-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_nn.py
59 lines (48 loc) · 1.71 KB
/
main_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# # Set seed for random number generator
# from numpy.random import seed
# seed(1)
# from tensorflow import set_random_seed
# set_random_seed(2)
# params are exactly the same, but metrics results are little bit different
#################################################################################
import time
import glob
import multiprocessing
# local items
from utils import DataPrep, DataPrepWrapper
from scan import Scan
from params import ParamsRandomSearch
from config import *
# Just disables the warning, doesn't enable AVX/FMA
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# TODO: Add Sphinx documentation
# TODO: Add visualization (search keras hps tuning)
if __name__ == "__main__":
start = time.time()
# read data
df = pd.read_csv(data_fp, low_memory=False)
os_df = pd.read_csv(os_data_fp, low_memory=False)
is_data = DataPrep(df)
data = DataPrepWrapper(is_data, os_df)
X_train, X_val, X_test, y_train, y_val, y_test = data.split_and_standardize()
# dump the test dataset as pickle file to Temp dir for later use - obsolete
if not glob.glob(f'{temp_dir}\\*.pkl'):
X_test.dump(f'{temp_dir}\\X_test.pkl')
y_test.dump(f'{temp_dir}\\y_test.pkl')
prs = ParamsRandomSearch(params, n_iter=n_iter, model='NN')
# print(f'# of combos: {len(prs.params_grid)}')
# print(prs.params_grid)
multiprocessing.freeze_support()
p = multiprocessing.Process()
p.start()
# scan the params grid
t = Scan(X_train=X_train,
y_train=y_train,
X_val=X_val,
y_val=y_val,
params_search=prs,
dataset_name='Mei_NN',
model=neural_nets)
p.terminate()
end = time.time()
print(end-start)