portf,
optimize_method="DEoptim",
rebalance_on=rebal.freq,
training_period=training,
trailing_periods=trailing,
search_size=5000,
traceDE=0, message=TRUE)
cat("bt.opt.minES complete. Saving results to ", results.dir, "\n")
save(bt.opt.minES, file=paste(results.dir, "bt.opt.minES.rda", sep="/"))
}
##### Example 4 #####
# Simple function to compute the moments used in CRRA
crra.moments <- function(R, ...){
out <- list()
out$mu <- colMeans(R)
out$sigma <- cov(R)
out$m3 <- PerformanceAnalytics:::M3.MM(R)
out$m4 <- PerformanceAnalytics:::M4.MM(R)
out
}
# Fourth order expansion of CRRA expected utility
CRRA <- function(R, weights, lambda, sigma, m3, m4){
weights <- matrix(weights, ncol=1)
M2.w <- t(weights) %*% sigma %*% weights
M3.w <- t(weights) %*% m3 %*% (weights %x% weights)
M4.w <- t(weights) %*% m4 %*% (weights %x% weights %x% weights)
term1 <- 0.5 * lambda * M2.w
term2 <- (1 / 6) * lambda * (lambda + 1) * M3.w
term3 <- (1 / 24) * lambda * (lambda + 1) * (lambda + 2) * M4.w
out <- -term1 + term2 - term3
out
}
# test the CRRA function
portf.crra <- portfolio.spec(funds)
portf.crra <- add.constraint(portf.crra, type="weight_sum",
min_sum=0.99, max_sum=1.01)
portf.crra <- add.constraint(portf.crra, type="box",
min=0.05, max=0.4)
portf.crra <- add.objective(portf.crra, type="return",
name="CRRA", arguments=list(lambda=10))
# I just want these for plotting
# Set multiplier=0 so that it is calculated, but does not affect the optimization
portf.crra <- add.objective(portf.crra, type="return", name="mean", multiplier=0)
portf.crra <- add.objective(portf.crra, type="risk", name="ES", multiplier=0)
portf.crra <- add.objective(portf.crra, type="risk", name="StdDev", multiplier=0)
cat("Example 4: running maximum CRRA optimization\n")
if(file.exists(paste(results.dir, "opt.crra.rda", sep="/"))){
cat("file already exists\n")
} else {
# Run the optimization
opt.crra <- optimize.portfolio(R, portf.crra, optimize_method="DEoptim",
search_size=5000, trace=TRUE, traceDE=0,
momentFUN="crra.moments")
cat("opt.crra complete. Saving results to ", results.dir, "\n")
save(opt.crra, file=paste(results.dir, "opt.crra.rda", sep="/"))
}
cat("Example 4: running maximum CRRA backtest\n")
if(file.exists(paste(results.dir, "bt.opt.crra.rda", sep="/"))){
cat("file already exists\n")
} else {
# Run the optimization with rebalancing
bt.opt.crra <- optimize.portfolio.rebalancing(R, portf.crra,
optimize_method="DEoptim",
search_size=5000, trace=TRUE,
traceDE=0,
momentFUN="crra.moments",
rebalance_on=rebal.freq,
training_period=training,
trailing_periods=trailing)
cat("bt.opt.crra complete. Saving results to ", results.dir, "\n")
save(bt.opt.crra, file=paste(results.dir, "bt.opt.crra.rda", sep="/"))
}
##### RP Demo #####
cat("Random portfolio method comparison\n")
if(file.exists("figures/rp_plot.png") & file.exists("figures/rp_viz.rda")){
cat("file already exists\n")
} else {
portf.lo <- portfolio.spec(colnames(R))
portf.lo <- add.constraint(portf.lo, type="weight_sum",
min_sum=0.99, max_sum=1.01)
portf.lo <- add.constraint(portf.lo, type="long_only")
# Use the long only portfolio previously created
# Generate random portfolios using the 3 methods
rp1 <- random_portfolios(portf.lo, permutations=2000,
rp_method='sample')
rp2 <- random_portfolios(portf.lo, permutations=2000,
rp_method='simplex')
rp3 <- random_portfolios(portf.lo, permutations=2000,
rp_method='grid')
# Calculate the portfolio mean return and standard deviation
rp1_mean <- apply(rp1, 1, function(x) mean(R %*% x))
rp1_StdDev <- apply(rp1, 1, function(x) StdDev(R, weights=x))
rp2_mean <- apply(rp2, 1, function(x) mean(R %*% x))
rp2_StdDev <- apply(rp2, 1, function(x) StdDev(R, weights=x))
rp3_mean <- apply(rp3, 1, function(x) mean(R %*% x))
rp3_StdDev <- apply(rp3, 1, function(x) StdDev(R, weights=x))
x.assets <- StdDev(R)
y.assets <- colMeans(R)
###
require(rCharts)
# create an interactive plot using rCharts and nvd3 scatterChart
tmp1 <- data.frame(name="sample", mean=rp1_mean, sd=rp1_StdDev)
tmp2 <- data.frame(name="simplex", mean=rp2_mean, sd=rp2_StdDev)
tmp3 <- data.frame(name="grid", mean=rp3_mean, sd=rp3_StdDev)
tmp <- rbind(tmp1, tmp2, tmp3)
rp_viz <- nPlot(mean ~ sd, group="name", data=tmp, type="scatterChart")
rp_viz$xAxis(
axisLabel = 'Risk (std. dev.)'
,tickFormat = "#!d3.format('0.4f')!#"
)
rp_viz$yAxis(
axisLabel = 'Return'
,tickFormat = "#!d3.format('0.4f')!#"
)
rp_viz$chart(color = my_colors[c(2,4,6)])
#set left margin so y axis label will show up
rp_viz$chart( margin = list(left = 100) )
# rp_viz$chart(
# tooltipContent = "#!
# function(a,b,c,d) {
# //d has all the info you need
# return( '<h3>' + d.point.series + '</h3>Return: ' + d.point.y + '<br>Risk: ' + d.point.x)
# }
# !#")
####if you do not want fisheye/magnify
####let me know, and will show how to remove
####this will solve the tooltip problem
save(rp_viz, file="figures/rp_viz.rda")
###
x.lower <- min(x.assets) * 0.9
x.upper <- max(x.assets) * 1.1
y.lower <- min(y.assets) * 0.9
y.upper <- max(y.assets) * 1.1
png("figures/rp_plot.png", height = 500, width = 1000)
# plot feasible portfolios
plot(x=rp1_StdDev, y=rp1_mean, col=my_colors[2], main="Random Portfolio Methods",
ylab="mean", xlab="StdDev", xlim=c(x.lower, x.upper),
ylim=c(y.lower, y.upper))
points(x=rp2_StdDev, y=rp2_mean, col=my_colors[4], pch=2)
points(x=rp3_StdDev, y=rp3_mean, col=my_colors[6], pch=5)
points(x=x.assets, y=y.assets)
text(x=x.assets, y=y.assets, labels=colnames(R), pos=4, cex=0.8)
legend("bottomright", legend=c("sample", "simplex", "grid"),
col=my_colors[c(2,4,6)],
pch=c(1, 2, 5), bty="n")
dev.off()
}
cat("Random portfolio simplex method fev biasing\n")
if(file.exists("figures/fev_plot.png")){
cat("file already exists\n")
} else {
png("figures/fev_plot.png", height = 500, width = 1000)
fev <- 0:5
x.assets <- StdDev(R)
y.assets <- colMeans(R)
par(mfrow=c(2, 3))
for(i in 1:length(fev)){
rp <- rp_simplex(portfolio=portf.lo, permutations=2000, fev=fev[i])
tmp.mean <- apply(rp, 1, function(x) mean(R %*% x))
tmp.StdDev <- apply(rp, 1, function(x) StdDev(R=R, weights=x))
x.lower <- min(c(tmp.StdDev, x.assets)) * 0.85
x.upper <- max(c(tmp.StdDev, x.assets)) * 1.15
y.lower <- min(c(tmp.mean, y.assets)) * 0.85
y.upper <- max(c(tmp.mean, y.assets)) * 1.15
plot(x=tmp.StdDev, y=tmp.mean, main=paste("FEV =", fev[i]),
ylab="mean", xlab="StdDev", col=rgb(0, 0, 100, 50, maxColorValue=255),
xlim=c(x.lower, x.upper),
ylim=c(y.lower, y.upper))
points(x=x.assets, y=y.assets)
text(x=x.assets, y=y.assets, labels=colnames(R), pos=4, cex=0.8)
}
par(mfrow=c(1,1))
dev.off()
}
# # Calculate the turnover per period
# turnover.rebalancing <- function(object){
# weights <- extractWeights(object)
# n <- nrow(weights)
# out <- vector("numeric", n)
# out[1] <- NA
# for(i in 2:n){
# out[i] <- out[i] <- sum(abs(as.numeric(weights[i,]) - as.numeric(weights[i-1,])))
# }
# xts(out, index(weights))
# }
#
# # Calculate the diversification per period
# diversification.rebalancing <- function(object){
# weights <- extractWeights(object)
# n <- nrow(weights)
# out <- vector("numeric", n)
# for(i in 1:n){
# out[i] <- 1 - sum(weights[i,]^2)
# }
# xts(out, index(weights))
# }